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1 Solving Techniques

1.1 Separation of Variables

1.1.1 Examples

Know how to do IVP problems like (and be able to analyze uniqueness of solutions):

• y′ = 2y, y(0) = 3

• u′ = −u 1
3 , u(0) = 1

• u′ = u
1
3 , u(0) = 0

1.1.2 Theorems

Theorem about uniqueness:

Given u′ = ± |u|p,
{
p ≥ 1 =⇒ unique solution
p < 1 =⇒ check uniqueness

1.2 Integrating Factor

Solving y′ = α · y + β, we can simply re-write it as y′ − α · y = β =⇒ (y · e−α·t)′ = β · e−α·t. Integrate to
�nd the solution.

2 Di�erential Inequalities

2.1 De�nitions

• y′(t) = limh→0
y(t+h)−y(t)

h

• y′−(t) = limh→0−
y(t+h)−y(t)

h

• y′+(t) = limh→0+
y(t+h)−y(t)

h

2.2 Examples

Be able to solve problems like p′−(t) ≤ α · p(t) + β(t).

2.3 Proofs to Know

Suppose p : [a, b]→ R and p is continuous.
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Theorem 1 - If p(a) < c and p′−(t) < 0 whenever p(t) = c, then p(t) < c ∀ t ∈ [a, b).

Proof Let p(a) < c and p′−(t) < 0 whenever p(t) = c.

Suppose p (t1) = c for some t1 ∈ [a, b). Since p is continuous, there is a smallest t0 ∈ [a, b) � p (t0) = c.

Since p(a) < c, then a < t0 < b. By our hypothesis we have p′− (t0) < 0. Also, since t0 is the smallest t such
that p(t) = c, then p(t) < c ∀ t ∈ [a, t0).

Then for some �small� h > 0, p(t0−h)−p(t0)−h < 0 =⇒ p (t0 − h) > c.

But t0 − h < t0 and p (t0 − h) > c. Then by the intermediate value theorem, since p is continuous, we have
∃ k ∈ (a, t0 − h) � p(k) = c. But k < t0 so we have a contradiction. QED

Theorem 2 - If p(a) ≤ c and p′+(t) < 0 whenever p(t) = c, then p(t) ≤ c ∀ t ∈ [a, b).

Proof Let p(a) ≤ c and p′+(t) < 0 whenever p(t) = c.

Suppose p (t1) = c for some t1 ∈ [a, b). Since p is continuous, there must be a smallest t0 ∈ [a, b) � p (t0) = c.

Since p(a) ≤ c, then a ≤ t0 < b. By our hypothesis we have p′+ (t0) < 0. Also, since t0is the smallest t such
that p(t) = c, then p(t) < c ∀ t ∈ [a, t0].

Assume for contradiction ∃ k ∈ [t0, b) � p(k) > c and assume k0 is the number �closest� to t0 � p(k) > c.

Then for some �small� h > 0, p(t0+h)−p(t0)h < 0 =⇒ p (t0 + h) < c. But if we chose h small enough so that
t0 + h < k0, then we arrive at a contradiction. QED

3 Invariant Spaces

Let
(∗) u′ = f(u), u(0) = z, t ≥ 0

3.1 De�nition

We say a space Λ is invariant for (∗) i� z ∈ Λ =⇒ uz(t) ∈ Λ ∀ t ≥ 0.

3.2 Theorem

Λ =
{
~x ∈ RN |~ak · (x, y) ≤ αk, k = 1, 2, . . . ,m

}
is invariant for (∗)

⇐⇒ ~ak · f(x, y) ≤ 0 when ~ak · (x, y) = αk for k = 1, 2, . . .m.

3.3 Example

Let

(∗)
{
x′ = x− x2 − xy
y′ = y − y2 − xy

x(0) = x0 > 0
y(0) = y0 > 0
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Let Λ =
{
~x ∈ R2 |0 ≤ x ≤ β, 0 ≤ y ≤ β

}
=

~x ∈ R2

∣∣∣∣∣∣∣∣
(−1, 0) · (x, y) ≤ 0
(0,−1) · (x, y) ≤ 0
(1, 0) · (x, y) ≤ β
(0, 1) · (x, y) ≤ β

 for some β ≥ 1. We want to

show when ~ak · (x, y) = αk that ~ak · f(x, y) ≤ 0, k = 1, 2, 3, 4.

1. Let k = 1, then x = 0.

~a1 · f(0, y) = (−1, 0) ·
(
0, y − y2

)
= 0 ≤ 0

2. Let k = 2, then y = 0.

~a2 · f(x, 0) = (0,−1) ·
(
x− x2, 0

)
= 0 ≤ 0

3. Let k = 3, then x = β.

~a3 · f(β, y) = (1, 0) ·
(
β − β2 − βy, y − y2 − βy

)
= β − β2 − βy ≤ β − β2 = β(1− β) ≤ 0 since β ≥ 1.

4. Let k = 4, then y = β.

~a4 · f(x, β) = (0, 1) ·
(
x− x2 − βx, β − β2 − βx

)
= β − β2 − βy ≤ β − β2 = β(1− β) ≤ 0 since β ≥ 1.

∴For β ≥ 1, Λ is invariant for (∗).

4 Systems of Linear ODEs

Given
(H) u′ = A(t)u(t), u (t0) = z, t ≥ t0

4.1 Matrix Solutions

We say X(t) is a matrix solution to (H) i�

(MH) X′(t) = A(t)X(t) ∀ t on the domain

To get aN×N matrixX(t) we must �nd solutions to (H), ~x1(t), . . . , ~xN (t) and writeX(t) = (~x1(t), . . . , ~xN (t)).
Note that here, we can have ~xi(t) = ~xj(t).

4.2 Fundamental Matrix Solutions

To get a FMS, you must �rst get a matrix solution which has N linearly independent columns, then write
your FMS as:

TA(t) = X(t) [X (t0)]
−1

4.2.1 Properties of FMS

1. TA(0) = I

2. TA(s+ t) = TA(s) + TA(t)

3. [TA(t)]
−1

= TA(−t)

4.2.2 Alternate Form of FMS

TA(t) = etA can be shown using many methods. For simplicity we have t0 = 0. This means

TA(t) = etA =

N∑
i=0

(tA)i

i!
= 1 + tA +

(tA)2

2!
+ · · ·
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4.2.3 Eigenvalues and Eigenvectors

We can use eigenvalues and eigenvectors to determine the form of TA(t).

Eigenvalue - λ is an eigenvalue of A ⇐⇒ A~v = λ~v where ~v 6= 0. Eigenvector - ~v is an eigenvector for
λ ⇐⇒ ~v satis�es the above equation for a given λ.

5 Phase Plots

Should review using eigenvalues and eigenvectors to determine phase plots of 2× 2 systems.

6 Stability

Given
(∗) u′ = f (u, t) , u (t0) = z, t ≥ t0

and w(t) is a given function for t ≥ t0, then we de�ne the following:

• Stability - If we start �close� to w(t), we stay close to that solution.

w(t) is (S) on [t0, ∞) ⇐⇒
∀ ε > 0 ∃ δ(t0, ε) � ||u(t0)− w(t0)|| < δ

=⇒ ||u(t)− w(t)|| < ε ∀ t ≥ t0

• Uniform Stability

w(t) is (US) on [t0, ∞) ⇐⇒
∀ ε > 0 ∃ δ(ε) � ||u(t1)− w(t1)|| < δ for any t1 ≥ t0

=⇒ ||u(t)− w(t)|| < ε ∀ t ≥ t0

• Asymptotic Stability - If w(t) is (S) and we start close to w(t), then we go to w(t).

w(t) is (AS) on [t0, ∞) ⇐⇒
w(t) is (S) and ∃ η(t0) > 0 � ||u(t0)− w(t0)|| < η =⇒ limt→∞ ||u(t)− w(t)||

• Uniform Asymptotic Stability - w(t) is (AS) and u(t) converges to w(t) at a uniform rate (or
faster for higher t0)

w(t) is (UAS) on [t0, ∞) ⇐⇒
w(t) is (AS) and ∃ η > 0 � ∀ ε > 0 ∃ T (ε) � ||u(t1)− w(t1)|| < η

=⇒ ||u(t)− w(t)|| < ε∀ t ≥ t1 + T (ε)

• Exponential Stability - u(t) goes to w(t) exponentially when we start �close enough�

w(t) is (ES) on [t0, ∞) ⇐⇒
∃α(t0) > 0 � ∀ ε > 0 ∃ δ(t0, ε) � ||u(t0)− w(t0)|| < δ

=⇒ ||u(t)− w(t)|| ≤ e−α·(t−t0)

• Uniform Exponential Stability - w(t) is (ES) and converges uniformly

w(t) is (UES) on [t0, ∞) ⇐⇒ w(t) is (ES) ∀ t ≥ t0 and α, δ are independent of t0
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7 Lyapunov Theory

7.1 De�nition

Let Λ ⊂ RN , V : Λ→ [0, ∞). If V is a Lyapunov function, then

1. V is positive-de�nite (with respect to w ∈ Λ)

I.e. V [w] = 0 and V [x] > 0 if x ∈ Λ, x 6= w

2. V is Lipschits continuous on each bounded subset of Λ

I.e. ∀R > 0 ∃ LR > 0 � |V [x]− V [y]| ≤ LR · ||x− y|| ∀ x, y ∈ Λ, ||x|| , ||y|| ≤ R

7.2 Property

Let V(Λ) contain all V : Λ→ [0, ∞) � ∀ R > 0,

1. ∃ a ∈ CIP ([0, ∞)) (continuous, ↑(strictly), a(0) = 0, a(r) > 0) and b > 0 � a (||x||) ≤ V [x] ≤ b · ||x||.

2. V is Locally Lipschitz

7.3 Derivative of V

We can take the derivative of V in two ways:

1. d
dtV [(x, y)] = d

dxV [(x, y)] · dxdt + d
dyV [(x, y)] · dydt

2. d
dtV [u(t)] = ~∇V [u(t)] · dudt = ~∇V [u(t)] · f(t, u(t))

3. d±

dt V [t0, x] = D±(∗)V [t0, x] = limh→0±
V [x+h·f(t,x)]−V [x]

h

7.4 Important Lyapunov Theorems

7.4.1 Lyapunov Stability Theorem (US)

Suppose ∃ V ∈ V(Λ) �
(1) D±(∗)V [t, x] ≤ 0 ∀ (t, x) ∈ [0, ∞)× Λ, ||x|| ≤ R

Then the zero solution to (∗) is (US).

Proof Let 0 < ε < R, t0 ≥ 0 be given. Then we have a(||x||) ≤ V [x] ≤ b · ||x|| ∀ x ∈ Λ, ||x|| < R

d±

dt V [u(t)] = D±(∗)V [t, u(t)] ≤ 0 by (1) =⇒ V is non-increasing

So then we get:
(2) V [u(t)] ≤ V [u (t0)] ∀ t ≥ t0 � ||u(t)|| ≤ R

Choose δ = δ(ε) > 0 � b · δ < a(R) (i.e., b · δ ∈ Rng(a)) and a−1(b · δ) < ε. (Remember ||u (t0)|| < δ)

So a (||u(t)||) ≤ V [u(t)] ≤ V [u (t0)] ≤ b · ||u (t0)|| < b · δ =⇒ a (||u(t)||) < b · δ =⇒ ||u(t)|| < a−1 (b · δ) < ε

∴ The zero solution to (∗) is (US) .

QED
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7.4.2 Lyapunov Asymptotic Stability Theroem (AS)

Suppose V, W ∈ V(Λ) and

(3) D±(∗)V [t, x] < −W [x] ≤ 0 ∀ x ∈ Λ, ||x|| < R

Then the zero solution to (∗) is (AS).

Proof (∗) is (US) by the previous theorem so we want to show (AS). Assume a(||x||) ≤ V [x] ≤ b · ||x||
and ā(||x||) ≤W [x] ≤ b̄ · ||x|| ∀x ∈ Λ, ||x|| ≤ R.

Let η be � if ||u (t0)|| < η then ā(||u(t)||) ≤ ā(R) ∀ t ≥ t0 ≥ 0. We claim the following:

(4) ||u (t0)|| < η =⇒ lim
t→∞

V [u(t)] = 0

For contradiction, suppose ||u (t0)|| < η but limt→∞ V [u(t)] 6= 0. Since V [u(t)] ≥ 0 ∀ t ≥ t0 ≥ 0, this is
equivalent to saying limt→∞ V [u(t)] > 0.

D±(∗)V [t, u(t)] < −W [u(t)] ≤ 0 =⇒ V [u(t)] is decreasing

Thus we have V [u(t)] is decreasing and limt→∞ V [u(t)] > 0 which means ∃α > 0 � V [u(t)] ≥ α ∀ t ≥ t0 ≥ 0.
Then we have b · ||u(t)|| ≥ V [u(t)] ≥ α =⇒ ||u(t)|| ≥ α

b ∀ t ≥ t0.

Then W [u(t)] ≥ ā(||u(t)||) ≥ ā
(
α
b

)
=⇒ D±(∗)V [u(t)] ≤ −W [u(t)] ≤ −ā

(
α
b

)
=⇒ V [u(t)] −

V [u (t0)] ≤ −ā
(
α
b

)
· (t− t0); here we integrate from t0 to t

=⇒ V [u(t)] ≤ V [u (t0)]− ā
(
α
b

)
· (t− t0)→ −∞ as t→∞

=⇒ V [u(t)]→ −∞ which is a contradiction.

Thus, limt→∞ V [u(t)] = 0.

Now, a(||u(t)||) ≤ V [u(t)] → 0 as t → ∞ =⇒ ||u(t)|| ≤ a−1 (V [u (t)]) → 0 since V [u(t)] → 0 and
a(0) = 0 =⇒ a−1(0) = 0 all as t→∞.

∴ lim
t→∞

||u(t)|| = 0 =⇒ The zero solution to (*) is (AS).

QED

7.5 Note About Positive-De�nite Lyapunov Functions

If V [(x, y)] = 2y2, V is not positive-de�nite since the only place where V should be 0 is at (x, y) = (0, 0),
but here V is 0 at a point such as (1, 0).

7.6 Norms As Lyapunov Functions

De�ne M±[z, x] = limh→0±
||z+h·x||−||z||

h as the left and right directional derivatives of V [x] at z in the
direction of x. If M±[z, x] both exist and are equal, then V [x] is di�erentiable at z.
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7.6.1 Properties of M±[z, x]

1. M−[z, x] ≤M+[z, x]

2. M∓[z, x] = −M±[z, x]

3. |M±[z, x]| ≤ ||x||

4. M+[z, x+ y] ≤M+[z, x] +M+[z, y] (�sublinear�)

and M−[z, x+ y] ≥M−[z, x] +M−[z, y] (�superlinear�)

5. M±[s · z, r · x] = r ·M±[z, x], s, r > 0 (linear with respect to x)

6. M±[z, γ · z] = Re(γ) · ||z|| ∀ γ ∈ C

7. |M±[z, x]−M±[z, y]| ≤ ||x− y|| (Lipschitz → use triangle inequality)

8. M±[z, x+ γ · z] = M±[z, x] + Re(γ) · ||z||

7.6.2 Bounding M±[x, Ax]

µ[A] is the smallest α such that M±[x, Ax] ≤ α · ||x||. Note that if we can �nd one value of x such that
M±[x, Ax] > 0, then we immediately know µ[A] > 0.

7.6.3 Computing M±[z, x]

If we're using || · ||1 or || · ||∞ as our norm, then it is very hard to compute M±[z, x].

When we have a norm such as || · ||2 though, it is slightly easier. We can write M±[z, x] = <z, x>
||z|| where we

de�ne < z, x > as the dot product and || · || = || · ||2. Note here that ||x||2 =
√
< x, x >. When showing

what M±[z, x] is, use inner product properties (the dot product is one).

7.6.4 Important Theorems

Remember
(LH) u′ = Au, u(0) = z, TA(t) = etA

then we have the following two important theorems:

Theorem

1.
∣∣∣∣etA∣∣∣∣ ≤ 1 ∀ t ≥ 0 ⇐⇒ µ[A] ≤ 0

2.
∣∣∣∣etA∣∣∣∣ ≤ e−α·t ∀ t ≥ 0 ⇐⇒ µ[A] ≤ −α

8 Linearization of ODEs

Let f = (fi)
N
1 , where fi : RN → R. We have ~∇fi =

(
∂fi
∂x1

, . . . , ∂fi
∂xN

)
. Then we de�ne the Jacobian of f is

de�ned to be Df(~z) =


~∇f1 (~ )z
...

~∇fN (~z)

.

Let Re(λ) < 0 for λ ∈ σ(A) and de�ne

(PDE) u′ = Au+ g(t, u)

and let ~z ∈ Λ � f (~z) = ~0.
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Theorem - (AS) by Linearization Suppose f is continuous, f (~z) = ~0 and Df (~z) exists (always does
in C1). If Re(λ) < 0 ∀ λ ∈ σ(Df(~z)), then the steady state solution u(t) ≡ ~z is (ES).

Example Let α ∈ R and

{
x′ = −x+ sin(α · y)
y′ = x− y + x2

with (x, y) = (0, 0) as a critical point. Analyize the

stability of the system with parameter α. Use linearization: Df(x, y) =

(
−1 α cos(α · y)

1 + 2x −1

)
=⇒

Df(0, 0) =

(
−1 α
1 −1

)
which has eigenvalues λ = −1 ±

√
α. The critical values for this eigenvalue are

α = 0, 1. 
α < 0 =⇒ Re(λ) < 0
α = 0 =⇒ Re(λ) = −1 < 0

0 < α < 1 =⇒ Re(λ) < 0
α = 1 =⇒ one ev is > 0
α > 1 =⇒ at least one ev is > 0

∴ We can conclude that the system is (AS) when α < 1.
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