MA 732
 Study Guide

Autonomous Equations

Let our general autonomous equation be represented by

$$
(\star) \quad u^{\prime}=f(u), u(0)=z \in \Lambda, \quad t \geq 0
$$

and we will assume invariance $(z \in \Lambda \Longrightarrow u(t) \in \Lambda \forall t \geq 0)$ and that solutions are unique to the right.

Semi-groups

We notate solutions to (\star) as $S(t) z t \geq 0$ with $S(0) z=z$. We call S a semigroup or "semi-dynamical system" (or trajectory). S has the following properties

- $\frac{d}{d t} S(t) z=f(S(t) z), t \geq 0$
- $S(0) z=z$
- $t_{n} \rightarrow t, z_{n} \rightarrow z \Longrightarrow S\left(t_{n}\right) z_{n} \rightarrow S(t) z$
- $S(t) S(s) z=S(t+s) z, t, s \geq 0$

Orbit

We define the orbit of a solution starting at z as

$$
\gamma(z)=\{S(t) z \mid t \geq 0\}
$$

Types of Trajectories

Suppose solutions are unique in both directions. Then for each $z \in \Lambda$, the solutions $S(t) z$ is of exactly one of the following 3 types:

1. $S(t) z$ is one-to-one $\left(S\left(t_{1}\right) z \neq S\left(t_{2}\right) z\right.$ if $\left.t_{1} \neq t_{2}\right)$
2. $S(t) z$ is periodic of minimal period $T>0(S(t+T) z \equiv S(t) z \forall t \geq 0)$
3. $S(t) z$ is constant $(S(t) z \equiv z \forall t \geq 0)$

Proof. Suppose $S(t) z$ is not of type 1. Then $\exists t_{1}<t_{2} \ni S\left(t_{1}\right) z=S\left(t_{2}\right) z$. Then we must have

$$
\text { (6) } \quad S(t) z \equiv S(t+\tau) z \forall t \geq 0, \tau=t_{2}-t_{1}
$$

This shows that $S(t) z$ is periodic.
$\therefore S(t) z$ is periodic.

Now, define $T \equiv \inf \{\tau>0 \mid(6)$ holds true $\}>0$. We want to show that $S(t+T) z=S(t) z \forall t \geq 0$.
Let $\tau_{n} \rightarrow T$ and $\tau_{n} \geq T$. Then

$$
\begin{aligned}
S(t+T) z & =\lim _{n \rightarrow \infty} S\left(t+\tau_{n}\right) z \\
& =\lim _{n \rightarrow \infty} S(t) z \quad(\text { by }(6)) \\
& =S(t) z
\end{aligned}
$$

This shows that

$$
S \text { is periodic with minimal period } T
$$

Now, consider when $T=0$. Then $\exists \tau_{n} \rightarrow 0$ which satisfies (6). If we take $t=0$ in $\lim _{n \rightarrow \infty} S\left(t+\tau_{n}\right) z$ then we get (for 'large' n),

$$
\begin{aligned}
S\left(\tau_{n}\right) z=z & \Longrightarrow \quad S\left(\tau_{n}\right) z-z=0 \\
& \Longrightarrow \frac{S\left(\tau_{n}\right) z-z}{\tau_{n}}=0
\end{aligned}
$$

and we see that $\lim _{n \rightarrow \infty} \frac{S\left(\tau_{n}\right) z-z}{\tau_{n}}=S^{\prime}(0) z=f(S(0) z)=f(z)=0 \Longrightarrow S(t) z=z$.
$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.

Omega Limit Set

The omega limit set ω of $S(t) z$ is the set of points $x \in \Lambda$ э $\exists t_{n} \rightarrow \infty$ э $S\left(t_{n}\right) z \rightarrow x$ as $n \rightarrow \infty$ and note that t_{n} must be an increasing sequence (not strict).

Properties of Omega Limit Set

1. $\omega(z)$ is closed
2. $\omega(z)$ is invariant $-x \in \omega(z) \Longrightarrow S(t) x \in \omega(z) \forall t \geq 0$
3. $\omega(z)=\emptyset \Longleftrightarrow \lim _{n \rightarrow \infty}\|S(t) z\|=\infty$
4. $\omega(z)=\{w\} \Longleftrightarrow \lim _{t \rightarrow \infty} S(t) z=w$ and furthermore, $f(w)=0$
5. $\omega(z)$ is bounded $\Longrightarrow \omega(z)$ is connected

Proof 1. Let $\left(x_{n}\right) \in \omega(z)$ and $x_{n} \rightarrow x$. We WTS $x \in \omega(z)$.
Thus, $\forall n \geq 0$, let $t_{n}>t_{n-1}+1$ be э $\left\|S\left(t_{n}\right) z-x_{n}\right\|<\frac{1}{n}$. Then

$$
\left\|S\left(t_{n}\right) z-x\right\| \leq\left\|S\left(t_{n}\right) z-x_{n}\right\|+\left\|x_{n}-x\right\|<\frac{1}{n}+\left\|x_{n}-x\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

And thus

$$
S\left(t_{n}\right) z=x \text { as } n \rightarrow \infty
$$

and

$$
\therefore x \in \omega(z) \Longrightarrow \omega(z) \text { is closed. }
$$

Q.E.D.

Proof 2. Let $x \in \omega(z)$. We WTS $S(t) x \in \omega(z) \forall t \geq 0$.

$$
x \in \omega(z) \Longrightarrow x=\lim _{n \rightarrow \infty} S\left(t_{n}\right) z \quad\left(t_{n} \rightarrow \infty\right)
$$

So we want to show that $S(t) x \in \omega(z)$ or that $S(t) x=\lim _{n \rightarrow \infty} S\left(s_{n}\right) z$ for some $s_{n} \uparrow \infty$.

$$
\begin{aligned}
S(t) x & =S(t)\left(\lim _{n \rightarrow \infty} S\left(t_{n}\right) z\right) \\
& =\lim _{n \rightarrow \infty} S(t) S\left(t_{n}\right) z \\
& =\lim _{n \rightarrow \infty} S\left(t+t_{n}\right) z \\
& =\lim _{n \rightarrow \infty} S\left(s_{n}\right) z \quad\left(\text { take } s_{n}=t+t_{n}\right)
\end{aligned}
$$

And therefore,

$$
S(t) x \in \omega(z) \forall t \geq 0 \Longrightarrow \omega(z) \text { is invariant. }
$$

Q.E.D.

Proof 3. " " Trivial since $\omega(z)$ is set of points which solution approaches. If the solution blows up then it is empty.

$$
\therefore \omega(z)=\emptyset
$$

$" \Longrightarrow "$ Let $\omega(z)=\emptyset$. For contradiction, assume $\lim _{t \rightarrow \infty}\|S(t) z\| \neq 0$. Then

$$
\exists t_{n}>n \ni\left\|S\left(t_{n}\right) z\right\| \leq M<\infty \text { for some } M \in \mathbb{R}
$$

But then we have the $S\left(t_{n}\right) z$ is bounded which means that $S\left(t_{n_{k}}\right) z \rightarrow x$ since we can find some subsequence of $t_{n}, t_{n_{k}}$, such that this is a convergent sequence (bounded and closed \Longrightarrow compact). Thus $S\left(t_{n_{k}}\right) z$ must also converge to something which we call x. But then $x \in \omega(z)=\emptyset$ gives us our contradiction.
Q.E.D.

Invariant Sets

Let Ω denote the interior of an invariant set and $\bar{\Omega}$ be the actual set.

1. If $\Omega=(0, \infty)^{N}$, then $\bar{\Omega}$ is invariant $\Longleftrightarrow x \geq 0$ and $x_{k}=0 \Longrightarrow f_{k}(x) \geq 0$
2. If $\Omega=\prod_{i=1}^{N}\left(a_{i}, b_{i}\right)=(\vec{a}, \vec{b})$, then $\bar{\Omega}$ is invariant $\Longleftrightarrow \vec{a} \leq x \leq \vec{b}$ and if $\begin{aligned} & x_{k}=a_{k} \quad \Longrightarrow \quad f_{k}(x) \geq 0 \\ & x_{k}=b_{k} \quad \Longrightarrow \quad f_{k}(x) \leq 0\end{aligned}$.
3. If $\Omega=\left\{x \mid x \cdot \overrightarrow{a_{i}}<c_{i}, \forall i=1,2, \ldots, m\right\}$, then $\bar{\Omega}$ is invariant $\Longleftrightarrow x \cdot \vec{a}_{k}=c_{k} \Longrightarrow \vec{a}_{k} \cdot f_{k}(x) \leq 0$.
4. If $\Omega=\left\{x \in \Lambda \mid \varphi_{i}(x)<c_{i}, \forall i=1,2, \ldots, m\right\}$, then $\bar{\Omega}$ is invariant $\Longleftrightarrow D^{ \pm} \varphi_{i}(x) f(x) \leq 0$ if $\varphi_{i}(x)=c_{i}$.

Nullclines

The u_{i} nullcline, represented as $N_{u_{i}}$ or N_{i} is $\left\{x \mid f_{i}(x)=0\right\}$.

Monotone Flows

Monotone $S(t) z$ is monotone $\Longleftrightarrow x \geq y \Longrightarrow S(t) x \geq S(t) y$
Quasi-positive f is quasi-positive $\Longleftrightarrow x \geq 0$ and $x_{k}=0 \Longrightarrow f_{k}(x) \geq 0$
Also can say this if f is linear and it's off diagonal terms are positive
Quasi-monotone f is quasi-monotone $\Longleftrightarrow x \geq y$ and $x_{k}=y_{k} \Longrightarrow f_{k}(x) \geq f_{k}(y)$
We can also say this is true if f is \mathcal{C}^{1} and its Jacobian matrix is q-p.
Theorem In $(\star), S(t)$ is monotone $\Longleftrightarrow \mathrm{f}$ is qm
Theorem Suppose S is monotone. Then
(1) $z \in \Lambda$ and $f(z) \geq 0 \Longleftrightarrow S(t) z \uparrow$ in t
(2) $z \in \Lambda$ and $f(z) \leq 0 \Longleftrightarrow S(t) z \downarrow$ in t

Analyzing Systems of ODEs

1. Check invariance of system (f is qp)
2. Find critical points
3. Check to see if $S(t)$ is monotone (check if f is qm)
4. Find \hat{z} э $f(\hat{z})<0$
5. Determine the stability of the other critical points (try to find \hat{z} such that $f(\hat{z})$ is positive or negative) or look at $D f(0,0)$ if for example the origin is the critical point in mind. Find the ev of this matrix.

Lyapunov Function for ((\star)

A Lyapunov function for (\star) must satisfy the following

1. V is p-d. I.e. $V[0]=0$ and $V[x]>0$ if $x \neq 0$
2. V is locally lipschitz (lipschitz on bounded sets). I.e. $|V[x]-V[y]| \leq L_{R}\|x-y\|$ if $\|x\|,\|y\| \leq R$
3. $D^{ \pm} V_{(\star)}[x] \leq 0 \forall x \in \Lambda$
4. $\forall r>0 \exists a_{R} \uparrow$ strictly and continuous and $L_{R}>0$ э $a(\|x\|) \leq V[x] \leq L_{R}\|x\| \forall\|x\| \leq R$

Lyapunov's (S) Theorem - Let $f(0)=0$. If V is a Lyapunov function for (\star) as defined above, then the CP 0 is (\mathbf{S}).

Proof. Let $0<\epsilon<R, t_{0} \geq 0$ be given. Then we have $a(\|x\|) \leq V[x] \leq b \cdot\|x\| \forall x \in \Lambda,\|x\|<R$
$\mathbf{D} V_{(\star)}[t, u(t)] \leq 0 \Longrightarrow V$ is non-increasing. So then we get:

$$
V[u(t)] \leq V\left[u\left(t_{0}\right)\right]
$$

Choose $\delta=\delta(\epsilon)>0$ э $b \cdot \delta<a(R)$ (i.e., $b \cdot \delta \in \operatorname{Rng}(a))$ and $a^{-1}(b \cdot \delta)<\epsilon .\left(\right.$ Remember $\left.\left\|u\left(t_{0}\right)\right\|<\delta\right)$

So $a(\|u(t)\|) \leq V[u(t)] \leq V\left[u\left(t_{0}\right)\right] \leq b \cdot\left\|u\left(t_{0}\right)\right\|<b \cdot \delta \Longrightarrow a(\|u(t)\|)<b \cdot \delta \Longrightarrow\|u(t)\|<$ $a^{-1}(b \cdot \delta)<\epsilon$
\therefore The zero solution to (\star) is (\mathbf{S}).
$\mathbb{Q E D}$
Lyapunov's (AS) Theorem - Suppose $\eta>0$ and $V:\|x\| \leq \eta \rightarrow[0, \infty)$ is p.d. and locally lipschitz. If $D V_{(\star)}[x] \leq-W[x] \forall x \leq \eta$ where $W:\|x\| \leq \eta \rightarrow[0, \infty)$ is p.d., then 0 is (AS) CP for (\star).

Proof. (\star) is (S) by the previous theorem so we want to show (AS).
Assume $a(\|x\|) \leq V[x] \leq b \cdot\|x\|$ and $\bar{a}(\|x\|) \leq W[x] \leq \bar{b} \cdot\|x\| \forall x \in \Lambda,\|x\| \leq R$.
Let η be э if $\left\|u\left(t_{0}\right)\right\|<\eta$ then $\bar{a}(\|u(t)\|) \leq \bar{a}(R) \forall t \geq t_{0} \geq 0$. We claim the following:

$$
\left\|u\left(t_{0}\right)\right\|<\eta \Longrightarrow \lim _{t \rightarrow \infty} V[u(t)]=0
$$

For contradiction, suppose $\left\|u\left(t_{0}\right)\right\|<\eta$ but $\lim _{t \rightarrow \infty} V[u(t)] \neq 0$. Since $V[u(t)]$ is positive-definite, this is equivalent to saying $\lim _{t \rightarrow \infty} V[u(t)]>0$.

$$
\mathbf{D} V_{(\star)}[u(t)] \leq-W[u(t)]<0 \Longrightarrow V[u(t)] \text { is decreasing }
$$

Thus we have $V[u(t)]$ is decreasing and $\lim _{t \rightarrow \infty} V[u(t)]>0$ which means $\exists \alpha>0$ э $V[u(t)] \geq \alpha$. Then we have $b \cdot\|u(t)\| \geq V[u(t)] \geq \alpha \Longrightarrow\|u(t)\| \geq \frac{\alpha}{b}$.

$$
\begin{aligned}
W[u(t)] \geq \bar{a}(\|u(t)\|) \geq \bar{a} & \left(\frac{\alpha}{b}\right) \Longrightarrow \mathbf{D} V[u(t)] \leq-W[u(t)] \leq-\bar{a}\left(\frac{\alpha}{b}\right) \\
& \Longrightarrow V[u(t)]-V\left[u\left(t_{0}\right)\right] \leq-\bar{a}\left(\frac{\alpha}{b}\right) \cdot\left(t-t_{0}\right) \\
& \Longrightarrow V[u(t)] \leq V\left[u\left(t_{0}\right)\right]-\bar{a}\left(\frac{\alpha}{b}\right) \cdot\left(t-t_{0}\right) \rightarrow-\infty \text { as } t \rightarrow \infty \\
& \Longrightarrow V[u(t)] \rightarrow-\infty \text { which is a contradiction }
\end{aligned}
$$

Thus, $\lim _{t \rightarrow \infty} V[u(t)]=0$.
Now,

$$
\begin{aligned}
& a(\|u(t)\|) \leq V[u(t)] \rightarrow 0 \text { as } t \rightarrow \infty \\
& \quad \Longrightarrow\|u(t)\| \leq a^{-1}(V[u(t)]) \rightarrow 0 \text { since } V[u(t)] \rightarrow 0
\end{aligned}
$$

since $V[u(t)] \rightarrow 0$ and $a(0)=0 \Longrightarrow a^{-1}(0)=0$ all as $t \rightarrow \infty$.

$$
\therefore \lim _{t \rightarrow \infty}\|u(t)\|=0 \Longrightarrow \text { The zero solution to }(\star) \text { is (AS). }
$$

Basin of Attraction

Let $\hat{B}(w)$ of a CP w be the set of all $z \in \Lambda \ni S(t) z \rightarrow w$.
Theorem Suppose $0 \in \Lambda$ and \exists open $U \subset \mathbb{R}^{N}{ }_{\ni} 0 \in U . V: U \rightarrow[0, \infty)$ is p.d. and locally lipschitz and in addition $V[x] \rightarrow \infty$ as $\|x\| \rightarrow \infty, x \in U$. Then if \exists p.d. $W: U \rightarrow[0, \infty)$ э

$$
D V_{(\star)}[x] \leq-W[x] \forall x \in U \cap \Lambda
$$

and $x \in U \cap \Lambda$ and $S(t) z \in U \cap \Lambda$, then $S(t) z \rightarrow 0$ as $t \rightarrow \infty$ (i.e. $z \in \hat{B}(0))$.

Stability by Linearization

Check Jacobian at CPs and find values. If $\operatorname{Re}(\lambda)<0 \forall \lambda \in \sigma(A)$, then (\mathbf{S}) about the CP where $A=\mathbf{D} f(0)$ and about the CP $f(x)=A x$.

Theorem These are equivalent:

1. A is (AS)
2. $\operatorname{Re}(\lambda) \leq-\rho<0 \forall \lambda \in \sigma(A)$ and if $\operatorname{Re}(\lambda)=-\rho$ then λ is simple (algebraic multiplicity is equal to geometric multiplicity)
3. $\left\|e^{t A}\right\| \leq k e^{-\rho t} \forall t \geq 0(k \geq 1)$
4. \exists equivalent norm $\|\|\cdot\|\|(\|x\| \leq\|x\|\|\leq k\| x \|)$ such that $\left\|\left|e^{t A}\right|\right\| \leq e^{-\rho t}$ where $\|||x| \| \equiv$ $\sup _{t \geq 0}\left\{e^{\rho t}\left\|e^{t A} x\right\|\right\}$.
5. $\hat{M}_{+}[x, A x] \leq-\rho\|x\| \forall x \in \mathbb{R}^{N}$

Define

$$
(\star)^{\prime} \quad u^{\prime}=A u+g(u)
$$

where $f(0)=0$ and $A=\mathbf{D} f(0)$ and we have $\|g(x)\| \leq e\|x\|$ if $\|x\|<\delta(\epsilon)$.
Theorem If A is (AS), then so is $(\star)^{\prime}$.

Basic Invariance Principle / Lasalle's Invariance Principle

Suppose U is an open subset of $\mathbb{R}^{N}, 0 \in U, V: U \cap \Lambda \rightarrow[0, \infty)$ is p.d. and locally lipschitz and $V[x] \rightarrow \infty$ as $\|x\| \rightarrow \infty$. Let $\Gamma \subset U \cap \Lambda \ni 0 \in \Gamma$ and

$$
D V_{(\star)}[x] \leq 0 \forall x \in \Gamma
$$

Set $M=\left\{x \mid D V_{(\star)}[x]=0\right\}$. If $z \in \Gamma$ and $S(t) z$ remains in $\Gamma \forall t \geq 0$, then

$$
\omega(z) \subset M
$$

In particular, since $\omega(z)$ is invariant, $\omega(z) \subset N$, where N is the largest invariant subset of M.

