# MA 515 <br> Test 2 Study Guide 

Zach Clawson

November 8, 2010

## Earlier Material

## Example Banach spaces.

- $\mathbb{R}^{n}$ and $\mathbb{C}^{n}$ with norm $\|x\|_{2}$
- $l^{p}$ with norm $\|x\|_{p}$
- $l^{\infty}$ with norm $\|x\|=\sup _{i \in \mathbb{N}}\left|x_{i}\right|$
- $\mathcal{C}[a, b]$ with norm $\|x\|=\max _{t \in[a, b]}|x(t)|$

Example incomplete normed vector spaces.

- $\mathbb{Q}$ with norm $|x|$
- $\mathbb{P}[a, b]$ (polynomials) with norm $\|x\|=\max _{t \in[a, b]}|x(t)|$
- $\mathcal{C}[a, b]$ with norm $\|x\|=\int_{a}^{b}|x(t)| d t$
- Completion of this is given by $L^{2}[a, b]=\left\{f:\left.[a, b] \rightarrow \mathbb{R}\left|\int_{a}^{b}\right| f(t)\right|^{2} d t<\infty\right\}$

Metrics obtained from norms. Must satisfy that $d(x+a, y+a)=d(x, y)$ for all $x, y, a \in X$ and $d(\alpha x, \alpha y)=|\alpha| \cdot d(x, y)$ for all $x, y \in X$ and $\alpha \in \mathbb{K}$.

## Section 2.3. Further Properties of Normed Spaces

Theorem (subspace completeness). A subspace $Y$ of a Banach space $X$ is complete if and only if the set $Y$ is closed in $X$.

Convergent sequence. $x_{n} \rightarrow x$ in $X$ if and oly if $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \uparrow \infty$.
Convergent series. Let $\left(x_{n}\right)$ be a sequence and $s_{n}=x_{1}+\cdots+x_{n}$. If $\left\|s_{n}-s\right\| \rightarrow 0$ for some $s$, then $\sum_{i=1}^{\infty} x_{i}$ converges to $s$.
Absoulte convergence. Series obtained from $\left(x_{n}\right)$ absolutely converges if and only if $\left\|x_{1}\right\|+\left\|x_{2}\right\|+\cdots$ converges.

Remark. Absolute convergence $\Longrightarrow$ convergence if and only if $X$ is Banach.

## Completion of Arbitrary Normed Space

## Section 2.4. Finite Dimensional Normed Spaces

Lemma. If $\left\{e_{i}\right\}_{i=1, \ldots, n}$ is a linearly independent set in $X$, then $\exists M, c$ such that

$$
c \sum_{i=1}^{n}\left|\alpha_{i}\right| \leq\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| \leq M \sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

Proof. Note that if $\sum_{i=1}^{n}\left|\alpha_{i}\right|=0$ then this is vacuously satisfied. Assume that $\sum_{i=1}^{n}\left|\alpha_{i}\right| \neq 0$.
First see that for $M=\max _{i=1, \ldots, n}\left\|e_{i}\right\|$ and the triangle inequality that

$$
\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| \leq \sum_{i=1}^{n}\left\|\alpha_{i} e_{i}\right\|=\sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|e_{i}\right\| \leq M \sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

Note that if

$$
c \sum_{i=1}^{n}\left|\alpha_{i}\right| \leq\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| \Longrightarrow c \leq\left\|\sum_{i=1}^{n} \frac{\alpha_{i}}{\sum_{i=1}^{n}\left|\alpha_{i}\right|} e_{i}\right\|
$$

and thus defining $\beta_{i}=\frac{\alpha_{i}}{\sum_{i=1}^{n}\left|\alpha_{i}\right|}$ we know that $\sum_{i=1}^{n}\left|\beta_{i}\right|=1$. Thus we equivalently may show that $\left\|\sum_{i=1}^{n} \beta_{i} e_{i}\right\| \geq c>0$ for any $\left\{\beta_{i}\right\}_{i=1, \ldots, n}$ satisfying $\sum_{i=1}^{n}\left|\beta_{i}\right|=1$. Let $M=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{K}^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid=1\right\}$.
For contradiction assume this is not true. That is, there is a sequence $\left\{\beta^{(m)}\right\}_{m \in \mathbb{N}}$ where $\beta^{(m)}=\left\{\beta_{i}^{(m)}\right\}_{i=1, \ldots, n}$ satisfying $\left\|\sum_{i=1}^{n} \beta_{i}^{(m)} e_{i}\right\| \rightarrow 0$ as $m \uparrow \infty$ with $\sum_{i=1}^{n}\left|\beta_{i}^{(m)}\right|=1$ for all $m \in \mathbb{N}$. Note that this last condition implies that $\left|\beta_{i}^{(m)}\right| \leq 1$ for all $i=1, \ldots, n$ and $m \in \mathbb{N}$. Then by the Bolzano-Wieirstrass Theorem we have that $\beta^{(m)}$ has a convergent subsequence $\beta^{\left(m_{k}\right)} \rightarrow \gamma \in M$ (it is in $M$ because $M$ is closed). Thus $\sum_{i=1}^{n}\left|\gamma_{i}\right|=1$. But note that

$$
\sum_{i=1}^{n} \beta_{i}^{(m)} e_{i} \rightarrow \sum_{i=1}^{n} \gamma e_{i} \text { as } m \uparrow \infty \quad \text { and } \quad \sum_{i=1}^{n} \beta_{i}^{(m)} e_{i} \rightarrow 0 \text { as } m \uparrow \infty
$$

and this directly implies that $\sum_{i=1}^{n} \gamma e_{i}=0 \Longrightarrow \gamma_{i}=0$ for all $i=1, \ldots, n$ by the linear independence of $\left\{e_{i}\right\}_{i=1, \ldots, n}$. This contradicts that fact that $\sum_{i=1}^{n}\left|\gamma_{i}\right|=1$.

$$
\therefore \exists c>0 \text { such that } c \sum_{i=1}^{n}\left|\alpha_{i}\right| \leq\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|
$$

$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.

## Completeness of Finite Dimensional Normed Vector Spaces

Let $X$ be a finite dimensional subspace of $V$, a normed vector space. Then $X$ is complete.
Proof. Let $\operatorname{dim} X=d \Longrightarrow X$ has a Hamel basis $\left\{e_{i}\right\}_{i=1, \ldots, d}$. Notice a priori we have $\exists c>0$ such that

$$
c \sum_{i=1}^{d}\left|\alpha_{i}\right| \leq\left\|\sum_{i=1}^{d} \alpha_{i} e_{i}\right\| \quad \forall \alpha=\left(\alpha_{i}\right) \in \mathbb{K}^{d}
$$

Let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq X$ be Cauchy and thus

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { such that }\left\|x_{n}-x_{m}\right\|<\epsilon \cdot c \text { if } n, m \geq N
$$

We can write each $x_{n}$ as

$$
x_{n}=\sum_{i=1}^{d} x_{i}^{(n)} e_{i} \text { for some } x_{i}^{(n)} \in \mathbb{K}
$$

Thus

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\|<\epsilon \cdot c & \Longrightarrow c \cdot \sum_{i=1}^{d}\left|x_{i}^{(n)}-x_{i}^{(m)}\right| \leq\left\|\sum_{i=1}^{d}\left(x_{i}^{(n)}-x_{i}^{(m)}\right) e_{i}\right\|<\epsilon \cdot c \\
& \Longrightarrow \sum_{i=1}^{d}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\epsilon
\end{aligned}
$$

and therefore for each $i=1, \ldots, d$ we have $\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\epsilon$ and therefore each $\left\{x_{i}^{(n)}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathbb{K}$ for all $i=1, \ldots, d$ and since $\mathbb{K}$ is complete, we thus have that each $x_{i}^{(n)} \rightarrow \eta_{i} \in \mathbb{K}$ for each $i=1, \ldots, d$.
We claim that $x_{n} \rightarrow x=\sum_{i=1}^{d} \eta_{i} e_{i}$. See that

$$
\left\|x_{i}-x\right\|=\left\|\sum_{i=1}^{d}\left(x_{i}^{(n)}-\eta_{i}\right) e_{i}\right\| \leq M \cdot \sum_{i=1}^{d}\left|x_{i}^{(n)}-\eta_{i}\right| \rightarrow 0 \quad \text { as } n \uparrow \infty
$$

and this completes the proof.

## $\mathbb{Q} . \mathbb{E} . \mathbb{D}$.

Theorem. If $X$ is a finite dimensional normed vector space with norms $\|\cdot\|_{1},\|\cdot\|_{2}$ and basis $\left\{e_{i}\right\}_{i=1, \ldots, d}$, then $\exists a, b \geq 0$ such that $a \cdot\|x\|_{2} \leq\|x\|_{1} \leq b \cdot\|x\|_{2}$.
Proof. Note that for all $x \in X$ and for $k=1,2$ we have $\exists M, c>0$ such that

$$
c_{k} \cdot \sum_{i=1}^{d}\left|x_{i}\right| \leq \underbrace{\left\|\sum_{i=1}^{d} x_{i} e_{i}\right\|_{k}}_{\|x\|_{k}} \leq M_{k} \cdot \sum_{i=1}^{d}\left|x_{i}\right|
$$

Then

$$
\frac{c_{1}}{M_{2}}\|x\|_{2} \leq \frac{M_{2}}{M_{2}} c_{1} \sum_{i=1}^{d}\left|x_{i}\right| \leq\|x\|_{1} \leq M_{1} \sum_{i=1}^{d}\left|x_{i}\right| \cdot \frac{c_{2}}{c_{2}} \leq \frac{M_{1}}{c_{2}}\|x\|_{2}
$$

## Section 2.5. Compactness and Finite Dimension

Compactness. If $Y \subseteq(X, d)$ a metric space, then $K$ compact $\Longleftrightarrow$ all sequences in $K$ have a convergent subsequence (in $K$ ).
Theorem. In a finite dimsional normed space $X$, any $M \subseteq X$ is compact if and only if $M$ is closed and bounded.

Proof. " $\Longrightarrow$ "Let $x \in \bar{M} \Longrightarrow \exists x_{n} \rightarrow x . M$ is compact so it has a convergent subsequence, converging in $M$, and thus $x \in M \Longrightarrow \bar{M} \subseteq M$ and a prior we knew $M \subseteq \bar{M}$ and thus $M=\bar{M}$ and $M$ is closed. For contradiction assume $M$ is not bounded. Then $\exists\left(y_{n}\right)$ such that for any fixed $b \in M$ we have $d\left(y_{n}, b\right)>n$ for all $n \in \mathbb{N}$. But then this could not have a convergent subsequence.
$" \Longleftarrow "$ Let $M \subseteq X$ be closed and bounded. Suppose $\operatorname{dim} X=n$ and $\left\{e_{i}\right\}_{i=1, \ldots, n}$ is a basis for $X$. Let $\left(x_{m}\right)$ be a sequence in $M$ and thus for fixed $m \in \mathbb{N}$ we have that

$$
x_{m}=x_{1}^{(m)} e_{1}+\cdots+x_{n}^{(m)} e_{n}
$$

and since $M$ is bounded then so is $\left(x_{m}\right)$ and thus $\left\|x_{m}\right\| \leq k$ for some $k \in \mathbb{K}$ for all $m \in \mathbb{N}$. Then by a previous observation,

$$
k \geq\left\|x_{m}\right\|=\left\|\sum_{i=1}^{n} x_{i}^{(m)} e_{i}\right\| \geq c \cdot \sum_{i=1}^{n}\left|x_{i}^{(m)}\right| \quad \forall m \in \mathbb{N}
$$

Then for fixed $i,\left\{x_{i}^{(m)}\right\}_{m \in \mathbb{N}}$ is bounded in $\mathbb{K}$ and thus each $x_{i}^{\left(m_{k}\right)} \rightarrow \eta_{i}$ as $m_{k} \uparrow \infty$ for fixed $i=1, \ldots, n$ by the Bolzano-Wieirstrass Theorem. I claim that $x_{m_{k}} \rightarrow z=\sum_{i=1}^{n} \eta_{i} e_{i}$. See that

$$
\left\|x_{m_{k}}-z\right\|=\left\|\sum_{i=1}^{n} x_{i}^{\left(m_{k}\right)} e_{i}-\sum_{i=1}^{n} \eta_{i} e_{i}\right\|=\left\|\sum_{i=1}^{n}\left(x_{i}^{\left(m_{k}\right)}-\eta_{i}\right) e_{i}\right\| \leq M \sum_{i=1}^{n}\left|x_{i}^{\left(m_{k}\right)}-\eta_{i}\right| \rightarrow 0
$$

completing the proof. Further since $M$ is closed and $\left\{x_{m_{k}}\right\} \subseteq M$ then $z \in M$.
Q.E.D.

## Riesz Lemma

Let $Y \subsetneq X$ (normed vector space) be a closed subspace. Then $\forall \theta \in(0,1), \exists z \in S(0,1) \subseteq X$ (unit vector) such that $d(z, Y)>\theta$.

Proof. Let $x_{0} \in X-Y$. Then

$$
d=\inf _{y \in Y} d(z, y)=d\left(x_{0}, Y\right)>0
$$

Note that this must be strictly positive as otherwise we would have $\inf _{y \in Y} d(z, y)=0 \Longrightarrow \exists\left\{y_{n}\right\} \subseteq Y$ such that $d\left(x_{0}, y_{n}\right) \rightarrow 0$ and then $y_{n} \rightarrow x_{0}$ but $x_{0} \notin Y$ contradicts closedness.
Trivially see that for all $0<\theta<1$ that $\frac{1}{\theta}>1$ and thus $d<\frac{1}{\theta} d \Longrightarrow \inf _{y \in Y} d\left(x_{0}, y\right)<\frac{1}{\theta} d \Longrightarrow \exists y_{0} \in Y$ such that $d<\underbrace{d\left(x_{0}, y_{0}\right)}_{\left\|x_{0}-y_{0}\right\|}<\frac{1}{\theta} d \Longrightarrow \theta\left\|x_{0}-y_{0}\right\|<d$.

Take $z=\frac{x_{0}-y_{0}}{\left\|x_{0}-y_{0}\right\|}$ and let $y \in Y$. Then

$$
\begin{aligned}
\|z-y\| & =\left\|\frac{x_{0}-y_{0}}{\left\|x_{0}-y_{0}\right\|}-y\right\|=\frac{1}{\left\|x_{0}-y_{0}\right\|}\|x_{0}-\underbrace{\left(y_{0}+y\left\|x_{0}+y_{0}\right\|\right)}_{\in Y}\| \\
& =\frac{1}{\left\|x_{0}-y_{0}\right\|}\left\|x_{0}-y^{\prime}\right\| \quad \text { for some } y^{\prime} \in Y \\
& \geq \frac{1}{\left\|x_{0}-y_{0}\right\|} d
\end{aligned}
$$

Thus

$$
d(z, Y)=\inf _{y \in Y} d(z, y) \geq \frac{d}{\left\|x_{0}-y_{0}\right\|}>\frac{\theta\left\|x_{0}-y_{0}\right\|}{\left\|x_{0}-y_{0}\right\|}=\theta
$$

$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.

## Applications of Riesz Lemma

First one. $X$ is a normed vector space. $\tilde{B}(0,1)$ is compact $\Longrightarrow \operatorname{dim} X<\infty$.
Proof. Assume $X$ is a normed vector space with $\tilde{B}(0,1)$ compact. Assume for contradiction that dim $X=\infty$. Let $x_{1} \in X, x_{1} \neq 0$. Then

$$
\begin{aligned}
M_{1} & =\operatorname{span}\left\{x_{1}\right\} \subsetneq X \text { is a finite dimensional subspace and thus closed } \\
& \Longrightarrow \exists x_{2} \in S(0,1) \subsetneq \tilde{B}(0,1) \ni d\left(x_{2}, M_{1}\right)>\frac{1}{2} \text { by R. Lemma } \\
M_{2} & =\operatorname{span}\left\{x_{1}, x_{2}\right\} \subsetneq X \Longrightarrow \exists x_{3} \in S(0,1) \ni d\left(x_{3}, M_{2}\right)>\frac{1}{2} \\
& \vdots \\
M_{n} & =\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\} \subsetneq X \Longrightarrow \cdots \\
& \vdots
\end{aligned}
$$

Now consider $\left\{x_{n}\right\} \subseteq S(0,1) \subsetneq \tilde{B}(0,1)$ compact $\Longrightarrow \exists\left\{x_{n_{k}}\right\} \subseteq S(0,1)$ such that $x_{n_{k}} \rightarrow y \in \tilde{B}(0,1)$. Note that then $\left\{x_{n_{k}}\right\}$ is Cauchy because it converges and thus

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { such that }\left\|x_{n}-x_{m}\right\|<\epsilon \text { if } n, m \geq N
$$

WLOG let $m>n$. Then $x_{n} \in M_{m-1}=\operatorname{span}\left\{x_{1}, \ldots, x_{m-1}\right\} \Longrightarrow\left\|x_{n}-x_{m}\right\| \geq d\left(x_{m}, M_{m-1}\right)>\frac{1}{2}$. But then we have that for all $\epsilon>0$,

$$
\frac{1}{2}<\left\|x_{n}-x_{m}\right\|<\epsilon
$$

giving our contradiction.

Second one. $Y \subsetneq X$ subspace and $\exists 0<r<1$ such that $d(x, Y)<r$ for all $x \in S(0,1) \Longrightarrow Y$ dense in $X$ (i.e. $\bar{Y}=X$ ).

Proof. Suppose for contradiction that $Y$ is not dense in $X$. That is, $\bar{Y} \subsetneq X$. Using the Riesz lemma with $r=\theta \Longrightarrow \exists x_{0} \in S(0,1)$ such that $d\left(x_{0}, \bar{Y}\right)>r$. But $r<d\left(x_{0}, \bar{Y}\right) \leq d\left(x_{0}, y\right)<r$ for all $y \in Y \Longrightarrow r<r$ giving our contradiction.

## Section 2.6. Linear Operators

Linear operator. A linear operator $T$ is an operator $T: X \rightarrow Y$ with respective norms $\|\cdot\|_{X},\|\cdot\|_{Y}$ where $x \mapsto T x$ and assume $X$ and $Y$ have scalar fields. $T$ satisfies $T(x+y)=T x+T y$ and $T(\alpha x)=\alpha T x$. We also define $\mathcal{D}(T)$ to be the domain of $T, \mathcal{R}(T)$ to be the range of $T$, and $\mathcal{N}(T)$ denotes the null space of $T$ given by $\mathcal{N}(T)=\operatorname{ker} T=\{x \in X \mid T x=0\}$.

## Examples.

- Identity operator. $I_{X}: X \rightarrow X$ defined by $I_{X} x=x$.
- Zero operator. $0: X \rightarrow Y$ defined by $0 x=x$.
- Differentiation operator. Let $X$ be the set of polynomials on $[a, b]$. Define a linear operator $T$ by $T x(t)=x^{\prime}(t), T: X \rightarrow X$.
- Integration operators. A linear operator $T: \mathcal{C}[a, b] \rightarrow \mathcal{C}[a, b]$ defined by $T x(t)=\int_{a}^{t} x(\tau) d \tau$.
- Multiplication by $t$. A linear operator $T: \mathcal{C}[a, b] \rightarrow \mathcal{C}[a, b]$ defined by $T x(t)=t x(t)$.

Theorem (range and null space). Let $T$ be a linear operator. Then

- The range $\mathcal{R}(T)$ is a vector space.
- If $\operatorname{dim} \mathcal{D}(T)=n<\infty$, then $\mathcal{D}(T) \leq n$.
- The null space $\mathcal{N}(T)$ is a vector space.

Theorem (inverse operator). Let $X, Y$ be vector spaces, both with the same scalar field $\mathbb{K}$. Let $T: X \rightarrow$ $Y$ be a linear operator with domain $\mathcal{D}(T) \subseteq X$ and range $\mathcal{R}(T) \subseteq Y$. Then

- The inverse $T^{-1}: \mathcal{R}(T) \rightarrow \mathcal{D}(T)$ exists if and only if

$$
T x=0 \quad \Longrightarrow \quad x=0
$$

- If $T^{-1}$ exists, it is a linear operator.
- If $\operatorname{dim} \mathcal{D}(T)=n<\infty$ and $T^{-1}$ exists, then $\operatorname{dim} \mathcal{R}(T)=\operatorname{dim} \mathcal{D}(T)$.


## Section 2.7. Bounded and Continuous Linear Operators

Norm of linear operator. $T: X \rightarrow Y$ has norm given by $\|T\|_{o p .}=\sup _{x \in X, x \neq 0} \frac{\|T x\|_{Y}}{\|x\|_{X}}<\infty$.
Bounded linear operator. A bounded linear operator has $\|T\|_{o p} .<\infty$ and further note this directly implies that $\|T x\|_{Y} \leq c \cdot\|x\|_{X}$ for some $c \geq 0$ (namely $c=\|T\|_{o p .}$ ).
Lemma. We may equivalently write $\|T\|=\sup _{x \in X,\|x\|=1}\|T x\|$.

## Examples.

- Identity operator $I$ is bounded and have $\|I\|=1$.
- Zero operator 0 is bounded and has $\|0\|=0$.
- Differential operator $T$ is unbounded (consider polynomials $x_{n}(t)=t^{n}$.
- Integral operator $T$ is linear and bounded when $T x(t)=\int_{0}^{1} k(t, \tau) x(\tau) d \tau$ and $|k(t, \tau)| \leq k_{0}$ for all $(t, \tau) \in[0,1] \times[0,1]$ and $\|T\|_{o p .}=k_{0}$.
- Matrix operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{r}$ and efined for some $r \times n$ matrix $A$ by $T x=A x$ is bounded and have $\|T\|_{o p .}=\sqrt{\sum_{i=1}^{r} \sum_{j=1}^{n} a_{i j}^{2}}$.

Theorem (finite dimension). If a normed space $X$ is finite dimensional, then every linear operator on $X$ is bounded.

Proof. Suppose $\operatorname{dim} X=n$ and thus $X$ has Hamel basis given by $\left\{e_{i}\right\}_{i=1, \ldots, n}$ and thus for any $x \in X$ we can write $x=\sum_{i=1}^{n} x_{i} e_{i}$. Then

$$
\|T x\|=\left\|\sum_{i=1}^{n} x_{i} T e_{i}\right\| \leq \sum_{i=1}^{n}\left|x_{i}\right|\left\|T e_{i}\right\| \leq \max _{i=1, \ldots, n}\left\|T e_{i}\right\| \sum_{i=1}^{n}\left|x_{i}\right|
$$

We know that

$$
\sum_{i=1}^{n}\left|x_{i}\right| \leq \frac{1}{c}\left\|\sum_{i=1}^{n} x_{i} e_{i}\right\|=\frac{1}{c}\|x\|
$$

and therefore

$$
\|T x\| \leq\left(\frac{1}{c} \max _{i=1, \ldots, n}\left\|T e_{i}\right\|\right)\|x\|
$$

$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.
Theorem (continuity and boundedness). Let $T: X \rightarrow Y$ be a linear operator where $X, Y$ are normed spaces. Then

- $T$ continuous if and only if $T$ is bounded.
- If $T$ is continuous at a single point then it is continuous everywhere.

Proof. " " Assume $T$ is bounded. Let $\epsilon>0$ and $\left\|x-x_{0}\right\|<\frac{\epsilon}{\|T\|}$ and thus $\left\|T x-T x_{0}\right\| \leq\|T\|\left\|x-x_{0}\right\|<\epsilon$. $" \Longrightarrow "$ Assume $T$ continuous at $x_{0} \in X$ and thus $\forall \epsilon>0, \exists \delta>0$ such that $\left\|T x-T x_{0}\right\| \leq \epsilon$ for all $x \in X$ with $\left\|x-x_{0}\right\| \leq \delta$. Take any $y \in X$ and let

$$
x=x_{0}+\frac{\delta}{\|y\|} y \Longrightarrow x-x_{0}=\frac{\delta}{\|y\|} y \Longrightarrow\left\|x-x_{0}\right\|=\delta
$$

Then

$$
\left\|T x-T x_{0}\right\|=\left\|T\left(x-x_{0}\right)\right\|=\left\|T\left(\frac{\delta}{\|y\|} y\right)\right\|=\frac{\delta}{\|y\|}\|T y\|
$$

and thus since $\frac{\delta}{\|y\|}\|T y\|=\left\|T x-T x_{0}\right\| \leq \epsilon \Longrightarrow\|T y\| \leq \frac{\epsilon}{\delta}\|y\|$ and thus $T$ is bounded with $\|T\|_{o p .}=\frac{\epsilon}{\delta}$.
Continuity of $T$ at a point implies boundedness of $T$ by the second part above, implying continuity.
Q.E. $\mathbb{D}$.

Theorem (bounded linear extension). Let $T: \mathcal{D}(T) \rightarrow Y$ be a bounded linear operator, where $\mathcal{D}(T) \subseteq$ $X$ (normed space) and $Y$ is Banach space. Then $T$ has an extension

$$
\bar{T}: \overline{\mathcal{D}(T)} \rightarrow Y
$$

where $\bar{T}$ is a bounded linear operator of norm $\|\bar{T}\|=\|T\|$.
Proof. Consider $x \in \overline{\mathcal{D}(T)} \Longrightarrow \exists\left\{x_{n}\right\} \subseteq \mathcal{D}(T)$ such that $x_{n} \rightarrow x . T$ is linear and bounded so

$$
\left\|T x_{n}-T x_{m}\right\|=\left\|T\left(x_{n}-x_{m}\right)\right\| \leq\|T\|\left\|x_{n}-x_{m}\right\| \rightarrow 0 \quad \Longrightarrow \quad\left\{T x_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{R}(T) \text { is Cauchy }
$$

Since $Y$ complete then $T x_{n} \rightarrow y \in Y$. Thus we have a definition for $x \in \overline{\mathcal{D}(T)}, \bar{T} x=y$. Is this well-defined? Let $\left\{x_{n}\right\},\left\{y_{n}\right\} \subseteq \mathcal{D}(T)$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow x$ and thus we WTS $T x=T y \Longrightarrow \lim _{n \rightarrow \infty} T x_{n}=$ $\lim _{n \rightarrow \infty} T y_{n}$. But $T x_{n}-T y_{n}=T\left(x_{n}-y_{n}\right) \rightarrow T 0=0 \Longrightarrow T x_{n}=T y_{n}$ for all $n \in \mathbb{N}$.
Next we WTS that 1) $\bar{T}$ linear, 2) $\bar{T}$ bounded, 3) $\left.\left.\bar{T}\right|_{\mathcal{D}(T)}=T, 4\right)\|\bar{T}\|=\|T\|$. all are trivial.

## Section 2.8. Linear Functionals

## Section 2.9 Linear Operators and Functionals on Finite Dimensional Spaces

Unique representation of linear operators. Let $T: X \rightarrow Y$ where $X, Y$ are normed vector spaces with respective bases $\left\{e_{i}\right\}_{i=1, \ldots, n} \subseteq X$ and $\left\{b_{i}\right\}_{i=1, \ldots, r} \subseteq Y$. For any $x \in X$ we have $x=\sum_{i=1}^{n} x_{i} e_{i}$ and it has the image $y=T x=\sum_{i=1}^{n} x_{i} T e_{i}$ and thus see that $y_{k}=T e_{k}$ for $i=1, \ldots, r$. Further, we may write each $y \in Y$ as $y=\sum_{i=1}^{r} y_{i} b_{j}$ and thus $y=\sum_{i=1}^{n} x_{i} T e_{i}=\sum_{i=1}^{n} x_{i} \sum_{j=1}^{r} \tau_{j i} b_{j}=\sum_{j=1}^{r}\left(\sum_{i=1}^{n} \tau_{j i} x_{i}\right) b_{j}$.

## Section 2.10. Normed Spaces of Operators. Dual Space

Space of bounded linear operators. $X$ is a normed vector space, and $Y$ is a Banach space. Then $B(X, Y)=\{T: X \rightarrow Y \mid T$ bounded and linear $\}$ is Banach.
Proof. Let $\left\{T_{n}\right\}_{n \in \mathbb{N}} \subseteq B(X, Y)$ be Cauchy. WTS $T_{n} \xrightarrow{\|\cdot\|_{o p .}} T \in B(X, Y)$. We have

$$
\forall \epsilon>0, \exists N_{\epsilon} \in \mathbb{N} \text { such that }\left\|T_{n}-T_{m}\right\|_{o p .}<\frac{\epsilon}{2} \text { if } n, m \geq N_{\epsilon}
$$

and then for any fixed $x \in X$ we can also have

$$
\forall \epsilon>0, \exists N_{x, \epsilon} \in \mathbb{N} \text { such that }\left\|T_{n}-T_{m}\right\|_{o p .}<\frac{\epsilon}{2\|x\|} \text { if } n, m \geq N_{x, \epsilon}
$$

and then we have that $\left\{T_{n} x\right\}_{n \in \mathbb{N}} \subseteq Y$ is Cauchy since

$$
\left\|T_{n} x-T_{m} x\right\| \leq\left\|T_{n}-T_{m}\right\|_{o p .}\|x\|<\frac{\epsilon}{2\|x\|}\|x\|=\frac{\epsilon}{2}<\epsilon \text { if } n, m \geq N_{x, \epsilon}
$$

Then we have that $T_{n} x \rightarrow T x \in Y$ as $n \uparrow \infty$. Thus we have a natural definition for $T x=\lim _{n \rightarrow \infty} T_{n} x$ for all $x \in X$. We want to show $T \in B(X, Y)$. I.e. we want to show that $T$ is linear and bounded. $T$ is linear is trivial. We'll show the boundedness of $T$.
See that $\left\{T_{n}\right\}$ Cauchy $\Longrightarrow\left\{\left\|T_{n}\right\|\right\} \subseteq \mathbb{R}$ is Cauchy and thus $\left\|T_{n}\right\| \rightarrow \alpha \in \mathbb{R}$ since $\mathbb{R}$ is complete. See that

$$
\left\|T_{n} x\right\| \leq\left\|T_{n}\right\|\|x\| \Longrightarrow \lim _{n \rightarrow \infty}\left\|T_{n} x\right\| \leq \lim _{n \rightarrow \infty}\left\|T_{n}\right\|\|x\| \underbrace{\Longrightarrow}_{\text {cont. of }\|\cdot\|}\|T x\| \leq \alpha\|x\|
$$

showing $T$ is bounded.
Last we must show that $T_{n} \rightarrow T$, that is $\left\|T_{n}-T\right\| \rightarrow 0$ as $n \uparrow \infty$. Note that since $\left\|T_{n}-T\right\|=$ $\sup _{x \in X,\|x\|=1}\left\|T_{n} x-T x\right\|$ and thus it suffices to show that for all $\|x\|=1$ we have $\left\|T_{n} x-T x\right\| \rightarrow 0$. See that

$$
\begin{aligned}
\left\|T_{n} x-T x\right\| & =\left\|T_{n} x-\lim _{m \rightarrow \infty} T_{m} x\right\| \underbrace{=}_{\text {cont. of }\|\cdot\|} \lim _{m \rightarrow \infty}\left\|T_{n} x-T_{m} x\right\| \leq \lim _{m \rightarrow \infty}\left\|T_{n}-T_{m}\right\|_{o p .} \cdot \underbrace{\|x\|}_{=1} \\
& =\lim _{m \rightarrow \infty}\left\|T_{n}-T_{m}\right\|_{o p .}<\lim _{m \rightarrow \infty} \frac{\epsilon}{2} \text { if } n, m \geq N_{\epsilon} \\
& <\epsilon
\end{aligned}
$$

and $m \geq N_{\epsilon}$ trivially since $m \uparrow \infty$. Thus we have shown that

$$
\forall \epsilon>0,\left\|T_{n} x-T x\right\|<\epsilon \text { if } n \geq N_{\epsilon}
$$

and thus $T_{n} \rightarrow T$ follows.

## Dual Spaces (up to isomorphism)

1. $\left(l^{p}\right)^{\prime} \cong l^{q}$ for $\frac{1}{p}+\frac{1}{q}=1$ with $1<p, q<\infty$

Proof. We will construct an isomorphism

$$
T: l^{q} \rightarrow\left(l^{p}\right)^{\prime} \text { by } T z=\varphi_{z} \text { where } \varphi_{z}: l^{p} \rightarrow \mathbb{R} \text { and } \varphi_{z}(x)=\sum_{i=1}^{\infty} x_{i} z_{i}
$$

Note that $\varphi_{z} \in\left(l^{p}\right)^{\prime}$ since $\varphi_{z}$ is trivially a linear functional. So we must show that $\varphi_{z}$ is bounded. Use the Holder inequality:

$$
\left|\varphi_{z}(x)\right|=\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{\infty}\left|z_{i}\right|^{q}\right)^{1 / q}=\|x\|_{p}\|z\|_{q}
$$

and therefore $\left\|\varphi_{z}\right\|_{o p .} \leq\|z\|_{q}$.
Next we must show that $T$ is bounded, norm-preserving, and bijective.
"T norm-preserving." We have that $T z=\varphi_{z}$ so then $\|T z\|_{o p .} \leq\|z\|_{q}$ and we want to show equality. See that

$$
\|T z\|_{o p .}=\left\|\varphi_{z}\right\|_{o p .}=\sup _{x \in l^{p},\|x\|=1}\left|\varphi_{z}(x)\right|=\sup _{x \in l^{p},\|x\|=1}\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right|
$$

We want this $\geq\|z\|_{q}=\left(\sum_{i=1}^{\infty}\left|z_{i}\right|^{q}\right)^{1 / q}$. This sup must be bigger than the value at any given $x$ with $\|x\|_{p}=1$. So it seems a natural selection for $x \in l^{p}$ is to take $x_{i}=\operatorname{sgn}\left(z_{i}\right) \cdot\left|z_{i}\right|^{q-1}$ but we see that

$$
\left.\|x\|_{p}=\left.\left(\sum_{i=1}^{\infty}\left|\operatorname{sgn}\left(z_{i}\right)\right| z_{i}\right)^{q-1}\right|^{p}\right)^{1 / p}=\left(\sum_{i=1}^{\infty}\left|z_{i}\right|^{q}\right)^{1 / p}=\|z\|_{q}^{q / p}<\infty
$$

and thus a better selection so that $\|x\|_{p}=1$ is to take $x_{i}=\frac{\operatorname{sgn}\left(z_{i}\right)\left|z_{i}\right|^{q-1}}{\|z\|_{q}^{q / p}}$. Therefore we see that

$$
\|T z\|_{o p .} \geq\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right|=\left|\sum_{i=1}^{\infty} \frac{\operatorname{sgn}\left(z_{i}\right)\left|z_{i}\right|^{q-1}}{\|z\|_{q}^{q / p}} z_{i}\right|=\frac{1}{\|z\|_{q}^{q / p}} \sum_{i=1}^{\infty}\left|z_{i}\right|^{q}=\frac{\|z\|_{q}^{q}}{\|z\|_{q}^{q / p}}=\|z\|_{q}
$$

This completes the proof.
"T bounded." Trivial as $\|T z\|_{o p .}=\|z\|_{q} \Longrightarrow\|T\|_{o p .}=1$.
"T surjective." We want to show that for all $f \in\left(l^{p}\right)^{\prime}$ there is a $z \in l^{q}$ such that $f=T z(=$ $\left.\varphi_{z}\right)$. This is the same as showing $f(x)=\varphi_{z}(x)$ for all $x \in l^{p}$. Since $f(x)=\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)$ and $\varphi_{z}(x)=\sum_{i=1}^{\infty} x_{i} z_{i}$ where $\left\{e_{i}\right\}$ is the Schauder basis on $l^{p}$. Thus it seems a natural selection for $z$ is by $z_{i}=f\left(e_{i}\right)$. Since $f \in\left(l^{p}\right)^{\prime}$ we have that it is bounded and thus

$$
\left|\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)\right|=|f(x)| \leq\|f\|_{o p .}\|x\|_{p}
$$

By the selection of $x_{n}=\left(\operatorname{sgn}\left(f\left(e_{1}\right)\right)\left|f\left(e_{1}\right)\right|^{q-1}, \operatorname{sgn}\left(f\left(e_{2}\right)\right)\left|f\left(e_{2}\right)\right|^{q-1}, \ldots, \operatorname{sgn}\left(f\left(e_{n}\right)\right)\left|f\left(e_{n}\right)\right|^{q-1}, 0,0, \ldots\right)$ and $x_{n} \in l^{p}$ because

$$
\left\|x_{n}\right\|_{p}=\left(\left.\left.\sum_{i=1}^{n}\left|\operatorname{sgn}\left(f\left(e_{i}\right)\right)\right| f\left(e_{i}\right)\right|^{q-1}\right|^{p}\right)^{1 / p}=\left(\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right|^{q}\right)^{1 / p}<\infty
$$

and now using the boundedness of $f$ as an operator, we have

$$
\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right|^{q} \leq\|f\|_{o p .} \cdot\|x\|_{p}=\|f\|_{o p .}\left(\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right|^{q}\right)^{1 / p}
$$

and therefore

$$
\left(\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right|^{q}\right)^{1-1 / p} \leq\|f\|_{o p .} \Longrightarrow\|z\|_{q}=\left(\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right|^{q}\right)^{1 / q} \leq\|f\|_{o p .}<\infty
$$

and therefore $z \in l^{q}$.
"T injective." Suppose $T\left(z_{1}\right)=T\left(z_{2}\right) \Longrightarrow T\left(z_{1}\right)-T\left(z_{2}\right)=0_{\text {map }} \Longrightarrow T\left(z_{1}-z_{2}\right)=$ $0_{\text {map }} \Longrightarrow\left\|T\left(z_{1}-z_{2}\right)\right\|_{o p .}=\left\|0_{\text {map }}\right\|_{o p .}$. Because $T$ is norm preserving, then $\left\|z_{1}-z_{2}\right\|_{q}=$ $\left\|T\left(z_{1}-z_{2}\right)\right\|_{o p .}=\left\|0_{m a p}\right\|_{o p .}=\sup _{x \in l^{p}, x \neq 0} \frac{\left|0_{\text {map }}(x)\right|}{\|x\|_{p}}=0 \Longrightarrow z_{1}-z_{2}=0$ by the definition of a norm and therefore $z_{1}=z_{2}$. Therefore $T$ is injective.
2. $\left(l^{1}\right)^{\prime} \cong l^{\infty}$

Proof. Define an isomorphism

$$
T: l^{\infty} \rightarrow\left(l^{1}\right)^{\prime} \text { by } T z=\varphi_{z} \text { where } \varphi_{z}: l^{1} \rightarrow \mathbb{R} \text { defined by } \varphi_{z}(x)=\sum_{i=1}^{\infty} x_{i} z_{i}
$$

We want to show that $T$ is linear, norm-preserving, injective, and bounded. First we verify that $\varphi_{z} \in\left(l^{1}\right)^{\prime}$ by showing it is a bounded linear functional. The linearity and functional parts are trivial. Boundedness follows trivially

$$
\left|\varphi_{z}(x)\right|=\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right| \leq \sum_{i=1}^{\infty}\left|x_{i}\right|\left|z_{i}\right| \leq \sum_{i=1}^{\infty}\left|x_{i}\right| \sup _{i \in \mathbb{N}}\left|z_{i}\right|=\|z\|_{\infty}\|x\|_{1}
$$

and therefore $\|T z\|_{o p .}=\left\|\varphi_{z}\right\| \leq\|z\|_{\infty}$ shows that $\varphi_{z}$ is bounded and thus in $l^{1}$. The fact that $T$ is linear is trivial. Further, the norm-preserving aspect of $T$ verifies boundedness.
"T norm-preserving." We have that $\|T z\|_{o p .} \leq\|z\|_{\infty}$ so it suffices to show $\|T z\|_{o p .} \geq\|z\|_{\infty}$ to show equality. See that

$$
\|T z\|_{o p .}=\left\|\varphi_{z}\right\|_{o p .}=\sup _{x \in l^{1},\|x\|=1}\left|\varphi_{z}(x)\right|=\sup _{x \in l^{1},\|x\|=1}\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right|
$$

If $\|z\|_{\infty}=\sup _{i \in \mathbb{N}}\left|z_{i}\right|$ is actually obtained at $z_{k}$ then taking $x_{i}=\delta_{i k} \operatorname{sgn}\left(z_{k}\right)$ it is clear that this is $\geq\left|z_{k}\right|=\|z\|_{\infty}$. But the sup may not be obtained and thus we can construct a sequence $\left\{i_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathbb{N}$ of components of $z$ such that $z_{i_{n}} \rightarrow\|z\|_{\infty}$ and $\left|z_{i_{n}}\right| \geq\|z\|_{\infty}-\frac{1}{n}$. We choose

$$
x^{(n)}=(0, \ldots, 0, \underbrace{\operatorname{sgn}\left(z_{i_{n}}\right)}_{i_{n}^{t h} \text { guy }}, 0, \ldots)
$$

and therefore the sum with $x^{(n)}$ plugged in for $x$ gives this is $\geq \operatorname{sgn}\left(z_{i_{n}}\right) \cdot z_{i_{n}}=\left|z_{i_{n}}\right| \rightarrow\|z\|_{\infty}$. Therefore $\geq\|z\|_{\infty}$ completes this part of the proof.
"T surjective." We want to show that for all $f \in\left(l^{1}\right)^{\prime}$ there is a $z \in l^{\infty}$ such that $f=T z(=$ $\varphi_{z}$ ). But this is the same as saying $f(x)=\varphi_{z}(x)$ for all $x \in l^{1}$. But if there is a Schauder basis $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ for $l^{1}$ then $f(x)=\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)$ and $\varphi_{z}(x)=\sum_{i=1}^{\infty} x_{i} z_{i}$ indicates a natural selection for $z$ given by $z_{i}=f\left(e_{i}\right)$. We must show that $z$ defined this way is in $l^{\infty}$. That is,
we want to show $z$ is a bounded sequence. That is, $\left|z_{i}\right|<M$ for some $M \in \mathbb{R}$ and all $i \in \mathbb{N}$. Since $f \in\left(l^{1}\right)^{\prime}$, it is bounded and thus for any $x \in l^{1}$ we have

$$
\left|\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)\right|=|f(x)| \leq\|f\|_{o p .}\|x\|_{1}
$$

Using this we define a sequence $x^{(n)}=\left(0, \ldots, 0, \operatorname{sgn} f\left(e_{n}\right), 0, \ldots\right)$ and trivially see that $\left\|x^{(n)}\right\|_{1}=1$ and $x^{(n)} \in l^{p}$ (if $f\left(e_{n}\right)=0$ for any $e_{n}$ in the basis, then it would not be a basis element). Thus since the left hand side holds for any $x \in l^{p}$ we have that for each $n \in \mathbb{N}$,

$$
\left|f\left(e_{n}\right)\right| \leq\|f\|_{o p .} \cdot 1
$$

and since $z_{n}=f\left(e_{n}\right)$ we have shown that $\left|z_{n}\right| \leq\|f\|_{o p}$. for all $n \in \mathbb{N}$ and thus $\sup _{i \in \mathbb{N}}\left|z_{i}\right| \leq$ $\|f\|_{o p .}<\infty$ shows $z \in l^{\infty}$.
" $T$ injective." Suppose $T\left(z_{1}\right)=T\left(z_{2}\right) \Longrightarrow T\left(z_{1}\right)-T\left(z_{2}\right)=0_{\text {map }} \Longrightarrow T\left(z_{1}-z_{2}\right)=$ $0_{\text {map }} \Longrightarrow\left\|T\left(z_{1}-z_{2}\right)\right\|_{o p .}=\left\|0_{\text {map }}\right\|_{o p .}$. Because $T$ is norm preserving, then $\left\|z_{1}-z_{2}\right\|_{1}=$ $\left\|T\left(z_{1}-z_{2}\right)\right\|_{o p .}=\left\|0_{m a p}\right\|_{o p .}=\sup _{x \in l^{1}, x \neq 0} \frac{\left|0_{\operatorname{map}}(x)\right|}{\|x\|_{1}}=0 \Longrightarrow z_{1}-z_{2}=0$ by the definition of a norm and therefore $z_{1}=z_{2}$. Therefore $T$ is injective.
3. $\left(c_{0}\right)^{\prime} \cong l^{1}$ where $c_{0} \subsetneq l^{\infty}$ is sequences converging to 0 and $c_{0}$ is a closed subspace and therefore Banach with the same norm
Proof. $c_{0}$ is the space of sequences converging to 0 . The dual space of $c_{0}$ is $c_{0}^{\prime}=\left\{f: c_{0} \rightarrow \mathbb{R} \mid\right.$ $f$ bounded linear functional $\}$. We want to show that $c_{0}^{\prime} \cong l^{1}$ (i.e. the two are isomorphic). Note that $c_{0}$ is a closed subspace of $l^{\infty}$ and since $l^{\infty}$ is Banach (complete) and $c_{0}$ is closed, then $c_{0}$ must also be Banach (complete) by Theorem 1.4-7. Further, we know that norm on $c_{0}$ is induced by $l^{\infty}$ as the sup-norm,

$$
\|x\|_{c_{0}}=\sup _{i \in \mathbb{N}}\left|x_{i}\right|
$$

For the rest of the problem we will notate this norm by $\|x\|_{\infty}$. We want to construct an isomorphism between $l^{1}$ and $c_{0}^{\prime}$. Define

$$
T: l^{1} \rightarrow c_{0}^{\prime} \text { by } T(z)=T z=\varphi_{z} \text { where } \varphi_{z}: c_{0} \rightarrow \mathbb{R} \text { defined by } \varphi_{z}(x)=\sum_{i=1}^{\infty} x_{i} z_{i}
$$

We first must show that $\varphi_{z}$ is a bounded linear functional. It is immediate that it is a functional as the codomain is $\mathbb{R}$.
" $\varphi_{z}$ linear." This is immediate as:

- $\varphi_{z}(x+y)=\sum_{i=1}^{\infty}\left(x_{i}+y_{i}\right) z_{i}=\sum_{i=1}^{\infty}\left(x_{i} z_{i}+y_{i} z_{i}\right)=\sum_{i=1}^{\infty} x_{i} z_{i}+\sum_{i=1}^{\infty} y_{i} z_{i}=\varphi_{z}(x)+\varphi_{z}(y)$
- $\varphi_{z}(\alpha x)=\sum_{i=1}^{\infty}\left(\alpha x_{i}\right) z_{i}=\alpha \sum_{i=1}^{\infty} x_{i} z_{i}=\alpha \varphi_{z}(x)$
" $\varphi_{z}$ bounded." We want to show that $\left\|\varphi_{z}\right\|_{o p .} \leq c$ for some constant $c$. Note that this is equivalent to showing $\left|\varphi_{z}(x)\right| \leq c \cdot\|x\|_{c_{0}}$ for all $x \in c_{0}$ by the definition of the operator norm. See that

$$
\begin{aligned}
\left|\varphi_{z}(x)\right| & =\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right| \leq \sum_{i=1}^{\infty}\left|x_{i} z_{i}\right|=\sum_{i=1}^{\infty}\left|x_{i}\right|\left|z_{i}\right| \\
& \leq \sum_{i=1}^{\infty}\left[\left(\sup _{i \in \mathbb{N}}\left|x_{i}\right|\right) \cdot\left|z_{i}\right|\right]=\sum_{i=1}^{\infty}\|x\|_{c_{0}} \cdot\left|z_{i}\right| \\
& =\|x\|_{c_{0}} \sum_{i=1}^{\infty}\left|z_{i}\right|=\|x\|_{c_{0}} \cdot\|z\|_{1}
\end{aligned}
$$

and therefore we have shown that $\left|\varphi_{z}(x)\right| \leq\|z\|_{1} \cdot\|x\|_{c_{0}}$ for all $x \in c_{0}$ and therefore it trivially follows that $\left\|\varphi_{z}\right\|_{o p .} \leq\|z\|_{1}$.

Now we must show that $T$ is an isomorphism. That is, we need to show that $T$ is linear, bijective, and norm preserving.
"T linear." This is immediate as:

- $T\left(z_{1}+z_{2}\right)=\varphi_{z_{1}+z_{2}}$. But then for $x \in c_{0}$,

$$
\begin{aligned}
\varphi_{z_{1}+z_{2}}(x) & =\sum_{i=1}^{\infty} x_{i}\left(z_{1}+z_{2}\right)_{i}=\sum_{i=1}^{\infty} x_{i}\left[z_{i}^{(1)}+z_{i}^{(2)}\right]=\sum_{i=1}^{\infty}\left[x_{i} z_{i}^{(1)}+x_{i} z_{i}^{(2)}\right] \\
& =\sum_{i=1}^{\infty} x_{i} z_{i}^{(1)}+\sum_{i=1}^{\infty} x_{i} z_{i}^{(2)}=\sum_{i=1}^{\infty} x_{i}\left(z_{1}\right)_{i}+\sum_{i=1}^{\infty} x_{i}\left(z_{2}\right)_{i} \\
& =\varphi_{z_{1}}(x)+\varphi_{z_{2}}(x)=\left(\varphi_{z_{1}}+\varphi_{z_{2}}\right)(x)
\end{aligned}
$$

and therefore $\varphi_{z_{1}+z_{2}}(x)=\left(\varphi_{z_{1}}+\varphi_{z_{2}}\right)(x)$ for all $x \in c_{0}$ and therefore they must be the same map. That is, $\varphi_{z_{1}+z_{2}}=\varphi_{z_{1}}+\varphi_{z_{2}}$.

- $T(\alpha z)=\varphi_{\alpha z}$. But then for $x \in c_{0}$,

$$
\varphi_{\alpha z}(x)=\sum_{i=1}^{\infty} x_{i}(\alpha z)_{i}=\sum_{i=1}^{\infty} x_{i} \alpha z_{i}=\alpha \sum_{i=1}^{\infty} x_{i} z_{i}=\alpha \varphi_{z}(x)=\left(\alpha \varphi_{z}\right)(x)
$$

and since $\varphi_{\alpha z}(x)=\left(\alpha \varphi_{z}\right)(x)$ for all $x \in c_{0}$, then they are the same map and thus $\varphi_{\alpha z}=\alpha \varphi_{z}$.
"T norm preserving." We want to show that $\|T z\|_{o p .}=\|z\|_{1}$ for all $z \in l^{1}$. For $z=0$, by the linearity of $T, T z=0 \mathrm{map} \Longrightarrow\|T z\|_{o p .}=0$ and also $\|z\|_{1}=0$ by positive-definiteness. Therefore when $z=0$ clearly this is satisfied. Thus assume $z \neq 0, z \in l^{1}$. Note from the boundedness of $\varphi_{z}$ we showed that $\left\|\varphi_{z}\right\|_{o p .} \leq\|z\|_{1}$ and since $T z=\varphi_{z}$, this shows that $\|T z\|_{o p .} \leq\|z\|_{1}$. See that

$$
\|T z\|_{o p .}=\left\|\varphi_{z}\right\|_{o p .}=\sup _{x \in c_{0},\|x\|_{\infty}=1}\left|\varphi_{z}(x)\right|=\sup _{x \in c_{0},\|x\|_{\infty}=1}\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right|
$$

and choose $x_{n} \in c_{0}$ by $x_{n}=\left(\operatorname{sgn}\left(z_{1}\right), \operatorname{sgn}\left(z_{2}\right), \ldots, \operatorname{sgn}\left(z_{n}\right), 0,0, \ldots\right)$. Since $z \neq 0$, then at least one component is non-zero. That is, $\exists N \in \mathbb{N}$ such that $z_{N} \neq 0 \Longrightarrow\left|\operatorname{sgn}\left(z_{N}\right)\right|=1$ and thus for $n \geq N,\left\|x_{n}\right\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}^{(n)}\right|=\sup _{i \in \mathbb{N}}\left|\operatorname{sgn}\left(z_{i}\right)\right|=1$. Therefore each $x_{n}$ for $n \geq N$ satisfies the criteria for taking the sup and thus

$$
\|T z\|_{o p .}=\sup _{x \in c_{0},\|x\|_{\infty}=1}\left|\sum_{i=1}^{\infty} x_{i} z_{i}\right| \geq\left|\sum_{i=1}^{\infty} x_{i}^{(n)} z_{i}\right|=\left|\sum_{i=1}^{n} \operatorname{sgn}\left(z_{n}\right) z_{i}\right|=\sum_{i=1}^{n}\left|z_{i}\right| \quad \forall \quad n \geq N
$$

and therefore

$$
\|T z\|_{o p .} \geq \sum_{i=1}^{\infty}\left|z_{i}\right|=\|z\|_{1}
$$

Thus we have shown that $\|T z\|_{o p .}=\|z\|_{1}$ by showing that $\|T z\|_{o p .} \leq\|z\|_{1}$ and $\|T z\|_{o p .} \geq$ $\|z\|_{1}$.
" $T$ injective." Suppose $T\left(z_{1}\right)=T\left(z_{2}\right) \Longrightarrow T\left(z_{1}\right)-T\left(z_{2}\right)=0_{\text {map }} \Longrightarrow T\left(z_{1}-z_{2}\right)=$ $0_{\text {map }} \Longrightarrow\left\|T\left(z_{1}-z_{2}\right)\right\|_{o p .}=\left\|0_{\text {map }}\right\|_{o p .}$. Because $T$ is norm preserving, then $\left\|z_{1}-z_{2}\right\|_{1}=$ $\left\|T\left(z_{1}-z_{2}\right)\right\|_{o p .}=\left\|0_{m a p}\right\|_{o p .}=\sup _{x \in c_{0}, x \neq 0} \frac{\left|0_{\text {map }}(x)\right|}{\|x\|_{\infty}}=0 \Longrightarrow z_{1}-z_{2}=0$ by the definition of a norm and therefore $z_{1}=z_{2}$. Therefore $T$ is injective.
"T surjective." We want to show that $\forall f \in c_{0}^{\prime} \exists z \in l^{1}$ such that $T z=f$. But note that $T z=\varphi_{z}$ and thus we want to show that $\varphi_{z}=f$. But this simply means that we want to show that $\varphi_{z}(x)=f(x)$ for all $x \in c_{0}$. But note that if we have a Schauder basis on $c_{0}$, then we can write $f(x)=\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)$ and we knew a priori that $\varphi_{z}(x)=\sum_{i=1}^{\infty} x_{i} z_{i}$. Therefore,
we see the natural selection of $z_{i}=f\left(e_{i}\right)$ to satisfy this surjectivity. Therefore we must show the following: $c_{0}$ has a Schauder basis, construct a Schauder basis and show that any $x \in c_{0}$ can be written as infinite sum of this Schauder basis' elements, and show that $z \in l^{1}$ by our definition.
"c $c_{0}$ has S. basis छ construction of S. basis." Define

$$
e_{i}=(0,0, \ldots, 0,0, \underbrace{1}_{i^{t h} \text { component }}, 0,0, \ldots)
$$

which is clearly in $c_{0}$ by construction. Therefore, $\left\{e_{i}\right\}_{i \in \mathbb{N}} \subseteq c_{0}$. In order to show this is a Schauder basis for $c_{0}$, we must show that $\forall x \in c_{0} \exists!\left\{x_{i}\right\} \subseteq \mathbb{R}$ such that $x=\sum_{i=1}^{\infty} x_{i} e_{i}$. That is, $\sum_{i=1}^{n} x_{i} e_{i} \rightarrow x$ as $n \uparrow \infty$. This is easy to show as:

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} x_{i} e_{i}-x\right\| & =\left\|\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right)-\left(x_{1}, x_{2}, \ldots\right)\right\| \\
& =\left\|\left(0,0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots\right)\right\|=\sup _{i \geq n+1}\left|x_{i}\right|
\end{aligned}
$$

which converges to 0 as $n \uparrow \infty$ since $x \in c_{0}$. Then $\left\|\sum_{i=1}^{n} x_{i} e_{i}-x\right\| \rightarrow 0$ as $n \uparrow \infty$ and thus $\sum_{i=1}^{n} x_{i} e_{i} \rightarrow x$ as $n \uparrow \infty$. Therefore, each $x \in c_{0}$ can be written as an infinite combination of this Schauder basis we have constructed.
" $z \in l^{1}$." We naturally define $z$ by $z_{i}=f\left(e_{i}\right)$ where $e_{i}$ is defined as above. We want to show that $z \in l^{1}$. That is, we want to show that $\|z\|_{1}<\infty$ which is the same as showing $\sum_{i=1}^{\infty}\left|f\left(e_{i}\right)\right|<\infty$. Note that since $f \in c_{0}^{\prime}$, then $f$ is a bounded linear functional and therefore

$$
\left|\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)\right|=|f(x)| \leq\|f\|_{o p .} \cdot\|x\|_{\infty} \quad \forall x \in c_{0}
$$

Since this holds for all $x \in c_{0}$, if we choose $x_{n}=\left(\operatorname{sgn}\left(f\left(e_{1}\right)\right), \operatorname{sgn}\left(f\left(e_{2}\right)\right), \ldots, \operatorname{sgn}\left(f\left(e_{n}\right)\right), 0,0, \ldots\right)$, then clearly $x_{n} \in c_{0}$ and further $\left\|x_{n}\right\|_{\infty}=1$. Then

$$
\left|\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)\right| \geq\left|\sum_{i=1}^{\infty} x_{i}^{(n)} f\left(e_{i}\right)\right|=\left|\sum_{i=1}^{n} \operatorname{sgn}\left(f\left(e_{i}\right)\right) f\left(e_{i}\right)\right|=\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right|
$$

and then we have that

$$
\sum_{i=1}^{n}\left|f\left(e_{i}\right)\right| \leq\left|\sum_{i=1}^{\infty} x_{i} f\left(e_{i}\right)\right| \leq\|f\|_{o p .} \cdot 1 \quad \forall n \in \mathbb{N}
$$

and thus

$$
\sum_{i=1}^{\infty}\left|f\left(e_{i}\right)\right| \leq\|f\|_{o p .}<\infty \text { since } f \in c_{0}^{\prime}
$$

Therefore we have shown what we wanted and thus $z \in l^{1}$.

## Section 3.1. Inner Product Space. Hilbert Space

Inner product space/inner product. $X$ is an inner product space if $X$ is a normed vector space with norm induced from an inner product. An inner product satisfies $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{K}$

1. Bilinear (with respect to conjugacy). That is,

$$
\begin{aligned}
\left\langle\alpha x_{1}+\alpha x_{2}, y\right\rangle & =\alpha\left\langle x_{1}, y\right\rangle+\beta\left\langle x_{2}, y\right\rangle \\
\left\langle x, \alpha y_{1}+\beta y_{2}\right\rangle & =\bar{\alpha}\left\langle x, y_{1}\right\rangle+\bar{\beta}\left\langle x, y_{2}\right\rangle
\end{aligned}
$$

2. Conjugate-symmetric

$$
\langle x, y\rangle=\overline{\langle y, x\rangle}
$$

3. Positive-definite

$$
\langle x, x\rangle \geq 0 \text { and }\langle x, x\rangle=0 \Longleftrightarrow x=0
$$

Norm induced by inner product. $\|x\|=\sqrt{\langle x, x\rangle}$
Property. Any norm induced from an inner product satisfies $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$.
Not an inner product space. $\mathcal{C}[a, b]$ with $\|f\|=\sup _{t \in[a, b]}|f(t)|$ needs to satisfy $\|f+g\|^{2}+\|f-g\|^{2}=$ $2\left(\|f\|^{2}+\|g\|^{2}\right)$. Can construct functions making this false.

Hilbert space. Complete inner product space.
Orthogonal. $x \perp y \Longleftrightarrow\langle x, y\rangle=0$

## Section 3.2. Further Properties of Inner Product Spaces

Cauchy-Schwartz inequality. $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$ and equality holds only if $y=c \cdot x$ for some $c \in \mathbb{R}$.
Proof. See that

$$
\langle x+\alpha y, x+\alpha y\rangle=\|x\|^{2}+\bar{\alpha}\langle x, y\rangle+\alpha \overline{\langle x, y\rangle}+|\alpha|^{2}\|y\|^{2}
$$

for any $\alpha \in \mathbb{K}$. By positive-definiteness we have that this quantity must be non-negative. Choose $\alpha=t \cdot\langle x, y\rangle$ and thus this become

$$
=\|x\|^{2}+2 t|\langle x, y\rangle|^{2}+t^{2}|\langle x, y\rangle|^{2}\|y\|^{2}
$$

which is quadratic in $t$. Since this quantity is non-negative then there are 0 or 1 roots and so we have the coefficients $b^{2}-4 a c \leq 0$. Thus,
$4 t^{2}|\langle x, y\rangle|^{4}-4\|x\|^{2} t^{2}|\langle x, y\rangle|^{2}\|y\|^{2} \leq 0 \Longleftrightarrow 4 t^{2}|\langle x, y\rangle|^{2}\left(|\langle x, y\rangle|^{2}-\|x\|^{2}\|y\|^{2}\right) \leq 0 \Longleftrightarrow|\langle x, y\rangle|^{2}-\|x\|^{2}\|y\|^{2} \leq 0$ and the inequality immediately follows.

Continuity of inner product. $x_{n} \rightarrow x$ and $y_{n} \rightarrow y \Longrightarrow\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.
Proof. See that

$$
\begin{aligned}
\left|\left\langle x_{n}, y_{n}\right\rangle-\langle x, y\rangle\right| & =\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{n} y\right\rangle+\left\langle x_{n}, y\right\rangle-\langle x, y\rangle\right| \\
& =\left|\left\langle x_{n}, y_{n}-y\right\rangle-\left(\left\langle x_{n}-x, y\right\rangle\right)\right| \\
& \leq\left|\left\langle x_{n}, y_{n}-y\right\rangle\right|+\left|\left\langle x_{n}-x, y\right\rangle\right| \\
& \leq \underbrace{\left\|x_{n}\right\|}_{\text {bounded } b / c x_{n} \text { conv. }}\left\|y_{n}-y\right\|+\left\|x_{n}-x\right\| \underbrace{\|y\|}_{\text {fixed }} \\
& \rightarrow 0 \text { as } n \uparrow \infty
\end{aligned}
$$

## Completion of Inner Product Spaces

Completion of metric spaces. Recall $X$ is a metric space $\Longrightarrow \exists!\hat{X}$ complete metric space such that $\exists W \subseteq \hat{X}$ dense and $W \cong X$ (isometric, i.e. $\exists T: W \rightarrow X$ isometric (bijective, metric preserving)).
Theorem for inner products. $X$ is an inner product space $\Longrightarrow \exists!H$ Hilbert space such that $\exists W \subseteq H$ and $W \cong X$ (isomorphic, i.e. $\exists T: W \xrightarrow[\text { linear }]{\text { bij. }} X$ that preserves inner product).
Proof. Define $\langle\underbrace{\hat{x}}_{=\left\{\left\{x_{n}\right\}\right]}, \underbrace{\hat{y}}_{=\left\{\left\{y_{n}\right\}\right]}\rangle_{H}=\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle$ on $H=\left\{\hat{x}=\left[\left\{x_{n}\right\}\right] \mid\left\{x_{n}\right\}\right.$ Cauchy in $\left.X\right\}$ with equivalency classes $\left[\left\{x_{n}\right\}\right]$ structured by equivalence relation $\left\{x_{n}\right\} \sim\left\{y_{n}\right\} \Longleftrightarrow d\left(x_{n}, y_{n}\right)=0$ where $d$ induced by norm induced by inner product. We must show this.
We must show that 1) $\langle\cdot, \cdot\rangle_{H}$ is well-defined, 2) the limit exists, 3) it defines an inner product, and 4) $\langle\cdot, \cdot\rangle_{H}$ induces $\hat{d}$.

1. Suppose $\left\{x_{n}\right\},\left\{x_{n}^{\prime}\right\} \in \hat{x}$ and $\left\{y_{n}\right\},\left\{y_{n}^{\prime}\right\} \in \hat{y}$. Note a prior that $\left\{x_{n}\right\} \sim\left\{x_{n}^{\prime}\right\}$ and $\left\{y_{n}\right\} \sim\left\{y_{n}^{\prime}\right\}$. We WTS $\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}^{\prime}, y_{n}^{\prime}\right\rangle$. See that

$$
\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{n}^{\prime}, y_{n}^{\prime}\right\rangle\right| \leq\left\|x_{n}-x_{n}^{\prime}\right\| \cdot\left\|y_{n}^{\prime}\right\|+\left\|x_{n}^{\prime}\right\| \cdot\left\|y_{n}-y_{n}^{\prime}\right\| \rightarrow 0
$$

since both $\left\|y_{n}^{\prime}\right\|$ and $\left\|x_{n}^{\prime}\right\|$ are bounded (since $\left\{x_{n}^{\prime}\right\},\left\{y_{n}^{\prime}\right\}$ converge).
2. Note that $\left\langle x_{n}, y_{n}\right\rangle$ is a sequence in $\mathbb{K}(\mathbb{R}$ or $\mathbb{C}$, both complete) and thus if it is Cauchy then it converges. We'll show it is Cauchy. See that

$$
\begin{aligned}
\left|\left\langle x_{n}, y_{n}\right\rangle-\left\langle x_{m}, y_{m}\right\rangle\right| & =\left|\left\langle x_{n}-x_{m}, y_{n}\right\rangle+\left\langle x_{m}, y_{n}-y_{m}\right\rangle\right| \leq\left|\left\langle x_{n}-x_{m}, y_{n}\right\rangle\right|+\left|\left\langle x_{m}, y_{n}-y_{m}\right\rangle\right| \\
& \leq\left\|x_{n}-x_{m}\right\| \cdot\left\|y_{n}\right\|+\left\|x_{n}\right\| \cdot\left\|y_{n}-y_{m}\right\| \rightarrow 0
\end{aligned}
$$

since $\left\{\left\|y_{n}\right\|\right\},\left\{\left\|x_{n}\right\|\right\}$ are both bounded sequences.
3. Only difficult thing to check is positive definiteness:

$$
\hat{x}=0 \Longleftrightarrow\left\{x_{n}\right\} \sim\{(0,0, \ldots)\} \Longleftrightarrow \lim _{n \rightarrow \infty} d\left(x_{n}, 0\right)=0 \Longleftrightarrow \lim _{n \rightarrow \infty}\left\langle x_{n}, x_{n}\right\rangle=0 \Longleftrightarrow \lim _{n \rightarrow \infty}\langle\hat{x}, \hat{x}\rangle_{H}=0
$$

4. Does this inner product induce $\hat{d}$ ?

$$
\begin{aligned}
d_{\langle, \cdot,\rangle_{H}}(\hat{x}, \hat{y}) & =\|\hat{x}-\hat{y}\|=\sqrt{\langle\hat{x}, \hat{y}\rangle_{H}}=\sqrt{\lim _{n \rightarrow \infty}\left\langle x_{n}-y_{n}, x_{n}-y_{n}\right\rangle}=\lim _{n \rightarrow \infty} \sqrt{\left\langle x_{n}-y_{n}, x_{n}-y_{n}\right\rangle} \\
& =\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=\hat{d}(\hat{x}, \hat{y})
\end{aligned}
$$

Last we need to show that there is an isomorphism $T: X \rightarrow W \subseteq H$. Construct it by $T x=[(x, x, \ldots)]$. Bijective? by metric space completion. Linear? by metric space completion. Need to check norm preserving, easy:

$$
\langle T x, T y\rangle_{H}=\lim _{n \rightarrow \infty}\langle x, y\rangle_{X}=\langle x, y\rangle_{X}
$$

Q.E.D.

Theorem (subspace). Let $Y$ be a subspace of a Hilbert space $H$. Then:

- $Y$ complete $\Longleftrightarrow Y$ closed in $H$
- $\operatorname{dim} Y<\infty \Longrightarrow Y$ complete
- $H$ separable $\Longrightarrow Y$ separable


## Section 3.3. Orthogonal Complements and Direct Sums

Optimization theorem. Let $X$ be an inner product space and $M \subseteq X$ closed and complete. Then $\forall x \in X, \exists$ ! $y \in M$ such that $d(x, M)=d(x, y)$.

Proof. Let $x \in X$ and $\delta=d(x, M)=\inf _{z \in M} d(x, z)$. If $\delta=0$ then trivial because then we would have a sequence $\left\{z_{n}\right\} \subseteq M$ such that $z_{n} \rightarrow y$ with $y$ satisfying $d(x, y)=0$. But then $y \in M$ because $M$ closed.
Assume $\delta>0$. Then $\exists\left\{y_{n}\right\} \subseteq M$ such that $d\left(x, y_{n}\right) \rightarrow \delta$ as $n \uparrow \infty$. We WTS $\left\{y_{n}\right\}$ is Cauchy (and since $M$ is complete, then $y_{n} \rightarrow y \in Y$ ). Since $X$ is an inner product space we have for $A, B \in X$

$$
\|A+B\|^{2}+\|A-B\|^{2}=2\left(\|A\|^{2}+\|B\|^{2}\right)
$$

and taking $A=x-y_{n}$ and $B=x-y_{m}$. (Note that trivially $\left\|x-y_{n}\right\| \rightarrow \delta$ and $\left\|x-y_{m}\right\| \rightarrow \delta$.) Then

$$
\left\|y_{n}-y_{m}\right\|^{2}+4\left\|x-\frac{y_{n}+y_{m}}{2}\right\|=2\left(\left\|x-y_{n}\right\|^{2}+\left\|x-y_{m}\right\|^{2}\right)
$$

and thus

$$
\left\|y_{n}-y_{m}\right\|^{2}=2\left(\left\|x-y_{n}\right\|^{2}+\left\|x-y_{m}\right\|^{2}\right)-4\left\|x-\frac{y_{n}+y_{m}}{2}\right\|
$$

Since $\left\|x-y_{n}\right\| \rightarrow \delta$, the

$$
\begin{aligned}
\forall \epsilon>0, \exists N_{1} \in \mathbb{N} \quad \text { such that } & \left|\left\|x-y_{n}\right\|^{2}-\delta^{2}\right|<\frac{\epsilon}{8} \text { if } n \geq N_{1} \\
\Longrightarrow \quad & \left\|x-y_{n}\right\|^{2}<\delta^{2}+\frac{\epsilon}{8} \text { if } n \geq N_{1}
\end{aligned}
$$

Noting that $\frac{y_{n}+y_{m}}{2}$ is in $M$ since it is a convex combination of two elements of $M$ and $M$ is convex, then

$$
\left\|x-\frac{y_{n}+y_{m}}{2}\right\|=d\left(x, \frac{y_{n}+y_{m}}{2}\right) \geq \inf _{z \in M} d(x, M)=\delta \Longrightarrow-4\left\|x-\frac{y_{n}+y_{m}}{2}\right\| \leq-4 \delta^{2}
$$

Thus,

$$
\begin{aligned}
\left\|y_{n}-y_{m}\right\|^{2} & \leq 2\left\|x-y_{n}\right\|^{2}+2\left\|x-y_{m}\right\|^{2}-4 \delta^{2} \\
& <2\left(\frac{\epsilon}{8}+\delta^{2}\right)+2\left(\frac{\epsilon}{8}+\delta^{2}\right)-4 \delta^{2} \\
& =\frac{\epsilon}{2}<\epsilon \text { if } n, m \geq N_{1}
\end{aligned}
$$

Therefore $\left\{y_{n}\right\}$ is Cauchy and converges to a $y \in M$.
Uniqueness? Assume that $\exists y_{1}, y_{2} \in M$ such that $d\left(x, y_{1}\right)=d\left(x, y_{2}\right)=\delta$. By the paralellogram identity,
$\left\|y_{1}-y_{2}\right\|+4\left\|x-\frac{y_{n}+y_{m}}{2}\right\|=2\left(\left\|x-y_{n}\right\|^{2}+\left\|x-y_{m}\right\|^{2}\right) \Longrightarrow\left\|y_{1}-y_{2}\right\|^{2}=4 \delta^{2}-4\left\|x-\frac{y_{1}+y_{2}}{2}\right\|^{2} \leq 4 \delta^{2}-4 \delta^{2}=0$
Q.E.D.

Corollary. $Y \subseteq X$ is complete subspace by the above gives us $\forall x \in X, \exists!y \in Y$ such that $\|x-y\|=d(x, Y)$. Then $x-y \perp Y$.

Proof. Assume for contradiction that $x-y \not \perp Y$. That is, $\exists y_{1} \in Y$ such that $\left\langle x-y, y_{1}\right\rangle \neq 0$. Let $u=x-y$. Then $\langle u, u\rangle=\|x-y\|^{2}$. Note that since $y$ was the mimizer for the distance between $x$ and $M$ that if we can find a $z \in Y$ such that $\|x-z\|^{2}<\|x-y\|^{2}$ we have a contradiction. We take a $z \in Y$ of the form $y+\alpha y_{1}$ for some $\alpha \in \mathbb{K}$. Then

$$
\left\|x-\left(y+\alpha y_{1}\right)\right\|^{2}=\left\|u-\alpha y_{1}\right\|^{2}=\left\langle u-\alpha y_{1}, u-\alpha y_{1}\right\rangle=\|u\|^{2}-\bar{\alpha}\left\langle u, y_{1}\right\rangle-\alpha \overline{\left\langle u, y_{1}\right\rangle}+|\alpha|^{2}\left\|y_{1}\right\|^{2}
$$

and if we take $\alpha=\frac{\left\langle u, y_{1}\right\rangle}{\left\|y_{1}\right\|^{2}} \Longrightarrow \bar{\alpha}=\frac{\overline{\left\langle u, y_{1}\right\rangle}}{\left\|y_{1}\right\|^{2}}$ then the above is

$$
\begin{aligned}
& =\|x-y\|^{2}-\underbrace{\frac{\left|\left\langle u, y_{1}\right\rangle\right|^{2}}{\left\|y_{1}\right\|^{2}}}_{>0 \text { by hyp. }} \\
& <\|x-y\|^{2}
\end{aligned}
$$

giving a contradiction.
$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.
Direct sum corollary. If $H$ is Hilbert, then $Y \subseteq H$ closed subspace $(\Longrightarrow$ complete $) \Longrightarrow H=Y \oplus Y^{\perp}$ where $Y^{\perp}=$ othogonal complement of $Y=\{z \in H \mid z \perp Y\}$.
Claim. Such a decomposition of any element in $H$ is unique.
Theorem. $Y$ is a closed subspace of a Hilbert space $H \Longleftrightarrow Y=Y^{\perp \perp}$.
Proof. " $\Longrightarrow$ " Suppose $Y$ is a closed in $H$. See that $Y \subseteq Y^{\perp \perp}$ because $y \in Y \Longrightarrow y \perp Y^{\perp} \Longrightarrow y \in\left(Y^{\perp}\right)^{\perp}$. Thus we will show $Y \supseteq Y^{\perp \perp}$. Let $x \in Y^{\perp \perp}$. Then since $x \in H$ we have by Theorem 3.4-4 that $x=y+z$ for $y \in Y \subseteq Y^{\perp \perp}$ and for some $z \in Y^{\perp}$ (since $H=Y \oplus Y^{\perp}$ ). Since $Y^{\perp \perp}$ is a vector space and $x \in Y^{\perp \perp}$ then $z=x-y \in Y^{\perp \perp}$ since both $x$ and $y$ are in $Y^{\perp \perp}$ and thus using previously that $z \in Y^{\perp}$, we must have that $z \perp z \Longrightarrow\langle z, z\rangle=0 \Longrightarrow z=0$ by the positive-definiteness of the inner product on $H$. Then $x=y \Longrightarrow x \in Y$. Thus $Y \supseteq Y^{\perp \perp}$ and therefore $Y=Y^{\perp \perp}$.
"»" Suppose $Y=Y^{\perp \perp}$. We will use Theorem 3.2-4, that a subspace $Y$ of $H$ is complete if and only if it is closed in $H$. Suppose $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq Y$ is a Cauchy sequence in $Y$. Then it is a Cauchy sequence in $H$ since $Y \subseteq H$ and therefore it converges. Thus $x_{n} \rightarrow x \in H$. But since $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq Y=Y^{\perp \perp}$, then $x_{n} \perp Y^{\perp} \Longrightarrow\left\langle x_{n}, y\right\rangle=0$ for all $n \in \mathbb{N}$ and $y \in Y^{\perp}$. We want to show that $x \perp Y^{\perp}$, which would directly imply that $x \in Y^{\perp \perp}=Y$ and show the completeness of $Y$. See that for arbitrary $y \in Y^{\perp}$,

$$
\langle x, y\rangle=\left\langle\lim _{n \rightarrow \infty} x_{n}, y\right\rangle \underbrace{=}_{\text {cont. of in. pd. }} \lim _{n \rightarrow \infty}\left\langle x_{n}, y\right\rangle=\lim _{n \rightarrow \infty} 0=0
$$

This shows that $x \perp Y^{\perp} \Longrightarrow x \in Y^{\perp \perp}=Y$. Therefore, any Cauchy sequence in $Y$ converges in $Y$ and thus $Y$ is complete. Since it is a subspace of a Hilbert space then it must be closed.
$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.
Lemma. Let $M \subseteq H$ be nonempty and $H$ be Hilbert. $\overline{\operatorname{span} M}=H \Longleftrightarrow M^{\perp}=\{0\}$.
Proof. Suppose $M \subseteq H$ is nonempty and $H$ is Hilbert.
" $\Longrightarrow$ "Assume $\overline{\operatorname{span} M}=H$. Let $x \in M^{\perp}$ and since $M^{\perp} \subseteq H=\overline{\operatorname{span} M} \Longrightarrow \exists\left\{y_{n}\right\} \subseteq \operatorname{span} M$ such that $y_{n} \rightarrow x$.

$$
\langle x, x\rangle=\lim _{n \rightarrow \infty}\left\langle x, y_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\langle x, \sum_{i=1}^{\operatorname{dim} M} \alpha_{i}^{(n)} m_{i}\right\rangle=\lim _{n \rightarrow \infty} \sum_{i=1}^{\operatorname{dim} M} \overline{\alpha_{i}^{(n)}} \underbrace{\left\langle x, m_{i}\right\rangle}_{=0}=0
$$

and therefore $x=0 \Longrightarrow M^{\perp}=\{0\}$.
$" \Longleftarrow "$ Let $Y=\overline{\operatorname{span} M} \subseteq H$ which is a closed subspace. Then $H=Y \oplus Y^{\perp}=(\overline{\operatorname{span} M}) \oplus(\overline{\operatorname{span} M})^{\perp}$. Then $x \in H$ can be written as $x=y+z$ where $y \in Y$ and $z \in Y^{\perp}$. We want to show that $z=0$ in order to show that $x=y \in Y \Longrightarrow x \in Y$ and then $H \subseteq Y$. See that $M \subseteq Y \Longrightarrow Y^{\perp} \subseteq M^{\perp}=\{0\}$ and thus $z=0$.

## Section 3.4. Orthonormal Sets and Sequences

Orthogonal set. $\left\{x_{\alpha}\right\}_{\alpha \in I}$ is orthogonal $\Longleftrightarrow x_{\alpha} \perp x_{\beta}$ for all $\alpha, \beta \in I, \alpha \neq \beta$
Orthonormal set. $\left\{x_{\alpha}\right\}_{\alpha \in I}$ is orthonormal $\Longleftrightarrow x_{\alpha} \perp x_{\beta}$ for all $\alpha, \beta \in I, \alpha \neq \beta$ and $\left\langle x_{\alpha}, x_{\beta}\right\rangle=\delta_{\alpha \beta}$.
Pythagorean relation. If $x$ and $y$ are orthonormal elements then trivially $\langle x, y\rangle=0$ and further $\|x+y\|^{2}=$ $\|x\|^{2}+\|y\|^{2}$.

Lemma (linear independence). An orthonormal set is linearly independent.
Proof. Consider

$$
\alpha_{1} e_{1}+\cdots+\alpha_{n} e_{n}=0
$$

and then take $\left\langle\sum_{k} \alpha_{k} e_{k}, e_{j}\right\rangle=\sum_{k} \alpha_{k}\left\langle e_{k}, e_{j}\right\rangle=\alpha_{j}=0$.

## $\mathbb{Q} . \mathbb{E} . \mathbb{D}$.

Representation of elements. If $\left\{e_{i}\right\}_{i=1, \ldots, n}$ is an orthonormal set in $X$ then for any $x \in X$ we already knew we could write $X$ as a linear combination of these elements, but we further obtain

$$
x=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}
$$

Bessel's inequality. For any $x \in X$,

$$
\sum_{i=1}^{n}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

Proof. If $y \in Y_{n} \Longrightarrow x-y \perp y$ and thus

$$
\|x\|^{2}=\|y\|^{2}+\|x-y\|^{2}
$$

and using $y=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i} . Y_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.

## Gram-Schmidt Process

Can we construct an orthonormal set from a linearly independent set? Let $\left\{x_{i}\right\}_{i=1, \ldots, n}$ be linearly independent.

$$
\begin{aligned}
e_{1} & =\frac{x_{1}}{\left\|x_{1}\right\|} \\
e_{2} & =\frac{x_{2}-\overbrace{\left\langle x_{2}, e_{1}\right\rangle e_{1}}^{\left\|x_{2}-\left\langle x_{2}, e_{1}\right\rangle e_{1}\right\|}}{P_{s p\left(x_{1}\right)} x_{2}} \\
& \vdots \\
e_{k} & =\frac{x_{k}-\sum_{i=1}^{k-1}\left\langle x_{k}, e_{i}\right\rangle e_{i}}{\left\|x_{k}-\sum_{i=1}^{k-1}\left\langle x_{k}, e_{i}\right\rangle e_{i}\right\|}
\end{aligned}
$$

