MA 515 Test 2 Study Guide

Zach Clawson

November 8, 2010

Earlier Material

Example Banach spaces.

- \mathbb{R}^n and \mathbb{C}^n with norm $||x||_2$
- l^p with norm $||x||_p$
- l^{∞} with norm $||x|| = \sup_{i \in \mathbb{N}} |x_i|$
- $\mathcal{C}[a, b]$ with norm $||x|| = \max_{t \in [a, b]} |x(t)|$

Example incomplete normed vector spaces.

- \mathbb{Q} with norm |x|
- $\mathbb{P}[a, b]$ (polynomials) with norm $||x|| = \max_{t \in [a, b]} |x(t)|$
- $\mathcal{C}[a,b]$ with norm $||x|| = \int_a^b |x(t)| dt$

- Completion of this is given by $L^2[a,b] = \left\{ f: [a,b] \to \mathbb{R} \mid \int_a^b |f(t)|^2 dt < \infty \right\}$

Metrics obtained from norms. Must satisfy that d(x + a, y + a) = d(x, y) for all $x, y, a \in X$ and $d(\alpha x, \alpha y) = |\alpha| \cdot d(x, y)$ for all $x, y \in X$ and $\alpha \in \mathbb{K}$.

Section 2.3. Further Properties of Normed Spaces

Theorem (subspace completeness). A subspace Y of a Banach space X is complete if and only if the set Y is closed in X.

Convergent sequence. $x_n \to x$ in X if and oly if $||x_n - x|| \to 0$ as $n \uparrow \infty$.

Convergent series. Let (x_n) be a sequence and $s_n = x_1 + \cdots + x_n$. If $||s_n - s|| \to 0$ for some s, then $\sum_{i=1}^{\infty} x_i$ converges to s.

Absoulte convergence. Series obtained from (x_n) absolutely converges if and only if $||x_1|| + ||x_2|| + \cdots$ converges.

Remark. Absolute convergence \implies convergence if and only if X is Banach.

Completion of Arbitrary Normed Space

Section 2.4. Finite Dimensional Normed Spaces

Lemma. If $\{e_i\}_{i=1,\dots,n}$ is a linearly independent set in X, then $\exists M, c$ such that

$$c\sum_{i=1}^{n} |\alpha_i| \le \left\|\sum_{i=1}^{n} \alpha_i e_i\right\| \le M \sum_{i=1}^{n} |\alpha_i|$$

Proof. Note that if $\sum_{i=1}^{n} |\alpha_i| = 0$ then this is vacuously satisfied. Assume that $\sum_{i=1}^{n} |\alpha_i| \neq 0$. First see that for $M = \max_{i=1,...,n} ||e_i||$ and the triangle inequality that

$$\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| \leq \sum_{i=1}^{n} \|\alpha_{i} e_{i}\| = \sum_{i=1}^{n} |\alpha_{i}| \|e_{i}\| \leq M \sum_{i=1}^{n} |\alpha_{i}|$$

Note that if

$$c\sum_{i=1}^{n} |\alpha_i| \le \left\|\sum_{i=1}^{n} \alpha_i e_i\right\| \implies c \le \left\|\sum_{i=1}^{n} \frac{\alpha_i}{\sum_{i=1}^{n} |\alpha_i|} e_i\right\|$$

and thus defining $\beta_i = \frac{\alpha_i}{\sum_{i=1}^n |\alpha_i|}$ we know that $\sum_{i=1}^n |\beta_i| = 1$. Thus we equivalently may show that $\|\sum_{i=1}^n \beta_i e_i\| \ge c > 0$ for any $\{\beta_i\}_{i=1,\dots,n}$ satisfying $\sum_{i=1}^n |\beta_i| = 1$. Let $M = \{x = (x_1,\dots,x_n) \in \mathbb{K}^n \mid \sum_{i=1}^n |x_i| = 1\}$. For contradiction assume this is not true. That is, there is a sequence $\{\beta^{(m)}\}_{m\in\mathbb{N}}$ where $\beta^{(m)} = \{\beta_i^{(m)}\}_{i=1,\dots,n}$ satisfying $\|\sum_{i=1}^n \beta_i^{(m)} e_i\| \to 0$ as $m \uparrow \infty$ with $\sum_{i=1}^n |\beta_i^{(m)}| = 1$ for all $m \in \mathbb{N}$. Note that this last condition implies that $|\beta_i^{(m)}| \le 1$ for all $i = 1, \dots, n$ and $m \in \mathbb{N}$. Then by the Bolzano-Wieirstrass Theorem we have that $\beta^{(m)}$ has a convergent subsequence $\beta^{(m_k)} \to \gamma \in M$ (it is in M because M is closed). Thus $\sum_{i=1}^n |\gamma_i| = 1$. But note that

$$\sum_{i=1}^{n} \beta_i^{(m)} e_i \to \sum_{i=1}^{n} \gamma e_i \text{ as } m \uparrow \infty \qquad \text{and} \qquad \sum_{i=1}^{n} \beta_i^{(m)} e_i \to 0 \text{ as } m \uparrow \infty$$

and this directly implies that $\sum_{i=1}^{n} \gamma e_i = 0 \implies \gamma_i = 0$ for all $i = 1, \ldots, n$ by the linear independence of $\{e_i\}_{i=1,\ldots,n}$. This contradicts that fact that $\sum_{i=1}^{n} |\gamma_i| = 1$.

$$\therefore \exists c > 0$$
 such that $c \sum_{i=1}^{n} |\alpha_i| \le \left\| \sum_{i=1}^{n} \alpha_i e_i \right\|$

Q.E.D.

Completeness of Finite Dimensional Normed Vector Spaces

Let X be a finite dimensional subspace of V, a normed vector space. Then X is complete. **Proof.** Let dim $X = d \implies X$ has a Hamel basis $\{e_i\}_{i=1,\dots,d}$. Notice a priori we have $\exists c > 0$ such that

$$c\sum_{i=1}^{d} |\alpha_i| \le \left\|\sum_{i=1}^{d} \alpha_i e_i\right\| \qquad \forall \ \alpha = (\alpha_i) \in \mathbb{K}^d$$

Let $\{x_n\}_{n \in \mathbb{N}} \subseteq X$ be Cauchy and thus

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } ||x_n - x_m|| < \epsilon \cdot c \text{ if } n, m \ge N$$

We can write each x_n as

$$x_n = \sum_{i=1}^d x_i^{(n)} e_i$$
 for some $x_i^{(n)} \in \mathbb{K}$

Thus

$$\|x_n - x_m\| < \epsilon \cdot c \implies c \cdot \sum_{i=1}^d \left| x_i^{(n)} - x_i^{(m)} \right| \le \left\| \sum_{i=1}^d \left(x_i^{(n)} - x_i^{(m)} \right) e_i \right\| < \epsilon \cdot c$$
$$\implies \sum_{i=1}^d \left| x_i^{(n)} - x_i^{(m)} \right| < \epsilon$$

and therefore for each i = 1, ..., d we have $\left| x_i^{(n)} - x_i^{(m)} \right| < \epsilon$ and therefore each $\left\{ x_i^{(n)} \right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{K} for all i = 1, ..., d and since \mathbb{K} is complete, we thus have that each $x_i^{(n)} \to \eta_i \in \mathbb{K}$ for each i = 1, ..., d.

We claim that $x_n \to x = \sum_{i=1}^d \eta_i e_i$. See that

$$\|x_i - x\| = \left\|\sum_{i=1}^d \left(x_i^{(n)} - \eta_i\right) e_i\right\| \le M \cdot \sum_{i=1}^d \left|x_i^{(n)} - \eta_i\right| \to 0 \quad \text{as } n \uparrow \infty$$

and this completes the proof.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Theorem. If X is a finite dimensional normed vector space with norms $\|\cdot\|_1, \|\cdot\|_2$ and basis $\{e_i\}_{i=1,...,d}$, then $\exists a, b \ge 0$ such that $a \cdot \|x\|_2 \le \|x\|_1 \le b \cdot \|x\|_2$.

Proof. Note that for all $x \in X$ and for k = 1, 2 we have $\exists M, c > 0$ such that

$$c_k \cdot \sum_{i=1}^d |x_i| \le \underbrace{\left\|\sum_{i=1}^d x_i e_i\right\|_k}_{\|x\|_k} \le M_k \cdot \sum_{i=1}^d |x_i|$$

Then

$$\frac{c_1}{M_2} \|x\|_2 \le \frac{M_2}{M_2} c_1 \sum_{i=1}^d |x_i| \le \|x\|_1 \le M_1 \sum_{i=1}^d |x_i| \cdot \frac{c_2}{c_2} \le \frac{M_1}{c_2} \|x\|_2$$

Section 2.5. Compactness and Finite Dimension

Compactness. If $Y \subseteq (X, d)$ a metric space, then K compact \iff all sequences in K have a convergent subsequence (in K).

Theorem. In a finite dimsional normed space X, any $M \subseteq X$ is compact if and only if M is closed and bounded.

Proof. " \Longrightarrow " Let $x \in \overline{M} \Longrightarrow \exists x_n \to x$. *M* is compact so it has a convergent subsequence, converging in *M*, and thus $x \in M \Longrightarrow \overline{M} \subseteq M$ and a prior we knew $M \subseteq \overline{M}$ and thus $M = \overline{M}$ and *M* is closed. For contradiction assume *M* is not bounded. Then $\exists (y_n)$ such that for any fixed $b \in M$ we have $d(y_n, b) > n$ for all $n \in \mathbb{N}$. But then this could not have a convergent subsequence. " \Leftarrow " Let $M \subseteq X$ be closed and bounded. Suppose dim X = n and $\{e_i\}_{i=1,...,n}$ is a basis for X. Let (x_m) be a sequence in M and thus for fixed $m \in \mathbb{N}$ we have that

$$x_m = x_1^{(m)}e_1 + \dots + x_n^{(m)}e_n$$

and since M is bounded then so is (x_m) and thus $||x_m|| \leq k$ for some $k \in \mathbb{K}$ for all $m \in \mathbb{N}$. Then by a previous observation,

$$k \ge \|x_m\| = \left\|\sum_{i=1}^n x_i^{(m)} e_i\right\| \ge c \cdot \sum_{i=1}^n \left|x_i^{(m)}\right| \quad \forall \ m \in \mathbb{N}$$

Then for fixed i, $\left\{x_i^{(m)}\right\}_{m\in\mathbb{N}}$ is bounded in \mathbb{K} and thus each $x_i^{(m_k)} \to \eta_i$ as $m_k \uparrow \infty$ for fixed $i = 1, \ldots, n$ by the Bolzano-Wieirstrass Theorem. I claim that $x_{m_k} \to z = \sum_{i=1}^n \eta_i e_i$. See that

$$\|x_{m_k} - z\| = \left\|\sum_{i=1}^n x_i^{(m_k)} e_i - \sum_{i=1}^n \eta_i e_i\right\| = \left\|\sum_{i=1}^n \left(x_i^{(m_k)} - \eta_i\right) e_i\right\| \le M \sum_{i=1}^n \left|x_i^{(m_k)} - \eta_i\right| \to 0$$

completing the proof. Further since M is closed and $\{x_{m_k}\} \subseteq M$ then $z \in M$.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Riesz Lemma

Let $Y \subsetneq X$ (normed vector space) be a closed subspace. Then $\forall \theta \in (0,1), \exists z \in S(0,1) \subseteq X$ (unit vector) such that $d(z,Y) > \theta$.

Proof. Let $x_0 \in X - Y$. Then

$$d = \inf_{y \in Y} d(z, y) = d(x_0, Y) > 0$$

Note that this must be strictly positive as otherwise we would have $\inf_{y \in Y} d(z, y) = 0 \implies \exists \{y_n\} \subseteq Y$ such that $d(x_0, y_n) \to 0$ and then $y_n \to x_0$ but $x_0 \notin Y$ contradicts closedness.

Trivially see that for all $0 < \theta < 1$ that $\frac{1}{\theta} > 1$ and thus $d < \frac{1}{\theta}d \implies \inf_{y \in Y} d(x_0, y) < \frac{1}{\theta}d \implies \exists y_0 \in Y$ such that $d < \underline{d(x_0, y_0)} < \frac{1}{\theta}d \implies \theta \|x_0 - y_0\| < d$.

$$\|\mathbf{x}_0 - \mathbf{y}_0\|$$

Take $z = \frac{x_0 - y_0}{\|x_0 - y_0\|}$ and let $y \in Y$. Then

$$\begin{aligned} \|z - y\| &= \left\| \frac{x_0 - y_0}{\|x_0 - y_0\|} - y \right\| = \frac{1}{\|x_0 - y_0\|} \|x_0 - \underbrace{(y_0 + y\|x_0 + y_0\|)}_{\in Y} |\\ &= \frac{1}{\|x_0 - y_0\|} \|x_0 - y'\| \quad \text{for some } y' \in Y \\ &\ge \frac{1}{\|x_0 - y_0\|} d \end{aligned}$$

Thus

$$d(z,Y) = \inf_{y \in Y} d(z,y) \ge \frac{d}{\|x_0 - y_0\|} > \frac{\theta \|x_0 - y_0\|}{\|x_0 - y_0\|} = \theta$$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Applications of Riesz Lemma

First one. X is a normed vector space. B(0,1) is compact $\implies \dim X < \infty$.

Proof. Assume X is a normed vector space with B(0, 1) compact. Assume for contradiction that dim $X = \infty$. Let $x_1 \in X, x_1 \neq 0$. Then

 $M_1 = \operatorname{span}\{x_1\} \subsetneq X$ is a finite dimensional subspace and thus closed

$$\implies \exists x_2 \in S(0,1) \subsetneq \tilde{B}(0,1) \Rightarrow d(x_2, M_1) > \frac{1}{2} \text{ by R. Lemma}$$

$$M_2 = \operatorname{span}\{x_1, x_2\} \subsetneq X \implies \exists x_3 \in S(0,1) \Rightarrow d(x_3, M_2) > \frac{1}{2}$$

$$\vdots$$

$$M_n = \operatorname{span}\{x_1, \dots, x_n\} \subsetneq X \implies \cdots$$

$$\vdots$$

Now consider $\{x_n\} \subseteq S(0,1) \subsetneq \tilde{B}(0,1)$ compact $\implies \exists \{x_{n_k}\} \subseteq S(0,1)$ such that $x_{n_k} \to y \in \tilde{B}(0,1)$. Note that then $\{x_{n_k}\}$ is Cauchy because it converges and thus

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } ||x_n - x_m|| < \epsilon \text{ if } n, m \ge N$

WLOG let m > n. Then $x_n \in M_{m-1} = \operatorname{span}\{x_1, \ldots, x_{m-1}\} \implies ||x_n - x_m|| \ge d(x_m, M_{m-1}) > \frac{1}{2}$. But then we have that for all $\epsilon > 0$,

$$\frac{1}{2} < \|x_n - x_m\| < \epsilon$$

giving our contradiction.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Second one. $Y \subsetneq X$ subspace and $\exists 0 < r < 1$ such that d(x, Y) < r for all $x \in S(0, 1) \implies Y$ dense in X (i.e. $\overline{Y} = X$).

Proof. Suppose for contradiction that Y is not dense in X. That is, $\overline{Y} \subsetneq X$. Using the Riesz lemma with $r = \theta \implies \exists x_0 \in S(0,1)$ such that $d(x_0, \overline{Y}) > r$. But $r < d(x_0, \overline{Y}) \le d(x_0, y) < r$ for all $y \in Y \implies r < r$ giving our contradiction.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Section 2.6. Linear Operators

Linear operator. A linear operator T is an operator $T: X \to Y$ with respective norms $\|\cdot\|_X, \|\cdot\|_Y$ where $x \mapsto Tx$ and assume X and Y have scalar fields. T satisfies T(x+y) = Tx + Ty and $T(\alpha x) = \alpha Tx$. We also define $\mathcal{D}(T)$ to be the domain of T, $\mathcal{R}(T)$ to be the range of T, and $\mathcal{N}(T)$ denotes the null space of T given by $\mathcal{N}(T) = \ker T = \{x \in X \mid Tx = 0\}.$

Examples.

- Identity operator. $I_X : X \to X$ defined by $I_X x = x$.
- Zero operator. $0: X \to Y$ defined by 0x = x.
- Differentiation operator. Let X be the set of polynomials on [a, b]. Define a linear operator T by $Tx(t) = x'(t), T : X \to X$.

- Integration operators. A linear operator $T: \mathcal{C}[a,b] \to \mathcal{C}[a,b]$ defined by $Tx(t) = \int_a^t x(\tau) d\tau$.
- Multiplication by t. A linear operator $T: \mathcal{C}[a, b] \to \mathcal{C}[a, b]$ defined by Tx(t) = tx(t).

Theorem (range and null space). Let T be a linear operator. Then

- The range $\mathcal{R}(T)$ is a vector space.
- If dim $\mathcal{D}(T) = n < \infty$, then $\mathcal{D}(T) \le n$.
- The null space $\mathcal{N}(T)$ is a vector space.

Theorem (inverse operator). Let X, Y be vector spaces, both with the same scalar field \mathbb{K} . Let $T : X \to Y$ be a linear operator with domain $\mathcal{D}(T) \subseteq X$ and range $\mathcal{R}(T) \subseteq Y$. Then

• The inverse $T^{-1}: \mathcal{R}(T) \to \mathcal{D}(T)$ exists if and only if

 $Tx = 0 \implies x = 0$

- If T^{-1} exists, it is a linear operator.
- If dim $\mathcal{D}(T) = n < \infty$ and T^{-1} exists, then dim $\mathcal{R}(T) = \dim \mathcal{D}(T)$.

Section 2.7. Bounded and Continuous Linear Operators

Norm of linear operator. $T: X \to Y$ has norm given by $||T||_{op.} = \sup_{x \in X, x \neq 0} \frac{||Tx||_Y}{||x||_X} < \infty$.

Bounded linear operator. A bounded linear operator has $||T||_{op.} < \infty$ and further note this directly implies that $||Tx||_Y \le c \cdot ||x||_X$ for some $c \ge 0$ (namely $c = ||T||_{op.}$).

Lemma. We may equivalently write $||T|| = \sup_{x \in X, ||x||=1} ||Tx||$.

Examples.

- Identity operator I is bounded and have ||I|| = 1.
- Zero operator 0 is bounded and has ||0|| = 0.
- Differential operator T is unbounded (consider polynomials $x_n(t) = t^n$.
- Integral operator T is linear and bounded when $Tx(t) = \int_0^1 k(t,\tau)x(\tau)d\tau$ and $|k(t,\tau)| \le k_0$ for all $(t,\tau) \in [0,1] \times [0,1]$ and $||T||_{op.} = k_0$.
- Matrix operator $T : \mathbb{R}^n \to \mathbb{R}^r$ and efined for some $r \times n$ matrix A by Tx = Ax is bounded and have $\|T\|_{op.} = \sqrt{\sum_{i=1}^r \sum_{j=1}^n a_{ij}^2}.$

Theorem (finite dimension). If a normed space X is finite dimensional, then every linear operator on X is bounded.

Proof. Suppose dim X = n and thus X has Hamel basis given by $\{e_i\}_{i=1,...,n}$ and thus for any $x \in X$ we can write $x = \sum_{i=1}^{n} x_i e_i$. Then

$$||Tx|| = \left\|\sum_{i=1}^{n} x_i Te_i\right\| \le \sum_{i=1}^{n} |x_i| ||Te_i|| \le \max_{i=1,\dots,n} ||Te_i|| \sum_{i=1}^{n} |x_i||^2$$

We know that

and therefore

$$\sum_{i=1}^{n} |x_i| \leq \frac{1}{c} \left\| \sum_{i=1}^{n} x_i e_i \right\| = \frac{1}{c} \|x\|$$
$$|Tx\| \leq \left(\frac{1}{c} \max_{i=1,\dots,n} \|Te_i\|\right) \|x\|$$
$$\mathbb{Q}.\mathbb{E}.\mathbb{D}.$$

Theorem (continuity and boundedness). Let $T : X \to Y$ be a linear operator where X, Y are normed spaces. Then

- T continuous if and only if T is bounded.
- If T is continuous at a single point then it is continuous everywhere.

Proof. " \Leftarrow " Assume T is bounded. Let $\epsilon > 0$ and $||x - x_0|| < \frac{\epsilon}{||T|||}$ and thus $||Tx - Tx_0|| \le ||T|| ||x - x_0|| < \epsilon$. " \Rightarrow " Assume T continuous at $x_0 \in X$ and thus $\forall \epsilon > 0, \exists \delta > 0$ such that $||Tx - Tx_0|| \le \epsilon$ for all $x \in X$ with $||x - x_0|| \le \delta$. Take any $y \in X$ and let

$$x = x_0 + \frac{\delta}{\|y\|}y \implies x - x_0 = \frac{\delta}{\|y\|}y \implies \|x - x_0\| = \delta$$

Then

$$||Tx - Tx_0|| = ||T(x - x_0)|| = \left||T\left(\frac{\delta}{||y||}y\right)|| = \frac{\delta}{||y||}||Ty||$$

and thus since $\frac{\delta}{\|y\|} \|Ty\| = \|Tx - Tx_0\| \le \epsilon \implies \|Ty\| \le \frac{\epsilon}{\delta} \|y\|$ and thus T is bounded with $\|T\|_{op.} = \frac{\epsilon}{\delta}$. Continuity of T at a point implies boundedness of T by the second part above, implying continuity.

$$\mathbb{Q}.\mathbb{E}.\mathbb{D}.$$

Theorem (bounded linear extension). Let $T : \mathcal{D}(T) \to Y$ be a bounded linear operator, where $\mathcal{D}(T) \subseteq X$ (normed space) and Y is Banach space. Then T has an extension

 $\bar{T}: \overline{\mathcal{D}(T)} \to Y$

where \overline{T} is a bounded linear operator of norm $\|\overline{T}\| = \|T\|$.

Proof. Consider $x \in \overline{\mathcal{D}(T)} \implies \exists \{x_n\} \subseteq \mathcal{D}(T)$ such that $x_n \to x$. T is linear and bounded so

$$||Tx_n - Tx_m|| = ||T(x_n - x_m)|| \le ||T|| ||x_n - x_m|| \to 0 \quad \Longrightarrow \quad \{Tx_n\}_{n \in \mathbb{N}} \subseteq \mathcal{R}(T) \text{ is Cauchy}$$

Since Y complete then $Tx_n \to y \in Y$. Thus we have a definition for $x \in \overline{\mathcal{D}(T)}$, $\overline{T}x = y$. Is this well-defined? Let $\{x_n\}, \{y_n\} \subseteq \mathcal{D}(T)$ such that $x_n \to x$ and $y_n \to x$ and thus we WTS $Tx = Ty \implies \lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Ty_n$. But $Tx_n - Ty_n = T(x_n - y_n) \to T0 = 0 \implies Tx_n = Ty_n$ for all $n \in \mathbb{N}$.

Next we WTS that 1) \overline{T} linear, 2) \overline{T} bounded, 3) $\overline{T}|_{\mathcal{D}(T)} = T$, 4) $\|\overline{T}\| = \|T\|$. all are trivial.

Q.E.D.

Section 2.8. Linear Functionals

Section 2.9 Linear Operators and Functionals on Finite Dimensional Spaces

Unique representation of linear operators. Let $T: X \to Y$ where X, Y are normed vector spaces with respective bases $\{e_i\}_{i=1,...,n} \subseteq X$ and $\{b_i\}_{i=1,...,r} \subseteq Y$. For any $x \in X$ we have $x = \sum_{i=1}^n x_i e_i$ and it has the image $y = Tx = \sum_{i=1}^n x_i Te_i$ and thus see that $y_k = Te_k$ for i = 1, ..., r. Further, we may write each $y \in Y$ as $y = \sum_{i=1}^r y_i b_j$ and thus $y = \sum_{i=1}^n x_i Te_i = \sum_{i=1}^n x_i Te_i = \sum_{i=1}^n x_i \sum_{j=1}^r \tau_{ji} b_j = \sum_{j=1}^r (\sum_{i=1}^n \tau_{ji} x_i) b_j$.

Section 2.10. Normed Spaces of Operators. Dual Space

Space of bounded linear operators. X is a normed vector space, and Y is a Banach space. Then $B(X,Y) = \{T : X \to Y \mid T \text{ bounded and linear}\}$ is Banach.

Proof. Let $\{T_n\}_{n\in\mathbb{N}}\subseteq B(X,Y)$ be Cauchy. WTS $T_n\xrightarrow{\|\cdot\|_{op.}} T\in B(X,Y)$. We have

$$\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \text{ such that } ||T_n - T_m||_{op.} < \frac{\epsilon}{2} \text{ if } n, m \ge N_{\epsilon}$$

and then for any fixed $x \in X$ we can also have

$$\forall \epsilon > 0, \exists N_{x,\epsilon} \in \mathbb{N} \text{ such that } ||T_n - T_m||_{op.} < \frac{\epsilon}{2||x||} \text{ if } n, m \ge N_{x,\epsilon}$$

and then we have that $\{T_n x\}_{n \in \mathbb{N}} \subseteq Y$ is Cauchy since

$$||T_n x - T_m x|| \le ||T_n - T_m||_{op.} ||x|| < \frac{\epsilon}{2||x||} ||x|| = \frac{\epsilon}{2} < \epsilon \text{ if } n, m \ge N_{x,\epsilon}$$

Then we have that $T_n x \to T x \in Y$ as $n \uparrow \infty$. Thus we have a natural definition for $T x = \lim_{n \to \infty} T_n x$ for all $x \in X$. We want to show $T \in B(X, Y)$. I.e. we want to show that T is linear and bounded. T is linear is trivial. We'll show the boundedness of T.

See that $\{T_n\}$ Cauchy $\implies \{\|T_n\|\} \subseteq \mathbb{R}$ is Cauchy and thus $\|T_n\| \to \alpha \in \mathbb{R}$ since \mathbb{R} is complete. See that

$$||T_n x|| \le ||T_n|| ||x|| \implies \lim_{n \to \infty} ||T_n x|| \le \lim_{n \to \infty} ||T_n|| ||x|| \underset{cont. of \ \|\cdot\|}{\Longrightarrow} ||Tx|| \le \alpha ||x||$$

showing T is bounded.

Last we must show that $T_n \to T$, that is $||T_n - T|| \to 0$ as $n \uparrow \infty$. Note that since $||T_n - T|| = \sup_{x \in X, ||x||=1} ||T_n x - Tx||$ and thus it suffices to show that for all ||x|| = 1 we have $||T_n x - Tx|| \to 0$. See that

$$\begin{aligned} \|T_n x - Tx\| &= \left\| T_n x - \lim_{m \to \infty} T_m x \right\| \underbrace{=}_{cont. of \|\cdot\|} \lim_{m \to \infty} \|T_n x - T_m x\| \le \lim_{m \to \infty} \|T_n - T_m\|_{op.} \cdot \underbrace{\|x\|}_{=1} \\ &= \lim_{m \to \infty} \|T_n - T_m\|_{op.} < \lim_{m \to \infty} \frac{\epsilon}{2} \quad \text{if } n, m \ge N_{\epsilon} \\ &< \epsilon \end{aligned}$$

and $m \geq N_{\epsilon}$ trivially since $m \uparrow \infty$. Thus we have shown that

$$\forall \epsilon > 0, ||T_n x - Tx|| < \epsilon \text{ if } n \ge N_\epsilon$$

and thus $T_n \to T$ follows.

Dual Spaces (up to isomorphism)

1. $(l^p)' \cong l^q$ for $\frac{1}{p} + \frac{1}{q} = 1$ with $1 < p, q < \infty$

Proof. We will construct an isomorphism

$$T: l^q \to (l^p)'$$
 by $Tz = \varphi_z$ where $\varphi_z: l^p \to \mathbb{R}$ and $\varphi_z(x) = \sum_{i=1}^{\infty} x_i z_i$

Note that $\varphi_z \in (l^p)'$ since φ_z is trivially a linear functional. So we must show that φ_z is bounded. Use the Holder inequality:

$$|\varphi_z(x)| = \left|\sum_{i=1}^{\infty} x_i z_i\right| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} \left(\sum_{i=1}^{\infty} |z_i|^q\right)^{1/q} = \|x\|_p \|z\|_q$$

and therefore $\|\varphi_z\|_{op.} \leq \|z\|_q$.

Next we must show that T is bounded, norm-preserving, and bijective.

"T norm-preserving." We have that $Tz = \varphi_z$ so then $||Tz||_{op.} \leq ||z||_q$ and we want to show equality. See that

$$||Tz||_{op.} = ||\varphi_z||_{op.} = \sup_{x \in l^p, ||x|| = 1} |\varphi_z(x)| = \sup_{x \in l^p, ||x|| = 1} \left| \sum_{i=1}^{\infty} x_i z_i \right|$$

We want this $\geq ||z||_q = (\sum_{i=1}^{\infty} |z_i|^q)^{1/q}$. This sup must be bigger than the value at any given x with $||x||_p = 1$. So it seems a natural selection for $x \in l^p$ is to take $x_i = \operatorname{sgn}(z_i) \cdot |z_i|^{q-1}$ but we see that

$$\|x\|_{p} = \left(\sum_{i=1}^{\infty} \left|\operatorname{sgn}(z_{i})|z_{i}\right)^{q-1}\right|^{p}\right)^{1/p} = \left(\sum_{i=1}^{\infty} |z_{i}|^{q}\right)^{1/p} = \|z\|_{q}^{q/p} < \infty$$

and thus a better selection so that $||x||_p = 1$ is to take $x_i = \frac{\operatorname{Sgn}(z_i)|z_i|^{q-1}}{||z||_q^{q/p}}$. Therefore we see that

$$||Tz||_{op.} \ge \left|\sum_{i=1}^{\infty} x_i z_i\right| = \left|\sum_{i=1}^{\infty} \frac{\operatorname{sgn}(z_i)|z_i|^{q-1}}{||z||_q^{q/p}} z_i\right| = \frac{1}{||z||_q^{q/p}} \sum_{i=1}^{\infty} |z_i|^q = \frac{||z||_q^q}{||z||_q^{q/p}} = ||z||_q$$

This completes the proof.

"T bounded." Trivial as $||Tz||_{op.} = ||z||_q \implies ||T||_{op.} = 1.$

"T surjective." We want to show that for all $f \in (l^p)'$ there is a $z \in l^q$ such that $f = Tz(=\varphi_z)$. This is the same as showing $f(x) = \varphi_z(x)$ for all $x \in l^p$. Since $f(x) = \sum_{i=1}^{\infty} x_i f(e_i)$ and $\varphi_z(x) = \sum_{i=1}^{\infty} x_i z_i$ where $\{e_i\}$ is the Schauder basis on l^p . Thus it seems a natural selection for z is by $z_i = f(e_i)$. Since $f \in (l^p)'$ we have that it is bounded and thus

$$\left|\sum_{i=1}^{\infty} x_i f(e_i)\right| = |f(x)| \le ||f||_{op.} ||x||_p$$

By the selection of $x_n = (\text{sgn}(f(e_1))|f(e_1)|^{q-1}, \text{sgn}(f(e_2))|f(e_2)|^{q-1}, \dots, \text{sgn}(f(e_n))|f(e_n)|^{q-1}, 0, 0, \dots)$ and $x_n \in l^p$ because

$$||x_n||_p = \left(\sum_{i=1}^n |\operatorname{sgn}(f(e_i))|f(e_i)|^{q-1}|^p\right)^{1/p} = \left(\sum_{i=1}^n |f(e_i)|^q\right)^{1/p} < \infty$$

and now using the boundedness of f as an operator, we have

$$\sum_{i=1}^{n} |f(e_i)|^q \le ||f||_{op.} \cdot ||x||_p = ||f||_{op.} \left(\sum_{i=1}^{n} |f(e_i)|^q\right)^{1/p}$$

and therefore

$$\left(\sum_{i=1}^{n} |f(e_i)|^q\right)^{1-1/p} \le \|f\|_{op.} \implies \|z\|_q = \left(\sum_{i=1}^{n} |f(e_i)|^q\right)^{1/q} \le \|f\|_{op.} < \infty$$

and therefore $z \in l^q$.

"T injective." Suppose $T(z_1) = T(z_2) \implies T(z_1) - T(z_2) = 0_{map} \implies T(z_1 - z_2) = 0_{map} \implies ||T(z_1 - z_2)||_{op.} = ||0_{map}||_{op.}$. Because T is norm preserving, then $||z_1 - z_2||_q = ||T(z_1 - z_2)||_{op.} = ||0_{map}||_{op.} = \sup_{x \in l^p, x \neq 0} \frac{|0_{map}(x)|}{||x||_p} = 0 \implies z_1 - z_2 = 0$ by the definition of a norm and therefore $z_1 = z_2$. Therefore T is injective.

$$\mathbb{Q}.\mathbb{E}.\mathbb{D}$$

2.
$$(l^1)' \cong l^\infty$$

Proof. Define an isomorphism

$$T: l^{\infty} \to (l^1)'$$
 by $Tz = \varphi_z$ where $\varphi_z: l^1 \to \mathbb{R}$ defined by $\varphi_z(x) = \sum_{i=1}^{\infty} x_i z_i$

We want to show that T is linear, norm-preserving, injective, and bounded. First we verify that $\varphi_z \in (l^1)'$ by showing it is a bounded linear functional. The linearity and functional parts are trivial. Boundedness follows trivially

$$|\varphi_z(x)| = \left|\sum_{i=1}^{\infty} x_i z_i\right| \le \sum_{i=1}^{\infty} |x_i| |z_i| \le \sum_{i=1}^{\infty} |x_i| \sup_{i \in \mathbb{N}} |z_i| = \|z\|_{\infty} \|x\|_1$$

and therefore $||Tz||_{op.} = ||\varphi_z|| \le ||z||_{\infty}$ shows that φ_z is bounded and thus in l^1 . The fact that T is linear is trivial. Further, the norm-preserving aspect of T verifies boundedness.

"T norm-preserving." We have that $||Tz||_{op.} \leq ||z||_{\infty}$ so it suffices to show $||Tz||_{op.} \geq ||z||_{\infty}$ to show equality. See that

$$\|Tz\|_{op.} = \|\varphi_z\|_{op.} = \sup_{x \in l^1, \|x\|=1} |\varphi_z(x)| = \sup_{x \in l^1, \|x\|=1} \left|\sum_{i=1}^{\infty} x_i z_i\right|$$

If $||z||_{\infty} = \sup_{i \in \mathbb{N}} |z_i|$ is actually obtained at z_k then taking $x_i = \delta_{ik} \operatorname{sgn}(z_k)$ it is clear that this is $\geq |z_k| = ||z||_{\infty}$. But the sup may not be obtained and thus we can construct a sequence $\{i_n\}_{n \in \mathbb{N}} \subseteq \mathbb{N}$ of components of z such that $z_{i_n} \to ||z||_{\infty}$ and $|z_{i_n}| \geq ||z||_{\infty} - \frac{1}{n}$. We choose

$$x^{(n)} = (0, \dots, 0, \underbrace{\operatorname{sgn}(z_{i_n})}_{i_n^{th} guy}, 0, \dots)$$

and therefore the sum with $x^{(n)}$ plugged in for x gives this is $\geq \text{sgn}(z_{i_n}) \cdot z_{i_n} = |z_{i_n}| \to ||z||_{\infty}$. Therefore $\geq ||z||_{\infty}$ completes this part of the proof.

"T surjective." We want to show that for all $f \in (l^1)'$ there is a $z \in l^\infty$ such that $f = Tz(=\varphi_z)$. But this is the same as saying $f(x) = \varphi_z(x)$ for all $x \in l^1$. But if there is a Schauder basis $\{e_i\}_{i \in \mathbb{N}}$ for l^1 then $f(x) = \sum_{i=1}^{\infty} x_i f(e_i)$ and $\varphi_z(x) = \sum_{i=1}^{\infty} x_i z_i$ indicates a natural selection for z given by $z_i = f(e_i)$. We must show that z defined this way is in l^∞ . That is,

we want to show z is a bounded sequence. That is, $|z_i| < M$ for some $M \in \mathbb{R}$ and all $i \in \mathbb{N}$. Since $f \in (l^1)'$, it is bounded and thus for any $x \in l^1$ we have

$$\left|\sum_{i=1}^{\infty} x_i f(e_i)\right| = |f(x)| \le ||f||_{op.} ||x||_1$$

Using this we define a sequence $x^{(n)} = (0, \ldots, 0, \operatorname{sgn} f(e_n), 0, \ldots)$ and trivially see that $||x^{(n)}||_1 = 1$ and $x^{(n)} \in l^p$ (if $f(e_n) = 0$ for any e_n in the basis, then it would not be a basis element). Thus since the left hand side holds for any $x \in l^p$ we have that for each $n \in \mathbb{N}$,

$$|f(e_n)| \le ||f||_{op.} \cdot 1$$

and since $z_n = f(e_n)$ we have shown that $|z_n| \leq ||f||_{op.}$ for all $n \in \mathbb{N}$ and thus $\sup_{i \in \mathbb{N}} |z_i| \leq ||f||_{op.} < \infty$ shows $z \in l^{\infty}$.

"T injective." Suppose $T(z_1) = T(z_2) \implies T(z_1) - T(z_2) = 0_{map} \implies T(z_1 - z_2) = 0_{map} \implies ||T(z_1 - z_2)||_{op.} = ||0_{map}||_{op.}$. Because T is norm preserving, then $||z_1 - z_2||_1 = ||T(z_1 - z_2)||_{op.} = ||0_{map}||_{op.} = \sup_{x \in l^1, x \neq 0} \frac{|0_{map}(x)|}{||x||_1} = 0 \implies z_1 - z_2 = 0$ by the definition of a norm and therefore $z_1 = z_2$. Therefore T is injective.

Q.E.D.

3. $(c_0)' \cong l^1$ where $c_0 \subsetneq l^\infty$ is sequences converging to 0 and c_0 is a closed subspace and therefore Banach with the same norm

Proof. c_0 is the space of sequences converging to 0. The dual space of c_0 is $c'_0 = \{f : c_0 \to \mathbb{R} \mid f \text{ bounded linear functional}\}$. We want to show that $c'_0 \cong l^1$ (i.e. the two are isomorphic). Note that c_0 is a closed subspace of l^{∞} and since l^{∞} is Banach (complete) and c_0 is closed, then c_0 must also be Banach (complete) by Theorem 1.4-7. Further, we know that norm on c_0 is induced by l^{∞} as the sup-norm,

$$\|x\|_{c_0} = \sup_{i \in \mathbb{N}} |x_i|$$

For the rest of the problem we will notate this norm by $||x||_{\infty}$. We want to construct an isomorphism between l^1 and c'_0 . Define

$$T: l^1 \to c'_0$$
 by $T(z) = Tz = \varphi_z$ where $\varphi_z: c_0 \to \mathbb{R}$ defined by $\varphi_z(x) = \sum_{i=1}^{\infty} x_i z_i$

We first must show that φ_z is a bounded linear functional. It is immediate that it is a functional as the codomain is \mathbb{R} .

" φ_z linear." This is immediate as:

•
$$\varphi_z(x+y) = \sum_{i=1}^{\infty} (x_i+y_i) z_i = \sum_{i=1}^{\infty} (x_i z_i+y_i z_i) = \sum_{i=1}^{\infty} x_i z_i + \sum_{i=1}^{\infty} y_i z_i = \varphi_z(x) + \varphi_z(y)$$

• $\varphi_z(\alpha x) = \sum_{i=1}^{\infty} (\alpha x_i) z_i = \alpha \sum_{i=1}^{\infty} x_i z_i = \alpha \varphi_z(x)$

" φ_z bounded." We want to show that $\|\varphi_z\|_{op.} \leq c$ for some constant c. Note that this is equivalent to showing $|\varphi_z(x)| \leq c \cdot \|x\|_{c_0}$ for all $x \in c_0$ by the definition of the operator norm. See that

$$\begin{aligned} |\varphi_{z}(x)| &= \left| \sum_{i=1}^{\infty} x_{i} z_{i} \right| &\leq \sum_{i=1}^{\infty} |x_{i} z_{i}| = \sum_{i=1}^{\infty} |x_{i}| |z_{i}| \\ &\leq \sum_{i=1}^{\infty} \left[\left(\sup_{i \in \mathbb{N}} |x_{i}| \right) \cdot |z_{i}| \right] = \sum_{i=1}^{\infty} \|x\|_{c_{0}} \cdot |z_{i}| \\ &= \|x\|_{c_{0}} \sum_{i=1}^{\infty} |z_{i}| = \|x\|_{c_{0}} \cdot \|z\|_{1} \end{aligned}$$

and therefore we have shown that $|\varphi_z(x)| \leq ||z||_1 \cdot ||x||_{c_0}$ for all $x \in c_0$ and therefore it trivially follows that $||\varphi_z||_{op.} \leq ||z||_1$.

Now we must show that T is an isomorphism. That is, we need to show that T is linear, bijective, and norm preserving.

"T linear." This is immediate as:

• $T(z_1+z_2) = \varphi_{z_1+z_2}$. But then for $x \in c_0$,

$$\begin{aligned} \varphi_{z_1+z_2}(x) &= \sum_{i=1}^{\infty} x_i (z_1+z_2)_i = \sum_{i=1}^{\infty} x_i \left[z_i^{(1)} + z_i^{(2)} \right] = \sum_{i=1}^{\infty} \left[x_i z_i^{(1)} + x_i z_i^{(2)} \right] \\ &= \sum_{i=1}^{\infty} x_i z_i^{(1)} + \sum_{i=1}^{\infty} x_i z_i^{(2)} = \sum_{i=1}^{\infty} x_i (z_1)_i + \sum_{i=1}^{\infty} x_i (z_2)_i \\ &= \varphi_{z_1}(x) + \varphi_{z_2}(x) = (\varphi_{z_1} + \varphi_{z_2}) (x) \end{aligned}$$

and therefore $\varphi_{z_1+z_2}(x) = (\varphi_{z_1} + \varphi_{z_2})(x)$ for all $x \in c_0$ and therefore they must be the same map. That is, $\varphi_{z_1+z_2} = \varphi_{z_1} + \varphi_{z_2}$.

• $T(\alpha z) = \varphi_{\alpha z}$. But then for $x \in c_0$,

$$\varphi_{\alpha z}(x) = \sum_{i=1}^{\infty} x_i (\alpha z)_i = \sum_{i=1}^{\infty} x_i \alpha z_i = \alpha \sum_{i=1}^{\infty} x_i z_i = \alpha \varphi_z(x) = (\alpha \varphi_z)(x)$$

and since $\varphi_{\alpha z}(x) = (\alpha \varphi_z)(x)$ for all $x \in c_0$, then they are the same map and thus $\varphi_{\alpha z} = \alpha \varphi_z$.

"T norm preserving." We want to show that $||Tz||_{op.} = ||z||_1$ for all $z \in l^1$. For z = 0, by the linearity of T, Tz = 0 map $\implies ||Tz||_{op.} = 0$ and also $||z||_1 = 0$ by positive-definiteness. Therefore when z = 0 clearly this is satisfied. Thus assume $z \neq 0, z \in l^1$. Note from the boundedness of φ_z we showed that $||\varphi_z||_{op.} \leq ||z||_1$ and since $Tz = \varphi_z$, this shows that $||Tz||_{op.} \leq ||z||_1$. See that

$$||Tz||_{op.} = ||\varphi_z||_{op.} = \sup_{x \in c_0, ||x||_{\infty} = 1} |\varphi_z(x)| = \sup_{x \in c_0, ||x||_{\infty} = 1} \left| \sum_{i=1}^{\infty} x_i z_i \right|$$

and choose $x_n \in c_0$ by $x_n = (\operatorname{sgn}(z_1), \operatorname{sgn}(z_2), \ldots, \operatorname{sgn}(z_n), 0, 0, \ldots)$. Since $z \neq 0$, then at least one component is non-zero. That is, $\exists N \in \mathbb{N}$ such that $z_N \neq 0 \implies |\operatorname{sgn}(z_N)| = 1$ and thus for $n \geq N$, $||x_n||_{\infty} = \sup_{i \in \mathbb{N}} |x_i^{(n)}| = \sup_{i \in \mathbb{N}} |\operatorname{sgn}(z_i)| = 1$. Therefore each x_n for $n \geq N$ satisfies the criteria for taking the sup and thus

$$||Tz||_{op.} = \sup_{x \in c_0, ||x||_{\infty} = 1} \left| \sum_{i=1}^{\infty} x_i z_i \right| \ge \left| \sum_{i=1}^{\infty} x_i^{(n)} z_i \right| = \left| \sum_{i=1}^{n} \operatorname{sgn}(z_n) z_i \right| = \sum_{i=1}^{n} |z_i| \quad \forall \quad n \ge N$$

and therefore

$$||Tz||_{op.} \ge \sum_{i=1}^{\infty} |z_i| = ||z||_1$$

Thus we have shown that $||Tz||_{op.} = ||z||_1$ by showing that $||Tz||_{op.} \le ||z||_1$ and $||Tz||_{op.} \ge ||z||_1$.

"T injective." Suppose $T(z_1) = T(z_2) \implies T(z_1) - T(z_2) = 0_{map} \implies T(z_1 - z_2) = 0_{map} \implies ||T(z_1 - z_2)||_{op.} = ||0_{map}||_{op.}$. Because T is norm preserving, then $||z_1 - z_2||_1 = ||T(z_1 - z_2)||_{op.} = ||0_{map}||_{op.} = \sup_{x \in c_0, x \neq 0} \frac{|0_{map}(x)|}{||x||_{\infty}} = 0 \implies z_1 - z_2 = 0$ by the definition of a norm and therefore $z_1 = z_2$. Therefore T is injective.

"T surjective." We want to show that $\forall f \in c'_0 \exists z \in l^1$ such that Tz = f. But note that $Tz = \varphi_z$ and thus we want to show that $\varphi_z = f$. But this simply means that we want to show that $\varphi_z(x) = f(x)$ for all $x \in c_0$. But note that if we have a Schauder basis on c_0 , then we can write $f(x) = \sum_{i=1}^{\infty} x_i f(e_i)$ and we knew a priori that $\varphi_z(x) = \sum_{i=1}^{\infty} x_i z_i$. Therefore,

we see the natural selection of $z_i = f(e_i)$ to satisfy this surjectivity. Therefore we must show the following: c_0 has a Schauder basis, construct a Schauder basis and show that any $x \in c_0$ can be written as infinite sum of this Schauder basis' elements, and show that $z \in l^1$ by our definition.

" c_0 has S. basis & construction of S. basis." Define

$$e_i = (0, 0, \dots, 0, 0, \underbrace{1}_{i^{th} \text{ component}}, 0, 0, \dots)$$

which is clearly in c_0 by construction. Therefore, $\{e_i\}_{i\in\mathbb{N}}\subseteq c_0$. In order to show this is a Schauder basis for c_0 , we must show that $\forall x \in c_0 \exists ! \{x_i\} \subseteq \mathbb{R}$ such that $x = \sum_{i=1}^{\infty} x_i e_i$. That is, $\sum_{i=1}^{n} x_i e_i \to x$ as $n \uparrow \infty$. This is easy to show as:

$$\left\| \sum_{i=1}^{n} x_i e_i - x \right\| = \| (x_1, x_2, \dots, x_n, 0, 0, \dots) - (x_1, x_2, \dots) \|$$
$$= \| (0, 0, \dots, 0, x_{n+1}, x_{n+2}, \dots) \| = \sup_{i \ge n+1} |x_i|$$

which converges to 0 as $n \uparrow \infty$ since $x \in c_0$. Then $\|\sum_{i=1}^n x_i e_i - x\| \to 0$ as $n \uparrow \infty$ and thus $\sum_{i=1}^n x_i e_i \to x$ as $n \uparrow \infty$. Therefore, each $x \in c_0$ can be written as an infinite combination of this Schauder basis we have constructed.

" $z \in l^1$." We naturally define z by $z_i = f(e_i)$ where e_i is defined as above. We want to show that $z \in l^1$. That is, we want to show that $||z||_1 < \infty$ which is the same as showing $\sum_{i=1}^{\infty} |f(e_i)| < \infty$. Note that since $f \in c'_0$, then f is a bounded linear functional and therefore

$$\left|\sum_{i=1}^{\infty} x_i f(e_i)\right| = |f(x)| \le ||f||_{op.} \cdot ||x||_{\infty} \quad \forall \ x \in c_0$$

Since this holds for all $x \in c_0$, if we choose $x_n = (\operatorname{sgn}(f(e_1)), \operatorname{sgn}(f(e_2)), \dots, \operatorname{sgn}(f(e_n)), 0, 0, \dots)$, then clearly $x_n \in c_0$ and further $||x_n||_{\infty} = 1$. Then

$$\left|\sum_{i=1}^{\infty} x_i f(e_i)\right| \ge \left|\sum_{i=1}^{\infty} x_i^{(n)} f(e_i)\right| = \left|\sum_{i=1}^{n} \operatorname{sgn}(f(e_i)) f(e_i)\right| = \sum_{i=1}^{n} |f(e_i)|$$

and then we have that

$$\sum_{i=1}^{n} |f(e_i)| \le \left| \sum_{i=1}^{\infty} x_i f(e_i) \right| \le ||f||_{op.} \cdot 1 \qquad \forall \ n \in \mathbb{N}$$

and thus

$$\sum_{i=1}^{\infty} |f(e_i)| \le ||f||_{op.} < \infty \text{ since } f \in c'_0$$

Therefore we have shown what we wanted and thus $z \in l^1$.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Section 3.1. Inner Product Space. Hilbert Space

Inner product space/inner product. X is an inner product space if X is a normed vector space with norm induced from an inner product. An inner product satisfies $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$

1. Bilinear (with respect to conjugacy). That is,

$$\begin{array}{lll} \langle \alpha x_1 + \alpha x_2, y \rangle &=& \alpha \langle x_1, y \rangle + \beta \langle x_2, y \rangle \\ \langle x, \alpha y_1 + \beta y_2 \rangle &=& \bar{\alpha} \langle x, y_1 \rangle + \bar{\beta} \langle x, y_2 \rangle \end{array}$$

2. Conjugate-symmetric

$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

3. Positive-definite

$$\langle x, x \rangle \ge 0$$
 and $\langle x, x \rangle = 0 \iff x = 0$

Norm induced by inner product. $||x|| = \sqrt{\langle x, x \rangle}$

Property. Any norm induced from an inner product satisfies $||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$. **Not an inner product space.** C[a, b] with $||f|| = \sup_{t \in [a, b]} |f(t)|$ needs to satisfy $||f + g||^2 + ||f - g||^2 = 2(||f||^2 + ||g||^2)$. Can construct functions making this false.

Hilbert space. Complete inner product space.

Orthogonal. $x \perp y \iff \langle x, y \rangle = 0$

Section 3.2. Further Properties of Inner Product Spaces

Cauchy-Schwartz inequality. $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$ and equality holds only if $y = c \cdot x$ for some $c \in \mathbb{R}$.

Proof. See that

$$\langle x + \alpha y, x + \alpha y \rangle = \|x\|^2 + \bar{\alpha} \langle x, y \rangle + \alpha \overline{\langle x, y \rangle} + |\alpha|^2 \|y\|^2$$

for any $\alpha \in \mathbb{K}$. By positive-definiteness we have that this quantity must be non-negative. Choose $\alpha = t \cdot \langle x, y \rangle$ and thus this become

 $= \|x\|^2 + 2t |\langle x,y\rangle|^2 + t^2 |\langle x,y\rangle|^2 \|y\|^2$

which is quadratic in t. Since this quantity is non-negative then there are 0 or 1 roots and so we have the coefficients $b^2 - 4ac \leq 0$. Thus,

$$4t^{2}|\langle x,y\rangle|^{4} - 4\|x\|^{2}t^{2}|\langle x,y\rangle|^{2}\|y\|^{2} \leq 0 \iff 4t^{2}|\langle x,y\rangle|^{2}\left(|\langle x,y\rangle|^{2} - \|x\|^{2}\|y\|^{2}\right) \leq 0 \iff |\langle x,y\rangle|^{2} - \|x\|^{2}\|y\|^{2} \leq 0$$

and the inequality immediately follows.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Continuity of inner product. $x_n \to x$ and $y_n \to y \implies \langle x_n, y_n \rangle \to \langle x, y \rangle$.

Proof. See that

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x, y \rangle| &= |\langle x_n, y_n \rangle - \langle x_n y \rangle + \langle x_n, y \rangle - \langle x, y \rangle| \\ &= |\langle x_n, y_n - y \rangle - (\langle x_n - x, y \rangle)| \\ &\leq |\langle x_n, y_n - y \rangle| + |\langle x_n - x, y \rangle| \\ &\leq \underbrace{\|x_n\|}_{bounded \ b/c \ x_n \ conv.} \|y_n - y\| + \|x_n - x\| \underbrace{\|y\|}_{fixed} \\ &\to 0 \text{ as } n \uparrow \infty \end{aligned}$$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Completion of Inner Product Spaces

Completion of metric spaces. Recall X is a metric space $\implies \exists ! \hat{X}$ complete metric space such that $\exists W \subseteq \hat{X}$ dense and $W \cong X$ (isometric, i.e. $\exists T : W \to X$ isometric (bijective, metric preserving)).

Theorem for inner products. X is an inner product space $\implies \exists ! H$ Hilbert space such that $\exists W \subseteq H$ and $W \cong X$ (isomorphic, i.e. $\exists T : W \xrightarrow{bij.}_{linear} X$ that preserves inner product).

Proof. Define $\langle \hat{x}, \hat{y} \rangle_H = \lim_{n \to \infty} \langle x_n, y_n \rangle$ on $H = \{ \hat{x} = [\{x_n\}] \mid \{x_n\}$ Cauchy in $X \}$ with equiva-

lency classes $[\{x_n\}]$ structured by equivalence relation $\{x_n\} \sim \{y_n\} \iff d(x_n, y_n) = 0$ where d induced by norm induced by inner product. We must show this.

We must show that 1) $\langle \cdot, \cdot \rangle_H$ is well-defined, 2) the limit exists, 3) it defines an inner product, and 4) $\langle \cdot, \cdot \rangle_H$ induces \hat{d} .

1. Suppose $\{x_n\}, \{x'_n\} \in \hat{x}$ and $\{y_n\}, \{y'_n\} \in \hat{y}$. Note a prior that $\{x_n\} \sim \{x'_n\}$ and $\{y_n\} \sim \{y'_n\}$. We WTS $\lim_{n\to\infty} \langle x_n, y_n \rangle = \lim_{n\to\infty} \langle x'_n, y'_n \rangle$. See that

$$|\langle x_n, y_n \rangle - \langle x'_n, y'_n \rangle| \le ||x_n - x'_n|| \cdot ||y'_n|| + ||x'_n|| \cdot ||y_n - y'_n|| \to 0$$

since both $||y'_n||$ and $||x'_n||$ are bounded (since $\{x'_n\}, \{y'_n\}$ converge).

2. Note that $\langle x_n, y_n \rangle$ is a sequence in \mathbb{K} (\mathbb{R} or \mathbb{C} , both complete) and thus if it is Cauchy then it converges. We'll show it is Cauchy. See that

$$\begin{aligned} |\langle x_n, y_n \rangle - \langle x_m, y_m \rangle| &= |\langle x_n - x_m, y_n \rangle + \langle x_m, y_n - y_m \rangle| \le |\langle x_n - x_m, y_n \rangle| + |\langle x_m, y_n - y_m \rangle| \\ &\le ||x_n - x_m|| \cdot ||y_n|| + ||x_n|| \cdot ||y_n - y_m|| \to 0 \end{aligned}$$

since $\{\|y_n\|\}, \{\|x_n\|\}$ are both bounded sequences.

3. Only difficult thing to check is positive definiteness:

$$\hat{x} = 0 \iff \{x_n\} \sim \{(0, 0, \ldots)\} \iff \lim_{n \to \infty} d(x_n, 0) = 0 \iff \lim_{n \to \infty} \langle x_n, x_n \rangle = 0 \iff \lim_{n \to \infty} \langle \hat{x}, \hat{x} \rangle_H = 0$$

4. Does this inner product induce \hat{d} ?

$$d_{\langle\cdot,\cdot\rangle_H}(\hat{x},\hat{y}) = \|\hat{x} - \hat{y}\| = \sqrt{\langle\hat{x},\hat{y}\rangle_H} = \sqrt{\lim_{n \to \infty} \langle x_n - y_n, x_n - y_n \rangle} = \lim_{n \to \infty} \sqrt{\langle x_n - y_n, x_n - y_n \rangle}$$
$$= \lim_{n \to \infty} \|x_n - y_n\| = \lim_{n \to \infty} d(x_n, y_n) = \hat{d}(\hat{x}, \hat{y})$$

Last we need to show that there is an isomorphism $T : X \to W \subseteq H$. Construct it by $Tx = [(x, x, \ldots)]$. Bijective? by metric space completion. Linear? by metric space completion. Need to check norm preserving, easy:

$$\langle Tx, Ty \rangle_H = \lim_{n \to \infty} \langle x, y \rangle_X = \langle x, y \rangle_X$$

Q.E.D.

Theorem (subspace). Let Y be a subspace of a Hilbert space H. Then:

- Y complete $\iff Y$ closed in H
- $\dim Y < \infty \implies Y$ complete
- H separable $\implies Y$ separable

Section 3.3. Orthogonal Complements and Direct Sums

Optimization theorem. Let X be an inner product space and $M \subseteq X$ closed and complete. Then $\forall x \in X, \exists ! y \in M$ such that d(x, M) = d(x, y).

Proof. Let $x \in X$ and $\delta = d(x, M) = \inf_{z \in M} d(x, z)$. If $\delta = 0$ then trivial because then we would have a sequence $\{z_n\} \subseteq M$ such that $z_n \to y$ with y satisfying d(x, y) = 0. But then $y \in M$ because M closed.

Assume $\delta > 0$. Then $\exists \{y_n\} \subseteq M$ such that $d(x, y_n) \to \delta$ as $n \uparrow \infty$. We WTS $\{y_n\}$ is Cauchy (and since M is complete, then $y_n \to y \in Y$). Since X is an inner product space we have for $A, B \in X$

$$||A + B||^2 + ||A - B||^2 = 2(||A||^2 + ||B||^2)$$

and taking $A = x - y_n$ and $B = x - y_m$. (Note that trivially $||x - y_n|| \to \delta$ and $||x - y_m|| \to \delta$.) Then

$$\|y_n - y_m\|^2 + 4 \left\|x - \frac{y_n + y_m}{2}\right\| = 2\left(\|x - y_n\|^2 + \|x - y_m\|^2\right)$$

and thus

$$||y_n - y_m||^2 = 2\left(||x - y_n||^2 + ||x - y_m||^2\right) - 4\left||x - \frac{y_n + y_m}{2}\right||$$

Since $||x - y_n|| \to \delta$, the

$$\forall \epsilon > 0, \exists N_1 \in \mathbb{N} \quad \text{such that} \quad \left| \|x - y_n\|^2 - \delta^2 \right| < \frac{\epsilon}{8} \text{ if } n \ge N_1$$
$$\implies \qquad \|x - y_n\|^2 < \delta^2 + \frac{\epsilon}{8} \text{ if } n \ge N_1$$

Noting that $\frac{y_n + y_m}{2}$ is in M since it is a convex combination of two elements of M and M is convex, then

$$\left\|x - \frac{y_n + y_m}{2}\right\| = d\left(x, \frac{y_n + y_m}{2}\right) \ge \inf_{z \in M} d(x, M) = \delta \implies -4 \left\|x - \frac{y_n + y_m}{2}\right\| \le -4\delta^2$$

Thus,

$$\begin{aligned} \|y_n - y_m\|^2 &\leq 2\|x - y_n\|^2 + 2\|x - y_m\|^2 - 4\delta^2 \\ &< 2\left(\frac{\epsilon}{8} + \delta^2\right) + 2\left(\frac{\epsilon}{8} + \delta^2\right) - 4\delta^2 \\ &= \frac{\epsilon}{2} < \epsilon \text{ if } n, m \geq N_1 \end{aligned}$$

Therefore $\{y_n\}$ is Cauchy and converges to a $y \in M$.

Uniqueness? Assume that $\exists y_1, y_2 \in M$ such that $d(x, y_1) = d(x, y_2) = \delta$. By the paralellogram identity,

$$\|y_1 - y_2\| + 4 \left\| x - \frac{y_n + y_m}{2} \right\| = 2 \left(\|x - y_n\|^2 + \|x - y_m\|^2 \right) \implies \|y_1 - y_2\|^2 = 4\delta^2 - 4 \left\| x - \frac{y_1 + y_2}{2} \right\|^2 \le 4\delta^2 - 4\delta^2 = 0$$

$$\mathbb{Q}.\mathbb{E}.\mathbb{D}.$$

Corollary. $Y \subseteq X$ is complete subspace by the above gives us $\forall x \in X, \exists ! y \in Y$ such that ||x-y|| = d(x, Y). Then $x - y \perp Y$.

Proof. Assume for contradiction that $x - y \not\perp Y$. That is, $\exists y_1 \in Y$ such that $\langle x - y, y_1 \rangle \neq 0$. Let u = x - y. Then $\langle u, u \rangle = ||x - y||^2$. Note that since y was the mimizer for the distance between x and M that if we can find a $z \in Y$ such that $||x - z||^2 < ||x - y||^2$ we have a contradiction. We take a $z \in Y$ of the form $y + \alpha y_1$ for some $\alpha \in \mathbb{K}$. Then

$$\|x - (y + \alpha y_1)\|^2 = \|u - \alpha y_1\|^2 = \langle u - \alpha y_1, u - \alpha y_1 \rangle = \|u\|^2 - \bar{\alpha} \langle u, y_1 \rangle - \alpha \overline{\langle u, y_1 \rangle} + |\alpha|^2 \|y_1\|^2$$

and if we take $\alpha = \frac{\langle u, y_1 \rangle}{\|y_1\|^2} \implies \bar{\alpha} = \overline{\langle u, y_1 \rangle}{\|y_1\|^2}$ then the above is

$$= \|x - y\|^{2} - \underbrace{\frac{|\langle u, y_{1} \rangle|^{2}}{\|y_{1}\|^{2}}}_{>0 \ by \ hyp.}$$

$$< \|x - y\|^{2}$$

giving a contradiction.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Direct sum corollary. If *H* is Hilbert, then $Y \subseteq H$ closed subspace (\implies complete) \implies $H = Y \oplus Y^{\perp}$ where Y^{\perp} = othogonal complement of $Y = \{z \in H \mid z \perp Y\}$.

Claim. Such a decomposition of any element in H is unique.

Theorem. Y is a closed subspace of a Hilbert space $H \iff Y = Y^{\perp \perp}$.

Proof. " \Longrightarrow " Suppose Y is a closed in H. See that $Y \subseteq Y^{\perp \perp}$ because $y \in Y \Longrightarrow y \perp Y^{\perp} \Longrightarrow y \in (Y^{\perp})^{\perp}$. Thus we will show $Y \supseteq Y^{\perp \perp}$. Let $x \in Y^{\perp \perp}$. Then since $x \in H$ we have by Theorem 3.4-4 that x = y + z for $y \in Y \subseteq Y^{\perp \perp}$ and for some $z \in Y^{\perp}$ (since $H = Y \oplus Y^{\perp}$). Since $Y^{\perp \perp}$ is a vector space and $x \in Y^{\perp \perp}$ then $z = x - y \in Y^{\perp \perp}$ since both x and y are in $Y^{\perp \perp}$ and thus using previously that $z \in Y^{\perp}$, we must have that $z \perp z \implies \langle z, z \rangle = 0 \implies z = 0$ by the positive-definiteness of the inner product on H. Then $x = y \implies x \in Y$. Thus $Y \supseteq Y^{\perp \perp}$ and therefore $Y = Y^{\perp \perp}$.

" \Leftarrow " Suppose $Y = Y^{\perp \perp}$. We will use Theorem 3.2-4, that a subspace Y of H is complete if and only if it is closed in H. Suppose $\{x_n\}_{n\in\mathbb{N}}\subseteq Y$ is a Cauchy sequence in Y. Then it is a Cauchy sequence in H since $Y\subseteq H$ and therefore it converges. Thus $x_n \to x \in H$. But since $\{x_n\}_{n\in\mathbb{N}}\subseteq Y = Y^{\perp \perp}$, then $x_n \perp Y^{\perp} \Longrightarrow \langle x_n, y \rangle = 0$ for all $n \in \mathbb{N}$ and $y \in Y^{\perp}$. We want to show that $x \perp Y^{\perp}$, which would directly imply that $x \in Y^{\perp \perp} = Y$ and show the completeness of Y. See that for arbitrary $y \in Y^{\perp}$,

$$\langle x, y \rangle = \left\langle \lim_{n \to \infty} x_n, y \right\rangle \underbrace{=}_{cont. of in. pd.} \lim_{n \to \infty} \left\langle x_n, y \right\rangle = \lim_{n \to \infty} 0 = 0$$

This shows that $x \perp Y^{\perp} \implies x \in Y^{\perp \perp} = Y$. Therefore, any Cauchy sequence in Y converges in Y and thus Y is complete. Since it is a subspace of a Hilbert space then it must be closed.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Lemma. Let $M \subseteq H$ be nonempty and H be Hilbert. $\overline{\text{span}M} = H \iff M^{\perp} = \{0\}.$

Proof. Suppose $M \subseteq H$ is nonempty and H is Hilbert.

" \implies " Assume $\overline{\operatorname{span}M} = H$. Let $x \in M^{\perp}$ and since $M^{\perp} \subseteq H = \overline{\operatorname{span}M} \implies \exists \{y_n\} \subseteq \operatorname{span}M$ such that $y_n \to x$.

$$\langle x, x \rangle = \lim_{n \to \infty} \langle x, y_n \rangle = \lim_{n \to \infty} \left\langle x, \sum_{i=1}^{\dim M} \alpha_i^{(n)} m_i \right\rangle = \lim_{n \to \infty} \sum_{i=1}^{\dim M} \overline{\alpha_i^{(n)}} \underbrace{\langle x, m_i \rangle}_{=0} = 0$$

and therefore $x = 0 \implies M^{\perp} = \{0\}.$

" \Leftarrow " Let $Y = \overline{\operatorname{span}M} \subseteq H$ which is a closed subspace. Then $H = Y \oplus Y^{\perp} = (\overline{\operatorname{span}M}) \oplus (\overline{\operatorname{span}M})^{\perp}$. Then $x \in H$ can be written as x = y + z where $y \in Y$ and $z \in Y^{\perp}$. We want to show that z = 0 in order to show that $x = y \in Y \implies x \in Y$ and then $H \subseteq Y$. See that $M \subseteq Y \implies Y^{\perp} \subseteq M^{\perp} = \{0\}$ and thus z = 0.

Q.E.D.

Section 3.4. Orthonormal Sets and Sequences

Orthogonal set. $\{x_{\alpha}\}_{\alpha\in I}$ is orthogonal $\iff x_{\alpha}\perp x_{\beta}$ for all $\alpha,\beta\in I, \alpha\neq\beta$

Orthonormal set. $\{x_{\alpha}\}_{\alpha\in I}$ is orthonormal $\iff x_{\alpha}\perp x_{\beta}$ for all $\alpha,\beta\in I, \alpha\neq\beta$ and $\langle x_{\alpha},x_{\beta}\rangle=\delta_{\alpha\beta}$.

Pythagorean relation. If x and y are orthonormal elements then trivially $\langle x, y \rangle = 0$ and further $||x+y||^2 = ||x||^2 + ||y||^2$.

Lemma (linear independence). An orthonormal set is linearly independent.

Proof. Consider

$$\alpha_1 e_1 + \dots + \alpha_n e_n = 0$$

and then take $\langle \sum_k \alpha_k e_k, e_j \rangle = \sum_k \alpha_k \langle e_k, e_j \rangle = \alpha_j = 0.$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Representation of elements. If $\{e_i\}_{i=1,\dots,n}$ is an orthonormal set in X then for any $x \in X$ we already knew we could write X as a linear combination of these elements, but we further obtain

$$x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$$

Bessel's inequality. For any $x \in X$,

$$\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$$

Proof. If $y \in Y_n \implies x - y \perp y$ and thus

$$||x||^2 = ||y||^2 + ||x - y||^2$$

and using $y = \sum_{i=1}^{n} \langle x, e_i \rangle e_i$. $Y_n = \operatorname{span}\{e_1, \dots, e_n\}$.

Gram-Schmidt Process

Can we construct an orthonormal set from a linearly independent set? Let $\{x_i\}_{i=1,...,n}$ be linearly independent.

$$e_{1} = \frac{x_{1}}{\|x_{1}\|}$$

$$e_{2} = \frac{x_{2} - \langle x_{2}, e_{1} \rangle e_{1}}{\|x_{2} - \langle x_{2}, e_{1} \rangle e_{1}\|}$$

$$\vdots$$

$$e_{k} = \frac{x_{k} - \sum_{i=1}^{k-1} \langle x_{k}, e_{i} \rangle e_{i}}{\|x_{k} - \sum_{i=1}^{k-1} \langle x_{k}, e_{i} \rangle e_{i}\|}$$

$$\vdots$$