Ordinary Differential Equations Review Sheet

Zach Clawson

December 14, 2009

1 Solving Techniques

1.1 Separation of Variables

1.1.1 Examples

Know how to do IVP problems like (and be able to analyze uniqueness of solutions):

- $y^{\prime}=2 y, y(0)=3$
- $u^{\prime}=-u^{\frac{1}{3}}, u(0)=1$
- $u^{\prime}=u^{\frac{1}{3}}, u(0)=0$

1.1.2 Theorems

Theorem about uniqueness:
Given $u^{\prime}= \pm|u|^{p},\left\{\begin{array}{llc}p \geq 1 & \Longrightarrow & \text { unique solution } \\ p<1 & \Longrightarrow & \text { check uniqueness }\end{array}\right.$

1.2 Integrating Factor

Solving $y^{\prime}=\alpha \cdot y+\beta$, we can simply re-write it as $y^{\prime}-\alpha \cdot y=\beta \Longrightarrow\left(y \cdot e^{-\alpha \cdot t}\right)^{\prime}=\beta \cdot e^{-\alpha \cdot t}$. Integrate to find the solution.

2 Differential Inequalities

2.1 Definitions

- $y^{\prime}(t)=\lim _{h \rightarrow 0} \frac{y(t+h)-y(t)}{h}$
- $y_{-}^{\prime}(t)=\lim _{h \rightarrow 0^{-}} \frac{y(t+h)-y(t)}{h}$
- $y_{+}^{\prime}(t)=\lim _{h \rightarrow 0^{+}} \frac{y(t+h)-y(t)}{h}$

2.2 Examples

Be able to solve problems like $p_{-}^{\prime}(t) \leq \alpha \cdot p(t)+\beta(t)$.

2.3 Proofs to Know

Suppose $p:[a, b] \rightarrow \mathbb{R}$ and p is continuous.

Theorem 1 - If $p(a)<c$ and $p_{-}^{\prime}(t)<0$ whenever $p(t)=c$, then $p(t)<c \forall t \in[a, b)$.

Proof Let $p(a)<c$ and $p_{-}^{\prime}(t)<0$ whenever $p(t)=c$.

Suppose $p\left(t_{1}\right)=c$ for some $t_{1} \in[a, b)$. Since p is continuous, there is a smallest $t_{0} \in[a, b) \ni p\left(t_{0}\right)=c$.

Since $p(a)<c$, then $a<t_{0}<b$. By our hypothesis we have $p_{-}^{\prime}\left(t_{0}\right)<0$. Also, since t_{0} is the smallest t such that $p(t)=c$, then $p(t)<c \forall t \in\left[a, t_{0}\right)$.

Then for some "small" $h>0, \frac{p\left(t_{0}-h\right)-p\left(t_{0}\right)}{-h}<0 \Longrightarrow p\left(t_{0}-h\right)>c$.
But $t_{0}-h<t_{0}$ and $p\left(t_{0}-h\right)>c$. Then by the intermediate value theorem, since p is continuous, we have $\exists k \in\left(a, t_{0}-h\right)$ э $p(k)=c$. But $k<t_{0}$ so we have a contradiction. $\mathbb{Q E D}$

Theorem 2 - If $p(a) \leq c$ and $p_{+}^{\prime}(t)<0$ whenever $p(t)=c$, then $p(t) \leq c \forall t \in[a, b)$.

Proof Let $p(a) \leq c$ and $p_{+}^{\prime}(t)<0$ whenever $p(t)=c$.

Suppose $p\left(t_{1}\right)=c$ for some $t_{1} \in[a, b)$. Since p is continuous, there must be a smallest $t_{0} \in[a, b)$ э $p\left(t_{0}\right)=c$.
Since $p(a) \leq c$, then $a \leq t_{0}<b$. By our hypothesis we have $p_{+}^{\prime}\left(t_{0}\right)<0$. Also, since t_{0} is the smallest t such that $p(t)=c$, then $p(t)<c \forall t \in\left[a, t_{0}\right]$.

Assume for contradiction $\exists k \in\left[t_{0}, b\right) \ni p(k)>c$ and assume k_{0} is the number "closest" to $t_{0} \ni p(k)>c$.

Then for some "small" $h>0, \frac{p\left(t_{0}+h\right)-p\left(t_{0}\right)}{h}<0 \Longrightarrow p\left(t_{0}+h\right)<c$. But if we chose h small enough so that $t_{0}+h<k_{0}$, then we arrive at a contradiction. $\mathbb{Q E D}$

3 Invariant Spaces

Let

$$
(*) u^{\prime}=f(u), u(0)=z, \quad t \geq 0
$$

3.1 Definition

We say a space Λ is invariant for $(*)$ iff $z \in \Lambda \Longrightarrow u_{z}(t) \in \Lambda \forall t \geq 0$.

3.2 Theorem

$\Lambda=\left\{\vec{x} \in \mathbb{R}^{N} \mid \vec{a}_{k} \cdot(x, y) \leq \alpha_{k}, k=1,2, \ldots, m\right\}$ is invariant for $(*)$
$\Longleftrightarrow \vec{a}_{k} \cdot f(x, y) \leq 0$ when $\vec{a}_{k} \cdot(x, y)=\alpha_{k}$ for $k=1,2, \ldots m$.

3.3 Example

Let

$$
(*) \begin{cases}x^{\prime}=x-x^{2}-x y & x(0)=x_{0}>0 \\ y^{\prime}=y-y^{2}-x y & y(0)=y_{0}>0\end{cases}
$$

Let $\Lambda=\left\{\vec{x} \in \mathbb{R}^{2} \mid 0 \leq x \leq \beta, 0 \leq y \leq \beta\right\}=\left\{\vec{x} \in \mathbb{R}^{2} \left\lvert\, \begin{array}{c}(-1,0) \cdot(x, y) \leq 0 \\ (0,-1) \cdot(x, y) \leq 0 \\ (1,0) \cdot(x, y) \leq \beta \\ (0,1) \cdot(x, y) \leq \beta\end{array}\right.\right\}$ for some $\beta \geq 1$. We want to show when $\vec{a}_{k} \cdot(x, y)=\alpha_{k}$ that $\vec{a}_{k} \cdot f(x, y) \leq 0, k=1,2,3,4$.

1. Let $k=1$, then $x=0$.

$$
\vec{a}_{1} \cdot f(0, y)=(-1,0) \cdot\left(0, y-y^{2}\right)=0 \leq 0
$$

2. Let $k=2$, then $y=0$.
$\vec{a}_{2} \cdot f(x, 0)=(0,-1) \cdot\left(x-x^{2}, 0\right)=0 \leq 0$
3. Let $k=3$, then $x=\beta$.
$\vec{a}_{3} \cdot f(\beta, y)=(1,0) \cdot\left(\beta-\beta^{2}-\beta y, y-y^{2}-\beta y\right)=\beta-\beta^{2}-\beta y \leq \beta-\beta^{2}=\beta(1-\beta) \leq 0$ since $\beta \geq 1$.
4. Let $k=4$, then $y=\beta$.
$\vec{a}_{4} \cdot f(x, \beta)=(0,1) \cdot\left(x-x^{2}-\beta x, \beta-\beta^{2}-\beta x\right)=\beta-\beta^{2}-\beta y \leq \beta-\beta^{2}=\beta(1-\beta) \leq 0$ since $\beta \geq 1$.
\therefore For $\beta \geq 1, \Lambda$ is invariant for $(*)$.

4 Systems of Linear ODEs

Given

$$
(\mathbf{H}) u^{\prime}=\mathbf{A}(t) u(t), \quad u\left(t_{0}\right)=z, \quad t \geq t_{0}
$$

4.1 Matrix Solutions

We say $\mathbf{X}(t)$ is a matrix solution to (\mathbf{H}) iff

$$
(\mathbf{M H}) \mathbf{X}^{\prime}(t)=\mathbf{A}(t) \mathbf{X}(t) \forall t \text { on the domain }
$$

To get a $N \times N$ matrix $\mathbf{X}(t)$ we must find solutions to $(\mathbf{H}), \vec{x}_{1}(t), \ldots, \vec{x}_{N}(t)$ and write $\mathbf{X}(t)=\left(\vec{x}_{1}(t), \ldots, \vec{x}_{N}(t)\right)$. Note that here, we can have $\vec{x}_{i}(t)=\vec{x}_{j}(t)$.

4.2 Fundamental Matrix Solutions

To get a FMS, you must first get a matrix solution which has N linearly independent columns, then write your FMS as:

$$
\mathbf{T}_{\mathbf{A}}(t)=\mathbf{X}(t)\left[\mathbf{X}\left(t_{0}\right)\right]^{-1}
$$

4.2.1 Properties of FMS

1. $\mathbf{T}_{\mathbf{A}}(0)=\mathbf{I}$
2. $\mathbf{T}_{\mathbf{A}}(s+t)=\mathbf{T}_{\mathbf{A}}(s)+\mathbf{T}_{\mathbf{A}}(t)$
3. $\left[\mathbf{T}_{\mathbf{A}}(t)\right]^{-1}=\mathbf{T}_{\mathbf{A}}(-t)$

4.2.2 Alternate Form of FMS

$\mathbf{T}_{\mathbf{A}}(t)=e^{t \mathbf{A}}$ can be shown using many methods. For simplicity we have $t_{0}=0$. This means

$$
\mathbf{T}_{\mathbf{A}}(t)=e^{t \mathbf{A}}=\sum_{i=0}^{N} \frac{(t \mathbf{A})^{i}}{i!}=1+t \mathbf{A}+\frac{(t \mathbf{A})^{2}}{2!}+\cdots
$$

4.2.3 Eigenvalues and Eigenvectors

We can use eigenvalues and eigenvectors to determine the form of $\mathbf{T}_{\mathbf{A}}(t)$.

Eigenvalue $-\lambda$ is an eigenvalue of $\mathbf{A} \Longleftrightarrow \mathbf{A} \vec{v}=\lambda \vec{v}$ where $\vec{v} \neq 0$. Eigenvector $-\vec{v}$ is an eigenvector for $\lambda \Longleftrightarrow \vec{v}$ satisfies the above equation for a given λ.

5 Phase Plots

Should review using eigenvalues and eigenvectors to determine phase plots of 2×2 systems.

6 Stability

Given

$$
(*) u^{\prime}=f(u, t), \quad u\left(t_{0}\right)=z, \quad t \geq t_{0}
$$

and $w(t)$ is a given function for $t \geq t_{0}$, then we define the following:

- Stability - If we start "close" to $w(t)$, we stay close to that solution.

$$
w(t) \text { is }(\mathbf{S}) \text { on }\left[t_{0}, \infty\right) \Longleftrightarrow
$$

$$
\begin{aligned}
\forall \epsilon & >0 \exists \delta\left(t_{0}, \epsilon\right) э\left\|u\left(t_{0}\right)-w\left(t_{0}\right)\right\|<\delta \\
& \Longrightarrow\|u(t)-w(t)\|<\epsilon \forall t \geq t_{0}
\end{aligned}
$$

- Uniform Stability

$$
\begin{aligned}
& w(t) \text { is (US) on }\left[t_{0}, \infty\right) \Longleftrightarrow \\
& \forall \epsilon>0 \exists \delta(\epsilon) \ni\left\|u\left(t_{1}\right)-w\left(t_{1}\right)\right\|<\delta \text { for any } t_{1} \geq t_{0} \\
& \Longrightarrow\|u(t)-w(t)\|<\epsilon \forall t \geq t_{0}
\end{aligned}
$$

- Asymptotic Stability - If $w(t)$ is $\mathbf{(S)}$ and we start close to $w(t)$, then we go to $w(t)$.
$w(t)$ is $(\mathbf{A S})$ on $\left[t_{0}, \infty\right) \Longleftrightarrow$

$$
w(t) \text { is } \mathbf{(S)} \text { and } \exists \eta\left(t_{0}\right)>0 э\left\|u\left(t_{0}\right)-w\left(t_{0}\right)\right\|<\eta \Longrightarrow \lim _{t \rightarrow \infty}\|u(t)-w(t)\|
$$

- Uniform Asymptotic Stability - $w(t)$ is (AS) and $u(t)$ converges to $w(t)$ at a uniform rate (or faster for higher t_{0})

$$
\begin{aligned}
& w(t) \text { is (UAS) on }\left[t_{0}, \infty\right) \Longleftrightarrow \\
& w(t) \text { is }(\mathbf{A S}) \text { and } \exists \eta>0 \ni \forall \epsilon>0 \exists T(\epsilon) \ni\left\|u\left(t_{1}\right)-w\left(t_{1}\right)\right\|<\eta \\
& \quad \Longrightarrow\|u(t)-w(t)\|<\epsilon \forall t \geq t_{1}+T(\epsilon)
\end{aligned}
$$

- Exponential Stability $-u(t)$ goes to $w(t)$ exponentially when we start "close enough"
$w(t)$ is $(\mathbf{E S})$ on $\left[t_{0}, \infty\right) \Longleftrightarrow$

$$
\begin{aligned}
& \exists \alpha\left(t_{0}\right)>0 \text { э } \forall \epsilon>0 \exists \delta\left(t_{0}, \epsilon\right) \ni\left\|u\left(t_{0}\right)-w\left(t_{0}\right)\right\|<\delta \\
& \quad \Longrightarrow\|u(t)-w(t)\| \leq e^{-\alpha \cdot\left(t-t_{0}\right)}
\end{aligned}
$$

- Uniform Exponential Stability - $w(t)$ is (ES) and converges uniformly $w(t)$ is (UES) on $\left[t_{0}, \infty\right) \Longleftrightarrow w(t)$ is (ES) $\forall t \geq t_{0}$ and α, δ are independent of t_{0}

7 Lyapunov Theory

7.1 Definition

Let $\Lambda \subset \mathbb{R}^{N}, V: \Lambda \rightarrow[0, \infty)$. If V is a Lyapunov function, then

1. V is positive-definite (with respect to $w \in \Lambda$)
I.e. $V[w]=0$ and $V[x]>0$ if $x \in \Lambda, x \neq w$
2. V is Lipschits continuous on each bounded subset of Λ
I.e. $\forall R>0 \exists L_{R}>0$ э $|V[x]-V[y]| \leq L_{R} \cdot\|x-y\| \forall x, y \in \Lambda,\|x\|,\|y\| \leq R$

7.2 Property

Let $\mathcal{V}(\Lambda)$ contain all $V: \Lambda \rightarrow[0, \infty)$ э $\forall R>0$,

1. $\exists a \in C I P([0, \infty))$ (continuous, \uparrow (strictly), $a(0)=0, a(r)>0$) and $b>0$ э $a(\|x\|) \leq V[x] \leq b \cdot\|x\|$.
2. V is Locally Lipschitz

7.3 Derivative of V

We can take the derivative of V in two ways:

1. $\frac{d}{d t} V[(x, y)]=\frac{d}{d x} V[(x, y)] \cdot \frac{d x}{d t}+\frac{d}{d y} V[(x, y)] \cdot \frac{d y}{d t}$
2. $\frac{d}{d t} V[u(t)]=\vec{\nabla} V[u(t)] \cdot \frac{d u}{d t}=\vec{\nabla} V[u(t)] \cdot f(t, u(t))$
3. $\frac{d^{ \pm}}{d t} V\left[t_{0}, x\right]=D_{(*)}^{ \pm} V\left[t_{0}, x\right]=\lim _{h \rightarrow 0^{ \pm}} \frac{V[x+h \cdot f(t, x)]-V[x]}{h}$

7.4 Important Lyapunov Theorems

7.4.1 Lyapunov Stability Theorem (US)

Suppose $\exists V \in \mathcal{V}(\Lambda)$ э

$$
\text { (1) } D_{(*)}^{ \pm} V[t, x] \leq 0 \forall(t, x) \in[0, \infty) \times \Lambda,\|x\| \leq R
$$

Then the zero solution to $(*)$ is (US).
Proof Let $0<\epsilon<R, t_{0} \geq 0$ be given. Then we have $a(\|x\|) \leq V[x] \leq b \cdot\|x\| \forall x \in \Lambda,\|x\|<R$
$\frac{d^{ \pm}}{d t} V[u(t)]=D_{(*)}^{ \pm} V[t, u(t)] \leq 0$ by $(\mathbf{1}) \quad \Longrightarrow V$ is non-increasing
So then we get:

$$
\text { (2) } V[u(t)] \leq V\left[u\left(t_{0}\right)\right] \forall t \geq t_{0} \ni\|u(t)\| \leq R
$$

Choose $\delta=\delta(\epsilon)>0$ э $b \cdot \delta<a(R)$ (i.e., $b \cdot \delta \in \operatorname{Rng}(a))$ and $a^{-1}(b \cdot \delta)<\epsilon$. (Remember $\left\|u\left(t_{0}\right)\right\|<\delta$)
So $a(\|u(t)\|) \leq V[u(t)] \leq V\left[u\left(t_{0}\right)\right] \leq b \cdot\left\|u\left(t_{0}\right)\right\|<b \cdot \delta \Longrightarrow a(\|u(t)\|)<b \cdot \delta \Longrightarrow\|u(t)\|<a^{-1}(b \cdot \delta)<\epsilon$
\therefore The zero solution to $(*)$ is (US).

7.4.2 Lyapunov Asymptotic Stability Theroem (AS)

Suppose $V, W \in \mathcal{V}(\Lambda)$ and

$$
\text { (3) } D_{(*)}^{ \pm} V[t, x]<-W[x] \leq 0 \forall x \in \Lambda,\|x\|<R
$$

Then the zero solution to (*) is (AS).
Proof (*) is (US) by the previous theorem so we want to show (AS). Assume $a(\|x\|) \leq V[x] \leq b \cdot\|x\|$ and $\bar{a}(\|x\|) \leq W[x] \leq \bar{b} \cdot\|x\| \forall x \in \Lambda,\|x\| \leq R$.

Let η be \ni if $\left\|u\left(t_{0}\right)\right\|<\eta$ then $\bar{a}(\|u(t)\|) \leq \bar{a}(R) \forall t \geq t_{0} \geq 0$. We claim the following:

$$
\text { (4) }\left\|u\left(t_{0}\right)\right\|<\eta \Longrightarrow \lim _{t \rightarrow \infty} V[u(t)]=0
$$

For contradiction, suppose $\left\|u\left(t_{0}\right)\right\|<\eta$ but $\lim _{t \rightarrow \infty} V[u(t)] \neq 0$. Since $V[u(t)] \geq 0 \forall t \geq t_{0} \geq 0$, this is equivalent to saying $\lim _{t \rightarrow \infty} V[u(t)]>0$.

$$
D_{(*)}^{ \pm} V[t, u(t)]<-W[u(t)] \leq 0 \Longrightarrow V[u(t)] \text { is decreasing }
$$

Thus we have $V[u(t)]$ is decreasing and $\lim _{t \rightarrow \infty} V[u(t)]>0$ which means $\exists \alpha>0 \ni V[u(t)] \geq \alpha \forall t \geq t_{0} \geq 0$. Then we have $b \cdot\|u(t)\| \geq V[u(t)] \geq \alpha \Longrightarrow\|u(t)\| \geq \frac{\alpha}{b} \forall t \geq t_{0}$.

Then $W[u(t)] \geq \bar{a}(\|u(t)\|) \geq \bar{a}\left(\frac{\alpha}{b}\right) \quad \Longrightarrow \quad D_{(*)}^{ \pm} V[u(t)] \leq-W[u(t)] \leq-\bar{a}\left(\frac{\alpha}{b}\right) \quad \Longrightarrow V[u(t)]-$ $V\left[u\left(t_{0}\right)\right] \leq-\bar{a}\left(\frac{\alpha}{b}\right) \cdot\left(t-t_{0}\right)$; here we integrate from t_{0} to t
$\Longrightarrow V[u(t)] \leq V\left[u\left(t_{0}\right)\right]-\bar{a}\left(\frac{\alpha}{b}\right) \cdot\left(t-t_{0}\right) \rightarrow-\infty$ as $t \rightarrow \infty$
$\Longrightarrow V[u(t)] \rightarrow-\infty$ which is a contradiction.
Thus, $\lim _{t \rightarrow \infty} V[u(t)]=0$.
Now, $a(\|u(t)\|) \leq V[u(t)] \rightarrow 0$ as $t \rightarrow \infty \quad \Longrightarrow\|u(t)\| \leq a^{-1}(V[u(t)]) \rightarrow 0$ since $V[u(t)] \rightarrow 0$ and $a(0)=0 \Longrightarrow a^{-1}(0)=0$ all as $t \rightarrow \infty$.

$$
\therefore \lim _{t \rightarrow \infty}\|u(t)\|=0 \Longrightarrow \text { The zero solution to }\left(^{*}\right) \text { is (AS). }
$$

7.5 Note About Positive-Definite Lyapunov Functions

If $V[(x, y)]=2 y^{2}, V$ is not positive-definite since the only place where V should be 0 is at $(x, y)=(0,0)$, but here V is 0 at a point such as (1,0).

7.6 Norms As Lyapunov Functions

Define $M_{ \pm}[z, x]=\lim _{h \rightarrow 0^{ \pm}} \frac{\|z+h \cdot x\|-\|z\|}{h}$ as the left and right directional derivatives of $V[x]$ at z in the direction of x. If $M_{ \pm}[z, x]$ both exist and are equal, then $V[x]$ is differentiable at z.

7.6.1 Properties of $M_{ \pm}[z, x]$

1. $M_{-}[z, x] \leq M_{+}[z, x]$
2. $M_{\mp}[z, x]=-M_{ \pm}[z, x]$
3. $\left|M_{ \pm}[z, x]\right| \leq\|x\|$
4. $M_{+}[z, x+y] \leq M_{+}[z, x]+M_{+}[z, y]$ ("sublinear") and $M_{-}[z, x+y] \geq M_{-}[z, x]+M_{-}[z, y]$ ("superlinear")
5. $M_{ \pm}[s \cdot z, r \cdot x]=r \cdot M_{ \pm}[z, x], s, r>0$ (linear with respect to x)
6. $M_{ \pm}[z, \gamma \cdot z]=\operatorname{Re}(\gamma) \cdot\|z\| \forall \gamma \in \mathbb{C}$
7. $\left|M_{ \pm}[z, x]-M_{ \pm}[z, y]\right| \leq\|x-y\|$ (Lipschitz \rightarrow use triangle inequality)
8. $M_{ \pm}[z, x+\gamma \cdot z]=M_{ \pm}[z, x]+\operatorname{Re}(\gamma) \cdot\|z\|$

7.6.2 Bounding $M_{ \pm}[x, \mathbf{A} x]$

$\mu[\mathbf{A}]$ is the smallest α such that $M_{ \pm}[x, \mathbf{A} x] \leq \alpha \cdot\|x\|$. Note that if we can find one value of x such that $M_{ \pm}[x, \mathbf{A} x]>0$, then we immediately know $\mu[\mathbf{A}]>0$.

7.6.3 Computing $M_{ \pm}[z, x]$

If we're using $\|\cdot\|_{1}$ or $\|\cdot\|_{\infty}$ as our norm, then it is very hard to compute $M_{ \pm}[z, x]$.
When we have a norm such as $\|\cdot\|_{2}$ though, it is slightly easier. We can write $M_{ \pm}[z, x]=\frac{\langle z, x>}{\|z\|}$ where we define $<z, x>$ as the dot product and $\|\cdot\|=\|\cdot\|_{2}$. Note here that $\|x\|_{2}=\sqrt{<x, x>}$. When showing what $M_{ \pm}[z, x]$ is, use inner product properties (the dot product is one).

7.6.4 Important Theorems

Remember
$(\mathbf{L H}) u^{\prime}=\mathbf{A} u, u(0)=z, \quad \mathbf{T}_{\mathbf{A}}(t)=e^{t \mathbf{A}}$
then we have the following two important theorems:

Theorem

1. $\left\|e^{t \mathbf{A}}\right\| \leq 1 \forall t \geq 0 \Longleftrightarrow \mu[\mathbf{A}] \leq 0$
2. $\left|\mid e^{t \mathbf{A}} \| \leq e^{-\alpha \cdot t} \forall t \geq 0 \Longleftrightarrow \mu[\mathbf{A}] \leq-\alpha\right.$

8 Linearization of ODEs

Let $f=\left(f_{i}\right)_{1}^{N}$, where $f_{i}: \mathbb{R}^{N} \rightarrow \mathbb{R}$. We have $\vec{\nabla} f_{i}=\left(\frac{\partial f_{i}}{\partial x_{1}}, \ldots, \frac{\partial f_{i}}{\partial x_{N}}\right)$. Then we define the Jacobian of f is defined to be $\mathbf{D} f(\vec{z})=\left(\begin{array}{c}\nabla \overrightarrow{f_{1}(\vec{z})} \\ \vdots \\ \vec{\nabla} f_{N}(\vec{z})\end{array}\right)$.

Let $\operatorname{Re}(\lambda)<0$ for $\lambda \in \sigma(\mathbf{A})$ and define

$$
(\mathbf{P D E}) u^{\prime}=\mathbf{A} u+g(t, u)
$$

and let $\vec{z} \in \Lambda \ni f(\vec{z})=\overrightarrow{0}$.

Theorem - (AS) by Linearization Suppose f is continuous, $f(\vec{z})=\overrightarrow{0}$ and $\mathbf{D} f(\vec{z})$ exists (always does in C_{1}). If $\operatorname{Re}(\lambda)<0 \forall \lambda \in \sigma(\mathbf{D} f(\vec{z}))$, then the steady state solution $u(t) \equiv \vec{z}$ is $(\mathbf{E S})$.

Example Let $\alpha \in \mathbb{R}$ and $\left\{\begin{array}{c}x^{\prime}=-x+\sin (\alpha \cdot y) \\ y^{\prime}=x-y+x^{2}\end{array}\right.$ with $(x, y)=(0,0)$ as a critical point. Analyize the stability of the system with parameter α. Use linearization: $\quad \mathbf{D} f(x, y)=\left(\begin{array}{cc}-1 & \alpha \cos (\alpha \cdot y) \\ 1+2 x & -1\end{array}\right) \Longrightarrow$ $\mathbf{D} f(0,0)=\left(\begin{array}{cc}-1 & \alpha \\ 1 & -1\end{array}\right)$ which has eigenvalues $\lambda=-1 \pm \sqrt{\alpha}$. The critical values for this eigenvalue are $\alpha=0,1$.

$$
\left\{\begin{array}{clc}
\alpha<0 & \Longrightarrow & \operatorname{Re}(\lambda)<0 \\
\alpha=0 & \Longrightarrow & \operatorname{Re}(\lambda)=-1<0 \\
0<\alpha<1 & \Longrightarrow & \operatorname{Re}(\lambda)<0 \\
\alpha=1 & \Longrightarrow & \text { one ev is }>0 \\
\alpha>1 & \Longrightarrow & \text { at least one ev is }>0
\end{array}\right.
$$

\therefore We can conclude that the system is (AS) when $\alpha<1$.

