MA 732
Study Guide

Autonomous Equations

Let our general autonomous equation be represented by
(x) ' =f(u), u(0)=z€A, t=>0

and we will assume invariance (z € A = u(t) € AVt > 0) and that solutions are unique to the right.

Semi-groups

We notate solutions to (x) as S(t)z t > 0 with S(0)z = z. We call S a semigroup or “semi-dynamical system”
(or trajectory). S has the following properties

o LS(t)z=f(S(t)z),t>0
o S(0)z ==z
oty >tz >z = S(ty)zn — S(t)z

o S(t)S(s)z=S({t+9)z,t,s>0

Orbit

We define the orbit of a solution starting at z as

v(z) ={S(t)z]t > 0}

Types of Trajectories

Suppose solutions are unique in both directions. Then for each z € A, the solutions S(t)z is of exactly one
of the following 3 types:

1. S(t)z is one-to-one (S (t1) z # S (t2) z if t1 # t2)
2. S(t)z is periodic of minimal period T' > 0 (S(t+T)z = S(t)2Vt > 0)
3. S(t)z is constant (S(t)z =2Vt > 0)
Proof. Suppose S(t)z is not of type 1. Then 3¢ < to 5 S (¢1) 2z = S (t2) 2. Then we must have
(6) S{t)z=St+71)zVt>0, T=ta—t1

This shows that S(t)z is periodic.
.. S(t)z is periodic.



Now, define T' = inf{7 > 0] (6) holds true} > 0. We want to show that S(t+7)z = S(t)z V¢ > 0.
Let 7, —» T and 7, > T. Then

SE+T)z = lim S(t+7)z
= lim S(t)z (by (6)

= S(t)z

This shows that

S is periodic with minimal period T
Now, consider when 7' = 0. Then 37,, — 0 which satisfies (6). If we take ¢t = 0 in lim,, o, S (¢t + 7,) 2
then we get (for ’large’ n),

S(th)z=2z = S(m)z—2=0
. S(T”)Z_z:()
Tn

and we see that lim, . 272272 — §/(0)z = £(S(0)2) = f(2) =0 = S(t)z = 2.

Tn

Q.E.D.

Omega Limit Set

The omega limit set w of S(t)z is the set of points z € A 5 3t,, — 00 35S (t,,) 2 = x as n — oo and note that
t,, must be an increasing sequence (not strict).

Properties of Omega Limit Set
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Proof 1. Let (z,) € w(z) and z,, — x. We WTS z € w(z).
Thus, Vn > 0, let t, > t,—1 + 1 be 3|[S (t,) 2 — x,|| < L. Then

1
1S (tn) z — || < ||S (tn) 2 — xu|| + ||z — 2| < g—&—Hxn—xH —0asn— oo

And thus
S(tn)z=zasn— o0

Srew(z) = |w(z) is closed.

and

Q.E.D.



Proof 2. Let € w(z). We WTS S(t)z € w(z) Vt > 0.

rew(z) = z= lm S(ty)z (tn, = )

n—oo
So we want to show that S(¢)x € w(z) or that S(¢)z = lim,_,- S (sp) z for some s, 1 co.
St)x = S{) (nh—>H;o S (tn) z)
= nh_>néo S(t)S (tn) z
= HILII;OS(t+tn)Z
= lim S(s,)z (take s, =1t+1y)
n— oo

And therefore,

St)r ew(z) Vi >0 = ’w(z) is invariant. ‘

Q.E.D.

Proof 3. “«<=” Trivial since w(z) is set of points which solution approaches. If the solution
blows up then it is empty.
sw(z)=10

“ =7 Let w(z) = 0. For contradiction, assume lim;_,, ||S(t)z|| # 0. Then
It, >n o ||S () z|| < M < oo for some M € R

But then we have the S (¢,,) z is bounded which means that S (t,,) z — « since we can find some
subsequence of ¢, t,, , such that this is a convergent sequence (bounded and closed => compact).
Thus S (¢, ) z must also converge to something which we call z. But then z € w(z) = ) gives us
our contradiction.

Q.E.D.

Invariant Sets

Let Q denote the interior of an invariant set and Q be the actual set.
1. If @ = (0,00)", then Q is invariant <= z >0and 2, =0 = fx(x) >0
2. 1 Q=1 (ai,bi) = (c'i, g), then ) is invariant < @ < z < b and if
3. U Q= {z|r-d; <c;, Vi=1,2,...,m}, then Qis invariant <= z-a@, = cx, = ay - fr(z) <0.

4. HQ={z € Npi(r) <c;, Vi=1,2,...,m}, then Q is invariant <= D¥¢,(z)f(z) <0 if p;(x) = ¢;.

Nullclines

The u; nullcline, represented as N, or N; is {x|f;(x) =0}.



Monotone Flows
Monotone S(t)z is monotone <= = >y = S(t)z > S(t)y

Quasi-positive f is quasi-positive <= x >0and z;, =0 = fi(z) >0

Also can say this if f is linear and it’s off diagonal terms are positive

Quasi-monotone f is quasi-monotone <= x >y and z =y, = fr(z) > fi(y)

We can also say this is true if f is C! and its Jacobian matrix is g-p.
Theorem In (x), S(¢) is monotone <= fis qm
Theorem Suppose S is monotone. Then

(1) z€e Aand f(2) >0 <= S(t)zTint
(2) zeAand f(2) <0 < S(t)zlint

Analyzing Systems of ODEs

1. Check invariance of system (f is qp)
2. Find critical points

Check to see if S(¢) is monotone (check if f is qm)

- w

Find 25 f(2) <0

5. Determine the stability of the other critical points (try to find 2 such that f (2) is positive or negative)

or look at D f(0,0) if for example the origin is the critical point in mind. Find the ev of this matrix.

Lyapunov Function for (x)
A Lyapunov function for (x) must satisfy the following

1. Visp-d. Le. V[0]=0and V[z] >0if z #0

2. V is locally lipschitz (lipschitz on bounded sets). Le. |V[z] — V[y]| < Lgl|lx —y|| if ||z||, ||ly|]] < R

3. DAV ylz] <0Vz €A

4. ¥r > 03ag 7 strictly and continuous and Lg > 0 2 a(||z||) < V[z] < Lg||z||V|]z]| £ R

Lyapunov’s (S) Theorem - Let f(0) = 0. If V is a Lyapunov function for (x) as defined above, then the
CP 0is (S).

Proof. Let 0 < € < R, tg > 0 be given. Then we have a(||z||) < Viz] <b-|jz|| YV z € A, ||z]| < R

DViy[t,u(t)] <0 = V is non-increasing. So then we get:

Viu®)] <V u(to)]

Choose § = 6(¢) > 0 5b-6 < a(R) (i-e., b-d € Rng(a)) and a=1(b-§) < e. (Remember ||u (ty)|| < J)



So a([lu@)l) < V[u®)] < V]ulto)] <b-llulto)ll <b-0 = a([[u@®)])) <b-§ = [lu(®)]] <
a~t(b-6) <e

.. The zero solution to (x) is (S) .

QED

Lyapunov’s (AS) Theorem - Suppose n > 0 and V : ||z|| < n — [0,00) is p.d. and locally lipschitz. If
DViylz] < =Wz]Vax <n where W : [|z]| <5 — [0,00) is p.d., then 0 is (AS) CP for (x).

Proof. (x) is (S) by the previous theorem so we want to show (AS).
Assume a(||z||) < V([z] < b-||z[] and a(||2[]) < W[a] <b- [l2]| Yo € A, [|z|| < R.
Let 1 be 2 if ||u (¢0)]] < n then a(||u(t)|]) < a(R) Yt > to > 0. We claim the following:

()| <n = Jim Viu(t)] =0

For contradiction, suppose ||u (t9)]| < n but lim;_, V]u(t)] # 0. Since V']u(t)] is positive-definite,
this is equivalent to saying lim¢_,o, V[u(t)] > 0.

DViy[u(t)] < —Wlu(t)] <0 = Vlu(t)] is decreasing

Thus we have V[u(t)] is decreasing and lim; o, V[u(t)] > 0 which means Ja > 0 > V[u(t)] > a.
Then we have b [[u(t)|| > V[u(t)] > o = |[[u(t)]| > ¢.

W) = a(lu(e)) 2 a(5) = DViu®)] < -W)] < -a ()

= Vu(t)] = —oo which is a contradiction

Thus, lim;—, o Vu(t)] = 0.

Now,

a()lu(®)]]) < Vu(t)] — 0 as t — oo
— |[u(®)|| < a™' (V [u(t)]) — 0 since V[u(t)] = 0

since V[u(t)] — 0 and a(0) =0 = a~1(0) =0 all as t — cc.

tlim [lu(t)|| =0 = The zero solution to (x) is (AS).
QED

Basin of Attraction
Let B(w) of a CP w be the set of all z € A 5 S(t)z — w.

Theorem Suppose 0 € A and Jopen U CRY 50 € U. V : U — [0,00) is p.d. and locally lipschitz and in
addition V]z] — oo as ||z|| = 0o, x € U. Then if 3p.d. W:U — [0,00) >

DViylr] < -Wz]Ve e UNA

and x e UNA and S(t)z € UNA, then S(t)z — 0 as t — oo (i.e. z € E(O)).



Stability by Linearization

Check Jacobian at CPs and find values. If Re(A) < OV A € o(A), then (S) about the CP where A = D f(0)
and about the CP f(z) = Ax.

Theorem These are equivalent:

1. Ais (AS)

2. Re(\) < —p <0V A €o0(A) and if Re(X) = —p then A is simple (algebraic multiplicity is equal to
geometric multiplicity)

3. ||e*|| < ke PVt >0 (k> 1)
4. 3 equivalent norm ||| - ||| (||z|| < [|[z[|| < kl|[z[|) such that |[|e"!||] < e=* where |||z|| =
e {7 |2

5. M|z, Az] < —pl|z||Vz € RN

Define
%) ' = Au+ g(u)

where f(0) =0 and A = Df(0) and we have ||g(z)|| < e||z]| if ||z|] < d(€).

Theorem If A is (AS), then so is (%)

Basic Invariance Principle / Lasalle’s Invariance Principle

Suppose U is an open subset of RN, 0 € U, V : UNA — [0,00) is p.d. and locally lipschitz and V[z] — oo
as ||z]| > o00. Let TCUNA>0€T and

DViylz] <0Vxel
Set M = {x|DV(,y[z] =0}. If z € T and S(t)z remains in V¢ > 0, then
w(z)c M

In particular, since w(z) is invariant, w(z) C N, where N is the largest invariant subset of M.



