MA 521
 Test 3 Study Guide Rings

Zachary D. Clawson

November 23, 2010

1 Definition of a Ring

Gaussian integers. Ring: $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$
Smallest subring of \mathbb{C} containing $\alpha \in \mathbb{C}$ is denoted $\mathbb{Z}[\alpha]=\left\{a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0} \mid a_{i} \in \mathbb{Z}\right\}$ and called the subring generated by α
Algebraic complex number. $\alpha \in \mathbb{C}$ is algebraic if it is a root of a polynomial with integer coefficients
Transcendental number. If $\alpha \in \mathbb{C}$ is not algebraic then it is transcendental
Ring. A ring R is a set with the two laws of composition + and \times, called addition and multiplication, which satisfy these axioms:

1. With the law of composition,,$+ R$ is an abelian group, with identity denoted by 0 . This abelian group is denoted by R^{+}
2. Multiplication is associative and has an identity denoted by 1
3. Distributive laws: For all $a, b, c \in R$,

$$
(a+b) c=a c+b c \quad \text { and } \quad c(a+b)=c a+c b
$$

Subring. Subset of a ring closed under operations of addition, subtraction, multiplication, and contains 1. Assume all rings are commutative unless otherwise states. I.e. $a b=b a$ for all $a, b \in R$.
Polynomial rings. $R[x]=\left\{a_{n} x^{n}+\cdots+a_{1} x+a_{0} \mid a_{i} \in R\right\}$ for all $n \in \mathbb{N}_{0}$ where R is a ring.
Unit. Elements with multiplicative inverses are called units.

2 Formal Construction of Integers and Polynomials

Polynomial multiplication. $f(x) g(x)=\sum_{i, j} a_{i} b_{j} x^{i+j}=\sum_{k} p_{k} x^{k}$ with $p_{k}=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k} b_{0}=$ $\sum_{i+j=k} a_{i} b_{j}$.
Monomial. Formal product of variables of the form $x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$
Polynomial. Finite linear combination of monomials

3 Homomorphisms and Ideals

Homomorphism. A homomorphism $\varphi: R \rightarrow R^{\prime}$ where R, R^{\prime} are rings is a map such that

$$
\varphi(a+b)=\varphi(a)+\varphi(b), \quad \varphi(a b)=\varphi(a) \varphi(b), \quad \varphi\left(1_{R}\right)=1_{R^{\prime}}
$$

for all $a, b \in R$. An isomorphism of rings is a bijective homomorphism. If there is an isomorphism $R \rightarrow R^{\prime}$, the two rings are said to be isomorphic.

Examples. Evaluation of polynomials at a value is a homomorphism. That is, $\mathbb{R}[x] \rightarrow \mathbb{C}$ defined by $p(x) \mapsto p(c)$ for some $c \in \mathbb{C}$.
Proposition. Substitution principle: Let $\varphi: R \rightarrow R^{\prime}$ be a ring homomorphism.

1. Given an element $\alpha \in R^{\prime}$, there is a unique homomorphism $\Phi: R[x] \rightarrow R^{\prime}$ which agrees with the map φ on constant polynomials and which sends $x \mapsto \alpha$.
2. More generally, given elements $\alpha_{1}, \ldots, \alpha_{n} \in R^{\prime}$, there is a unique homomorphism $\Phi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow$ R^{\prime} from the polynomial ring in n variables to R^{\prime}, which agrees with φ on constant polynomials and which sends $x_{v} \mapsto \alpha_{v}$ for $v=1, \ldots, n$.

Example. Map extending $\mathbb{Z}[x] \rightarrow \mathbb{F}_{p}[x]$ where $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}_{p}$ is a field (p is prime). This map has $f(x)=a_{n} x^{n}+\cdots+a_{0} \mapsto \bar{a}_{n} x^{n}+\cdots+\bar{a}_{0}=\bar{f}(x)$ where $\bar{a}_{i}=a_{i} \bmod p$.

Remark. $R[x, y] \cong R[x][y]$.
Proposition. Let \mathcal{R} denote the continuous real-valued functions on \mathbb{R}^{n}. The map $\varphi: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathcal{R}$ sending a polynomial to its associated polynomial function is an injective homomorphism.
Proposition. There is exactly one homomorphism $\varphi: \mathbb{Z} \rightarrow R$ from the ring of integers to an arbitrary ring R. It is the map defined by $\varphi(n)=\underbrace{1_{R}+\cdots+1_{R}}_{n \text { times }}$ if $n>0$ and $\varphi(-n)=-\varphi(n)$.
Kernal. Let $\varphi: R \rightarrow R^{\prime}$ where R, R^{\prime} are rings. Then $\operatorname{ker} \varphi=\{a \in R \mid \varphi(a)=0\}$ is a subgroup of R^{+} but not a subring of R as $1_{R} \notin \operatorname{ker} \varphi$. The kernal is closed under addition and muliplication. Further, it is closed under multiplication by the whole group: $a \in \operatorname{ker} \varphi$ and $r \in R \Longrightarrow r a \in \operatorname{ker} \varphi$. If $\operatorname{ker} \varphi=R$ then $\varphi \equiv 0 \Longrightarrow R^{\prime}=\{0\}$ since then $1=0$.

Ideal. A subset of a ring R with the properties:

1. I subgroup of R^{+}
2. $a \in I$ and $r \in R \Longrightarrow r a \in I$

Principal ideal. The principal ideal generated by a is the set of multiplies of a particular element $a \in R$. That is, the elements divisible by a. We notate it as $(a)=a R=R a=\{r a \mid r \in R\}$.

Example. Consider $\varphi: \mathbb{R}[x] \rightarrow \mathbb{R}$ where $\varphi(f(x))=f(2)$. Then $\operatorname{ker} \varphi=\{f(x) \in \mathbb{R}[x] \mid f(2)=0\}=(x-2)=$ $(x-2) \mathbb{R}[x]$.

Remark. The zero ideal (0) and the unit ideal (1) $=R$ are always ideals in a ring R.
Characteristics. The characteristic of a ring R is the nonnegative integer n which generated the kernal of the homomorphism $\varphi: \mathbb{Z} \rightarrow R$. That is, n is the smallest positive integer such that $n \times 1_{R}=0$ or if $\operatorname{ker} \varphi=\{0\}$ then $n=0$.
Remark. If \mathbb{Z} is a subring of R, then $\operatorname{char} R=0$.

4 Quotient Rings and Relations in a Ring

Cosets. Let I be an ideal in R. The cosets of the additive subgroup I^{+}of R^{+}are the subsets $a+I, a \in R$.
Theorem. Let I be an ideal of a ring R.

1. There is a unique ring structure on the set of cosets $\bar{R}=R / I$ such that the canonical map $\pi: R \rightarrow \bar{R}$ sending $a \mapsto \bar{a}=a+I$ is a homomorphism.
2. The kernal of π is I.

Proposition. Mapping property of the quotient rings: Let $f: R \rightarrow R^{\prime}$ be a ring homomorphism with kernal I and let J be an ideal which is contained in I. Denote the residue ring R / J by \bar{R}.

1. There is a unique homomorphism $\bar{f}: \bar{R} \rightarrow R^{\prime}$ such that $\bar{f} \pi=f$:

$$
\begin{array}{rcc}
R & \xrightarrow{f} & R^{\prime} \\
\pi \searrow & & \\
& & \\
& \bar{R}=R / J &
\end{array}
$$

2. First isomorphism theorem: If $J=I$, then \bar{f} maps \bar{R} isomorphically to the image of f.

Proposition. Correspondence theorem: Let $\bar{R}=R / J$, and let π denote the canonical map $R \rightarrow \bar{R}$.

1. There is a bijective correspondence between the set of ideals of R which contain J and the set of all ideals of \bar{R}, given by

$$
I \mapsto \pi(I) \quad \text { and } \quad \pi^{-1}(I) \mapsto \bar{I}
$$

2. If $I \subseteq R$ corresponds to $\bar{I} \subseteq \bar{R}$, then R / I and \bar{R} / \bar{I} are isomorphic rings.

5 Adjunction of Elements

