Ordinary Differential Equations
Review Sheet

Zach Clawson

December 14, 2009

1 Solving Techniques

1.1 Separation of Variables
1.1.1 Examples

Know how to do IVP problems like (and be able to analyze uniqueness of solutions):

oy =2y,y(0)=3

1.1.2 Theorems
Theorem about uniqueness:

p>1 = unique solution

: ! _ p
Given u’ = [ul", { p<1 = check uniqueness

1.2 Integrating Factor

Solving 4/ = -y + /3, we can simply re-write it as yf/ —a-y =8 = (y-e ) = 5.e~**. Integrate to
find the solution.

2 Differential Inequalities

2.1 Definitions
o /(1) = limy,_0 y(t-‘rh})L—y(t)

o y_(t) = limy o~ 7y(t+hfzfy(t)

o o/, (1) =limy_,o+ y(t-&-h})l—y(t)
2.2 Examples
Be able to solve problems like p’ (¢) < a - p(t) + B(t).

2.3 Proofs to Know

Suppose p : [a,b] — R and p is continuous.



Theorem 1 - If p(a) < ¢ and p’_(t) < 0 whenever p(t) = ¢, then p(t) < cV t € [a,b).
Proof Let p(a) < ¢ and p’ (t) < 0 whenever p(t) = c.
Suppose p (t1) = ¢ for some t; € [a,b). Since p is continuous, there is a smallest ¢y € [a,b) 2 p (tg) = c.

Since p(a) < ¢, then a < ty < b. By our hypothesis we have p’_ (tg) < 0. Also, since t¢ is the smallest ¢ such
that p(t) = ¢, then p(t) < ¢V t € [a, tp).

Then for some “small” h > 0, %W <0 = p(to—h)>ec

But tg — h < tg and p (tg — h) > c. Then by the intermediate value theorem, since p is continuous, we have
3k € (a, to—h) 2p(k) = c. But k <ty so we have a contradiction. QED

Theorem 2 - If p(a) < c and p/, (t) < 0 whenever p(t) = ¢, then p(t) <cVt € [a,b).
Proof Let p(a) < c and p/, (t) < 0 whenever p(t) = c.
Suppose p (t1) = ¢ for some t; € [a,b). Since p is continuous, there must be a smallest g € [a,b) 2p (to) = c.

Since p(a) < ¢, then a <ty < b. By our hypothesis we have p/, (t9) < 0. Also, since tois the smallest ¢ such
that p(t) = ¢, then p(¢) < c V t € [a, to].

Assume for contradiction 3 k € [to, b) 5 p(k) > ¢ and assume ko is the number “closest” to to 2 p(k) > c.

Then for some “small” h > 0, w <0 = p(to+h) < c. But if we chose h small enough so that
to + h < ko, then we arrive at a contradiction. QED

3 Invariant Spaces

Let

3.1 Definition

We say a space A is invariant for (x) iff z€ A = wu.(t) e AVt >0.

3.2 Theorem

A={ZeRV|d, (z,y) < ar, k=1,2,...,m}is invariant for (x)
< d - f(z,y) <0 when d; - (v, y) =ap for k=1,2,...m.

3.3 Example
Let
(%) {x’:x—zQ—zy 2(0) =29 >0
y=y—y*—zy  y(0)=yo>0



Let A= {feR*0<z<B,0<y< B} =K TeR? <(01’_ for some > 1. We want to

show when ay, - (x, y) = oy that d - f(z,y) <0,k =1, 2, 3, 4.
1. Let k=1, then x = 0.
ar - f(0,y) = (=1,0)-(0,y —y?) =0 <0
2. Let k=2, then y = 0.
- f(x,0)=(0,-1)- (z—2%0)=0<0
3. Let k = 3, then z = §.
a - f(B,y)=(1,0)- (8—B*— By, y—y*—By) =8~ >~ Py <f—B>=B(1—-p) <0since 5> 1.
4. Let k =4, then y = .
dy- fla, B)=(0,1) (z—a® = pz, B - > = Pz) = - >~ By < f— > = B(1 - ) < 0 since § > 1.

~For > 1, A is invariant for (x).

4 Systems of Linear ODEs

Given

4.1 Matrix Solutions
We say X(¢) is a matrix solution to (H) iff
(MH) X'(t) = A(#)X(t) Vt on the domain
To get a N x N matrix X(t) we must find solutions to (H), &1 (), ..., Zn(t) and write X(t) = (Z1(t), ..., Zn(t)).

Note that here, we can have Z;(t) = Z;(¢).

4.2 Fundamental Matrix Solutions

To get a FMS, you must first get a matrix solution which has IV linearly independent columns, then write
your FMS as: .
Ta(t) = X(t) [X (to)]
4.2.1 Properties of FMS
1. Ta(0) =1
2. TA(S + t) = TA(S) + TA(t)

3. [Ta(t)]™' =Ta(-1)

4.2.2 Alternate Form of FMS
Ta(t) = e can be shown using many methods. For simplicity we have to = 0. This means
N

tA) tA)2
i=0 : :




4.2.3 Eigenvalues and Eigenvectors

We can use eigenvalues and eigenvectors to determine the form of T a (t).

Eigenvalue - ) is an eigenvalue of A <= A#¢ = AU where ¥ # 0. Eigenvector - ¥ is an eigenvector for
A <= ¥ satisfies the above equation for a given A.

5 Phase Plots

Should review using eigenvalues and eigenvectors to determine phase plots of 2 x 2 systems.

6 Stability

Given
(x)u' = f(u, t), u(te) =2, t>tg

and w(t) is a given function for ¢ > tg, then we define the following;:

e Stability - If we start “close” to w(t), we stay close to that solution.
w(t) is (S) on [tg, o©0) <—
Ve>030(to, € 2 ||u(to) —w(to)|] <9
— [fult) — (Bl < eVt > to
e Uniform Stability
w(t) is (US) on [tg, 00) <
Ve>030(e) 2 |Ju(ty) —w(t1)]] < d for any t1 > to
= ||Jut) —w(@)|| <eVt>t
e Asymptotic Stability - If w(t) is (S) and we start close to w(t), then we go to w(t).
w(t) is (AS) on [tg, 00) <~
w(t) is (S) and 3y(to) > 0> [fulte) —w(to)]| <1 = limysoo [[u(t) — w(t)]
e Uniform Asymptotic Stability - w(¢) is (AS) and u(t) converges to w(t) at a uniform rate (or
faster for higher ¢¢)
w(t) is (UAS) on [tg, 00) <—
w(t) is (AS) and 3n > 05V e > 03 T(e) 2 ||u(ty) —w(tr)|| <n
= ||Jut) —w@)|| <eVit>t;+T(e)
e Exponential Stability - u(¢) goes to w(t) exponentially when we start “close enough”
w(t) is (ES) on [tg, 00) <~
Fa(ty) >0V e>03(to, €) 2 ||ulto) —w(to)]| <o
= |lut) —w(t)]] < e =)
e Uniform Exponential Stability - w(¢) is (ES) and converges uniformly
w(t) is (UES) on [tg, 00) <= w(t) is (ES) V t >ty and «, J are independent of ¢y



7 Lyapunov Theory

7.1 Definition
Let ACRY V: A — 0, 00). If Vis a Lyapunov function, then

1. V is positive-definite (with respect to w € A)
Ie. Viw|=0and V]z] >0ifx € A, z #w

2. V is Lipschits continuous on each bounded subset of A
Le. VR>03Lr>05|V[z] =Vl < Lg-[lz —yll Va,y A, [, |lyl| <R

7.2 Property
Let V(A) contain all V': A — [0, 00) > VR >0,
1. 3a € CIP ([0, >)) (continuous, T(strictly), a(0) =0, a(r) > 0) and b > 0 sa(||z|]) <V [z] < b-||z]|-

2. V is Locally Lipschitz

7.3 Derivative of V/

We can take the derivative of V' in two ways:

L AV, 9)] = £V, v)]- %+ £V 9] %

2. AV[u(t)] = VV[u(t)] - % = VV[u(t)] - (£, u(t))

3. TV tg, 2] = DV [to, @) = limy, e VIEHRLGDIVEE]

7.4 Important Lyapunov Theorems
7.4.1 Lyapunov Stability Theorem (US)

Suppose 3V € V(A) »

(1) DE V[t 2] <0V (£, 2) € [0, 00) x A, ||| < R

Then the zero solution to (x) is (US).

Proof Let 0 < € < R, tyg > 0 be given. Then we have a(||z|]) < V]z] <b-||z|]|V z €A, ||z]| < R

%V[U(t)} = D(i*)V[t,u(t)] < 0by (1) = V is non-increasing

So then we get:
(2) Viu@®)] < V]u(to)] Vit =too[[u(®)]| <R

Choose 6 = 6(¢) >05b-6 < a(R) (ie., b-6 € Rng(a)) and a~1(b-J) < e. (Remember ||u (to)|| < 6)

So a([Ju®)l]) <V [w(®)] <V [u(to)] <b-[lu(to)l| <b-0 = a(lu(®)])) <b-6 = [Ju(t)]| <a™'(b-0) <e

.. The zero solution to (x) is (US) .

QED



7.4.2 Lyapunov Asymptotic Stability Theroem (AS)

Suppose V, W € V(A) and
(3) D(ji)V[t7 z] < -Wiz]<0Vaxel,||z||<R

Then the zero solution to (x) is (AS).

Proof () is (US) by the previous theorem so we want to show (AS). Assume a(||z]|) < V[z] < b- [[z]|
and a(llz) < Wizl < b-|[z]] ¥z € A, [l2]] < R.

Let n be 2 if ||u (to)|| < n then a(]|u(t)||) < a(R) V t >ty > 0. We claim the following:
(@) o)l <n — lim Vu(t)] =0

For contradiction, suppose ||u (¢

0 7 but lim; o V[u(t)] # 0. Since V{u(t)] > 0Vt > tg > 0, this is
equivalent to saying lim;_, o V]u( 0.

D(i*)V[t u(t)] < =Wlu(t)] <0 = VJu(t)] is decreasing

Thus we have V[u(t)] is decreasing and lim;_, oo V]u(t)] > 0 which means 3o > 0 > V{u(t)] > a V¢t >ty > 0.
Then we have b - [|u(t)|| > V[u(t)] > a = |[u(t)|| > § V> to.

Then W[ 0] > a(lu@®)l) > a(3) = DELVu®)] < W) < -a(F) = Vu®)] -
V[u(to)] < —a (%) - (t —to); here we integrate from tg to ¢

= V[u®)] <V]u (to)}—a( ) (t—tg) = —oc ast — oo

= V[u(t)] = —oo which is a contradiction.

Thus, lim;_, o Vu(t)] = 0.

Now, a(||u(t)
a(0) =0 =

) < Vut)] - 0ast = oo = |lu®)| <a ! (V[u()]) — 0 since V[u(t)] — 0 and
a 1(0)—Oallast—>oo

tlim [lu(t)]| =0 == The zero solution to (*) is (AS).
—00

QED

7.5 Note About Positive-Definite Lyapunov Functions

If V[(z,y)] = 2y?, V is not positive-definite since the only place where V should be 0 is at (z, y) = (0, 0),
but here V' is 0 at a point such as (1, 0).

7.6 Norms As Lyapunov Functions

Define M4 [z, z] = limy_,o+ thi,w as the left and right directional derivatives of V[z] at z in the

direction of x. If My[z, x] both exist and are equal, then V[z] is differentiable at z.



7.6.1 Properties of M|z, z]
1. M_[z, z] < My[z, z]
2. My[z, x] = —M4[z, z]
3. Mz, 2]| < |Jo]

4. Milz, x +y] < Milz, ] + Mi[z, y] (“sublinear”)
and M_[z, z +y] > M_[z, ] + M_|z, y] (“superlinear”)

5 My[s-z,r-z]=r-My[z, x|, s, r > 0 (linear with respect to z)
Mz, v -2l = Re(v) - [|2]| Vv € C

|My[z, ] — M1z, y]| < ||z — y|| (Lipschitz — use triangle inequality)

® N>

Mzlz, x4 - 2] = Mz[z, 2] + Re(7) - [ 2]

7.6.2 Bounding M|z, Ax]

u[A] is the smallest o such that My[z, Az] < « - ||z||. Note that if we can find one value of = such that
My [z, Az] > 0, then we immediately know p[A] > 0.

7.6.3 Computing M|z, z]

If we’re using || - ||1 or || - ||co @s our norm, then it is very hard to compute My [z, z].
When we have a norm such as || - || though, it is slightly easier. We can write My [z, z] = <ﬁ7ZT:|> where we
define < z, > as the dot product and || - || = || - ||2- Note here that ||z|]2 = /< @, >. When showing
what M|z, 2] is, use inner product properties (the dot product is one).
7.6.4 Important Theorems
Remember
(LH) o' = Au, u(0) =2z, Ta(t)=eA
then we have the following two important theorems:
Theorem
L ||e™||<1Vt>0 < pulA]<0
2. ||e]| <e ™t Vi>0 < p[A] < -a
8 Linearization of ODEs
Let f = (f;)Y, where f; : RN — R. We have Vf; = (gj:i, ceey ng;)‘ Then we define the Jacobian of f is
V(7
defined to be Df(2) = :
Vin (2)

Let Re(A) < 0 for A € o(A) and define
(PDE) v = Au+ g(t, u)

and let Z€ A 5 f (%) =0.



Theorem - (AS) by Linearization Suppose f is continuous, f (2) = 0 and Df (Z) exists (always does
in ). If Re(A\) <0V A € o(Df(2)), then the steady state solution u(t) = Z'is (ES).

r_ . .
Example Let o € R and { v -, T +sin(a:y)

=3 — oyt a? with (z, y) = (0, 0) as a critical point. Analyize the

stability of the system with parameter «. Use linearization: D f(z, y) = < —1 acos(a-y) ) =

1+ 22 -1

Df(0,0) = ( _11 _al > which has eigenvalues A = —1 + \/a. The critical values for this eigenvalue are

a=0,1.

a<0 = Re(A\) <0
a=0 = Re(\)=-1<0
0<a<l = Re(A) <0
a=1 — oneevis >0
a>1 —> at least one evis >0

.. We can conclude that the system is (AS) when a < 1.



