
MA 732

Study Guide

Autonomous Equations

Let our general autonomous equation be represented by

(?) u′ = f(u), u(0) = z ∈ Λ, t ≥ 0

and we will assume invariance (z ∈ Λ =⇒ u(t) ∈ Λ∀t ≥ 0) and that solutions are unique to the right.

Semi-groups

We notate solutions to (?) as S(t)z t ≥ 0 with S(0)z = z. We call S a semigroup or �semi-dynamical system�
(or trajectory). S has the following properties

• d
dtS(t)z = f (S(t)z) , t ≥ 0

• S(0)z = z

• tn → t, zn → z =⇒ S (tn) zn → S(t)z

• S(t)S(s)z = S(t+ s)z, t, s ≥ 0

Orbit

We de�ne the orbit of a solution starting at z as

γ(z) = {S(t)z | t ≥ 0}

Types of Trajectories

Suppose solutions are unique in both directions. Then for each z ∈ Λ, the solutions S(t)z is of exactly one
of the following 3 types:

1. S(t)z is one-to-one (S (t1) z 6= S (t2) z if t1 6= t2)

2. S(t)z is periodic of minimal period T > 0 (S(t+ T )z ≡ S(t)z ∀ t ≥ 0)

3. S(t)z is constant (S(t)z ≡ z ∀ t ≥ 0)

Proof. Suppose S(t)z is not of type 1. Then ∃ t1 < t2 � S (t1) z = S (t2) z. Then we must have

(6) S(t)z ≡ S(t+ τ)z ∀ t ≥ 0, τ = t2 − t1

This shows that S(t)z is periodic.
∴ S(t)z is periodic.
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Now, de�ne T ≡ inf{τ > 0 | (6) holds true} > 0. We want to show that S(t+T )z = S(t)z ∀ t ≥ 0.
Let τn → T and τn ≥ T . Then

S(t+ T )z = lim
n→∞

S (t+ τn) z

= lim
n→∞

S(t)z (by (6))

= S(t)z

This shows that
S is periodic with minimal period T

Now, consider when T = 0. Then ∃ τn → 0 which satis�es (6). If we take t = 0 in limn→∞ S (t+ τn) z
then we get (for 'large' n),

S (τn) z = z =⇒ S (τn) z − z = 0

=⇒ S (τn) z − z
τn

= 0

and we see that limn→∞
S(τn)z−z

τn
= S′(0)z = f(S(0)z) = f(z) = 0 =⇒ S(t)z = z.

Q.E.D.

Omega Limit Set

The omega limit set ω of S(t)z is the set of points x ∈ Λ � ∃ tn →∞ � S (tn) z → x as n→∞ and note that
tn must be an increasing sequence (not strict).

Properties of Omega Limit Set

1. ω(z) is closed

2. ω(z) is invariant - x ∈ ω(z) =⇒ S(t)x ∈ ω(z)∀ t ≥ 0

3. ω(z) = ∅ ⇐⇒ limn→∞ ‖S(t)z‖ =∞

4. ω(z) = {w} ⇐⇒ limt→∞ S(t)z = w and furthermore, f(w) = 0

5. ω(z) is bounded =⇒ ω(z) is connected

Proof 1. Let (xn) ∈ ω(z) and xn → x. We WTS x ∈ ω(z).

Thus, ∀n ≥ 0, let tn > tn−1 + 1 be � ‖S (tn) z − xn‖ < 1
n . Then

‖S (tn) z − x‖ ≤ ‖S (tn) z − xn‖+ ‖xn − x‖ <
1

n
+ ‖xn − x‖ → 0 as n→∞

And thus
S (tn) z = x as n→∞

and
∴ x ∈ ω(z) =⇒ ω(z) is closed.

Q.E.D.
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Proof 2. Let x ∈ ω(z). We WTS S(t)x ∈ ω(z) ∀ t ≥ 0.

x ∈ ω(z) =⇒ x = lim
n→∞

S (tn) z (tn →∞)

So we want to show that S(t)x ∈ ω(z) or that S(t)x = limn→∞ S (sn) z for some sn ↑ ∞.

S(t)x = S(t)
(

lim
n→∞

S (tn) z
)

= lim
n→∞

S(t)S (tn) z

= lim
n→∞

S (t+ tn) z

= lim
n→∞

S (sn) z (take sn = t+ tn)

And therefore,

S(t)x ∈ ω(z) ∀ t ≥ 0 =⇒ ω(z) is invariant.

Q.E.D.

Proof 3. �⇐=� Trivial since ω(z) is set of points which solution approaches. If the solution
blows up then it is empty.

∴ ω(z) = ∅

� =⇒ � Let ω(z) = ∅. For contradiction, assume limt→∞ ||S(t)z|| 6= 0. Then

∃ tn > n � ‖S (tn) z‖ ≤M <∞ for some M ∈ R

But then we have the S (tn) z is bounded which means that S (tnk
) z → x since we can �nd some

subsequence of tn, tnk
, such that this is a convergent sequence (bounded and closed =⇒ compact).

Thus S (tnk
) z must also converge to something which we call x. But then x ∈ ω(z) = ∅ gives us

our contradiction.

Q.E.D.

Invariant Sets

Let Ω denote the interior of an invariant set and Ω̄ be the actual set.

1. If Ω = (0,∞)N , then Ω̄ is invariant ⇐⇒ x ≥ 0 and xk = 0 =⇒ fk(x) ≥ 0

2. If Ω =
∏N
i=1 (ai, bi) =

(
~a,~b
)
, then Ω̄ is invariant ⇐⇒ ~a ≤ x ≤ ~b and if

xk = ak =⇒ fk(x) ≥ 0
xk = bk =⇒ fk(x) ≤ 0

.

3. If Ω = {x |x · ~ai < ci, ∀ i = 1, 2, . . . ,m}, then Ω̄ is invariant ⇐⇒ x · ~ak = ck =⇒ ~ak · fk(x) ≤ 0.

4. If Ω = {x ∈ Λ |ϕi(x) < ci, ∀ i = 1, 2, . . . ,m}, then Ω̄ is invariant ⇐⇒ D±ϕi(x)f(x) ≤ 0 if ϕi(x) = ci.

Nullclines

The ui nullcline, represented as Nui or Ni is {x |fi(x) = 0}.
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Monotone Flows

Monotone S(t)z is monotone ⇐⇒ x ≥ y =⇒ S(t)x ≥ S(t)y

Quasi-positive f is quasi-positive ⇐⇒ x ≥ 0 and xk = 0 =⇒ fk(x) ≥ 0

Also can say this if f is linear and it's o� diagonal terms are positive

Quasi-monotone f is quasi-monotone ⇐⇒ x ≥ y and xk = yk =⇒ fk(x) ≥ fk(y)

We can also say this is true if f is C1 and its Jacobian matrix is q-p.

Theorem In (?), S(t) is monotone ⇐⇒ f is qm

Theorem Suppose S is monotone. Then

(1) z ∈ Λ and f(z) ≥ 0 ⇐⇒ S(t)z ↑ in t
(2) z ∈ Λ and f(z) ≤ 0 ⇐⇒ S(t)z ↓ in t

Analyzing Systems of ODEs

1. Check invariance of system (f is qp)

2. Find critical points

3. Check to see if S(t) is monotone (check if f is qm)

4. Find ẑ � f (ẑ) < 0

5. Determine the stability of the other critical points (try to �nd ẑ such that f (ẑ) is positive or negative)
or look at Df(0, 0) if for example the origin is the critical point in mind. Find the ev of this matrix.

Lyapunov Function for (?)

A Lyapunov function for (?) must satisfy the following

1. V is p-d. I.e. V [0] = 0 and V [x] > 0 if x 6= 0

2. V is locally lipschitz (lipschitz on bounded sets). I.e. |V [x]− V [y]| ≤ LR||x− y|| if ||x||, ||y|| ≤ R

3. D±V(?)[x] ≤ 0 ∀x ∈ Λ

4. ∀ r > 0 ∃ aR ↑ strictly and continuous and LR > 0 � a(||x||) ≤ V [x] ≤ LR||x|| ∀ ||x|| ≤ R

Lyapunov's (S) Theorem - Let f(0) = 0. If V is a Lyapunov function for (?) as de�ned above, then the
CP 0 is (S).

Proof. Let 0 < ε < R, t0 ≥ 0 be given. Then we have a(||x||) ≤ V [x] ≤ b · ||x|| ∀ x ∈ Λ, ||x|| < R

DV(?)[t, u(t)] ≤ 0 =⇒ V is non-increasing. So then we get:

V [u(t)] ≤ V [u (t0)]

Choose δ = δ(ε) > 0 � b·δ < a(R) (i.e., b·δ ∈ Rng(a)) and a−1(b·δ) < ε. (Remember ||u (t0)|| < δ)
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So a (||u(t)||) ≤ V [u(t)] ≤ V [u (t0)] ≤ b · ||u (t0)|| < b · δ =⇒ a (||u(t)||) < b · δ =⇒ ||u(t)|| <
a−1 (b · δ) < ε

∴ The zero solution to (?) is (S) .

QED

Lyapunov's (AS) Theorem - Suppose η > 0 and V : ||x|| ≤ η → [0,∞) is p.d. and locally lipschitz. If
DV(?)[x] ≤ −W [x]∀x ≤ η where W : ||x|| ≤ η → [0,∞) is p.d., then 0 is (AS) CP for (?).

Proof. (?) is (S) by the previous theorem so we want to show (AS).

Assume a(||x||) ≤ V [x] ≤ b · ||x|| and ā(||x||) ≤W [x] ≤ b̄ · ||x|| ∀x ∈ Λ, ||x|| ≤ R.
Let η be � if ||u (t0)|| < η then ā(||u(t)||) ≤ ā(R) ∀ t ≥ t0 ≥ 0. We claim the following:

||u (t0)|| < η =⇒ lim
t→∞

V [u(t)] = 0

For contradiction, suppose ||u (t0)|| < η but limt→∞ V [u(t)] 6= 0. Since V [u(t)] is positive-de�nite,
this is equivalent to saying limt→∞ V [u(t)] > 0.

DV(?)[u(t)] ≤ −W [u(t)] < 0 =⇒ V [u(t)] is decreasing

Thus we have V [u(t)] is decreasing and limt→∞ V [u(t)] > 0 which means ∃α > 0 � V [u(t)] ≥ α.
Then we have b · ||u(t)|| ≥ V [u(t)] ≥ α =⇒ ||u(t)|| ≥ α

b .

W [u(t)] ≥ ā(||u(t)||) ≥ ā
(α
b

)
=⇒ DV [u(t)] ≤ −W [u(t)] ≤ −ā

(α
b

)
=⇒ V [u(t)]− V [u (t0)] ≤ −ā

(α
b

)
· (t− t0)

=⇒ V [u(t)] ≤ V [u (t0)]− ā
(α
b

)
· (t− t0)→ −∞ as t→∞

=⇒ V [u(t)]→ −∞ which is a contradiction

Thus, limt→∞ V [u(t)] = 0.

Now,

a(||u(t)||) ≤ V [u(t)]→ 0 as t→∞
=⇒ ||u(t)|| ≤ a−1 (V [u (t)])→ 0 since V [u(t)]→ 0

since V [u(t)]→ 0 and a(0) = 0 =⇒ a−1(0) = 0 all as t→∞.

∴ lim
t→∞

||u(t)|| = 0 =⇒ The zero solution to (?) is (AS).

QED

Basin of Attraction

Let B̂(w) of a CP w be the set of all z ∈ Λ � S(t)z → w.

Theorem Suppose 0 ∈ Λ and ∃ open U ⊂ RN � 0 ∈ U . V : U → [0,∞) is p.d. and locally lipschitz and in
addition V [x]→∞ as ||x|| → ∞, x ∈ U . Then if ∃ p.d. W : U → [0,∞) �

DV(?)[x] ≤ −W [x]∀x ∈ U ∩ Λ

and x ∈ U ∩ Λ and S(t)z ∈ U ∩ Λ, then S(t)z → 0 as t→∞
(
i.e. z ∈ B̂(0)

)
.
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Stability by Linearization

Check Jacobian at CPs and �nd values. If Re(λ) < 0∀λ ∈ σ(A), then (S) about the CP where A = Df(0)
and about the CP f(x) = Ax.

Theorem These are equivalent:

1. A is (AS)

2. Re(λ) ≤ −ρ < 0∀λ ∈ σ(A) and if Re(λ) = −ρ then λ is simple (algebraic multiplicity is equal to
geometric multiplicity)

3.
∥∥etA∥∥ ≤ ke−ρt ∀ t ≥ 0 (k ≥ 1)

4. ∃ equivalent norm ||| · ||| (||x|| ≤ |||x||| ≤ k||x||) such that
∥∥∣∣etA∣∣∥∥ ≤ e−ρt where |||x||| ≡

supt≥0
{
eρt
∥∥etAx∥∥}.

5. M̂+[x,Ax] ≤ −ρ||x|| ∀x ∈ RN

De�ne
(?)
′
u′ = Au+ g(u)

where f(0) = 0 and A = Df(0) and we have ||g(x)|| ≤ e||x|| if ||x|| < δ(ε).

Theorem If A is (AS), then so is (?)
′
.

Basic Invariance Principle / Lasalle's Invariance Principle

Suppose U is an open subset of RN , 0 ∈ U , V : U ∩ Λ→ [0,∞) is p.d. and locally lipschitz and V [x]→∞
as ||x|| → ∞. Let Γ ⊂ U ∩ Λ � 0 ∈ Γ and

DV(?)[x] ≤ 0 ∀x ∈ Γ

Set M =
{
x
∣∣DV(?)[x] = 0

}
. If z ∈ Γ and S(t)z remains in Γ∀ t ≥ 0, then

ω(z) ⊂M

In particular, since ω(z) is invariant, ω(z) ⊂ N , where N is the largest invariant subset of M .
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