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Metric Spaces

Metric space. (X,d) is a metric space if and only if d : X x X — [0, 00) is a function satisfying

1. Positive definite, d(x,y) > 0 for all z,y € X and d(x,y) =0 if and only if z =y
2. Symmetric, d(z,y) = d(y, z) for all x,y € X
3. Triangle inequality, d(x,y) < d(z,z) + d(z,y) for all x,y,z € X
Example metric spaces.
1. X =1°° = {bounded real sequences} = {z = {z;},. | 2; € R and sup,cy |2;] = M, < oo} and d(z,y) =
Sup;en |5 — Yil
2. X = B(A) where ACR and B(A) ={f: A— R| f is bounded} with d(f, g) = sup,c4 |f(t) — g(t)].
3. X = Cla,b] = {f :[a,b] = R| f is continuous} C Bla,b] (Why? Because continuous function on

compact set is bounded.)

4. Xanysetandd(x,y){é ’ ifz .

5. (X,d) a metric space then (X,d’) is also a metric space where d'(z,y) = ai(f(fg) with a > 0 fixed.

6. (Xo,do) is a metric space then (S, d) is a metric space where S = {z = {z;},cy : N = 20 | 2; € Xo V i € N}

and d(z,y) = >0 5 - % where a > 0 and note that z,y € S = x,y are sequences in Xj.

We can further define d(z,y) = >3~ 57d1(xk, yr) Where d; is any general bounded metric.
7. X=P={zeRY[Y7, |z]" < oo} with p>1 fixed.

Holder’s inequality. For p > 1,

[eS) [eS) 1/p 0o 1/q
3wy < <Z |$z‘|p> <Z |yi|q>
=1

i=1 i=1

where p, ¢ are conjugates of one another, i.e. = + = = 1.
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Minkowsky’s inequality. For p > 1,
0 1/p %) 1/p o 1/p
<Z |2 +yi|p> < <Z |$ip> + (Z |yi|p>
i=1 i=1 i=1

L? spaces (Lesbesgue). Holder’s inequality becomes [ |f - g|du < ([ |f\pdu)1/p (f |g|qdu)1/q where p, g
are conjugates and Minkowsky’s becomes ([ | f + g|Pdu) Yr < ([ | f|Pdu) Yr ([ |g|Pdu) Ur



Analysis Definitions

Open ball. B(z,r) ={y € X | d(z,y) <r}

Closed ball. B(z,r) = {y € X | d(z,y) <7}

Sphere. S(z,r) ={y € X | d(z,y) =}

Open set. AC X isopen <= Vo e AIF6>05B(z,6) CA «— A=A

Interior point. x € M C X, z is an interior point of M <= 36 >05B(z,0) C M

Interior set. A = {z € A |z is an interior point of A}

Accumulation point. z is an accumulation point of M C X <= Ve >0, (B(z,¢e)\{z}) N M # 0.
Accumulation set. acc(M) = {x € X | = is an accumulation point}

Closure. M Uacc(M) =M

Topology. (X,F),F C P(X) is a topological space. F must satisfy

1. 0, XeF

2. F closed under U

3. F closed under finite N
Convergent sequence. {,},.y C X, 2, conergent to z € X <= {d(z,,2)},.y =0 <= Ve >
0, 3N eNosd(z,,z) <eonlyifn>N

Continuous. T : X — Y ((X,d), (Y, d) metric spaces) is continuous (at ) <= Ve >0, 36 > 0sd(a,z) <
§ = d(T(a),T(z)) < e (wherea € X) <= Ve>0,36>02Vac B(x,9),T(a) € BT(z),¢e) <
Ve>0,30>0>T(B(z,9)) C B(T(x),e).

Bounded. M C X is bounded <= §(M) = diam(M) = sup,, ,¢ s d(z,y) < 00

Separable Metric Space Examples

Dense set. A C X isdense <= Vzx e X, Ve>0,B(z,e)NA#D
Separable. X is separable < 3 A C X 5 A is dense and countable (A = X, |A| = Xg)

1. Q@ CR is dense and countable = R is separable.

[\

. Q¢ (Rd, II - ||2) is dense and countable = R? is separable

w

. (C,|-]) is analogous to (R?,]|- [|2) = C is separable metric space (e.g. {1 + igz | ¢; € Q} is dense
and countable)

4. [*° is not separable.

Proof. Let K = {0,1}" = {sequences of 0’s and 1’s only} C I°° (as sequences of 0’s and 1’s must be
bounded). Let z,y € K sx # y. Thenif e = %, B(z,€)NB(y,€) = 0. Since there are uncountably many
sequences of 0’s and 1’s then there also exist uncountably many balls about these sequences. Thus
{B(z,€) | x € K} is uncountable. Let M be any dense set in [°°. Then every ball of {B(z,¢) | z € K}
must contain an element in M. But these balls are non-intersecting so each one contains at least 1
distinct point in M. Thus there are uncountably many of these distinct points in M and therefore
M must be uncountable. Therefore every dense set in M is uncountable and therefore [°° cannot be
separable.



517 = {z e RN | Y22 |x]” < oo} is separable. A = {q € Q" |¢; = 0 except for finitely many ¢;’s} is
dense and countable.

Proof. A is countable. We must show that A is dense. We WTS that Vx €I, Ve >03J g€ A >
d(q,z) < € with ¢ # «.

Thus let z € 1P = Y72, 2] <oo = INeN>Y " |z’ <er. Let

qg = (q1,---,9n,0,0,...)
r = ($1,...,$N,$N+1,...)
Then
N 0o 1/p
o= (Sl ars 3 )
i=1 i=N+1
We have that Q is dense so choose ¢; € Q, 1 < i < N such that |¢; — ;] < e = d(z,q) =

1/p
(Zf\il lzi — ail” + D e N |xi|p> < (N-€& +€)"? < e for choice of ¢, = < and ey = T

Completeness

Cauchy sequence. {r,}, .y C X is Cauchy <= d(zp,2,) - 0asn,mToo <= Ve>0, IN N>
d(Xp, Tym) < € only if n,m > N.

Complete. X is complete <= all Cauchy sequences in X converge in X
Banach space. Complete normed vector space (contains Hilbert spaces).
Hilbert space. Banach space but with norm induced by inner product.

Theorems.

1. MC X isclosed < {z,}CMandz, 22 = €M

Proof. “ =" Let M C X be closed. Let x € M. If + € M then {Zn},en 2 n = 2 is a sequence in
M that converges to x € M. Now let © &€ M (i.e. x € OM). Then it must be an accumulation point
and thus B(x,1/n) contains an x,, € M such that x,, # x. This is a sequence with x,, — x because
1/n— 0asn? oco.

“«<=" Suppose that {m_n} C M such that z, - = z € M. If z € M then z € M. Now suppose
that = ¢ M but x € M. But then we have that B(z,¢,) contains an z,, different from x and thus z

must be an accumulation point of M and therefore x € M.

2. M C X, X complete. M complete <= M closed.
Proof. Let M C X and X be complete.

“ = 7 Suppose M is complete. Then all Cauchy sequences in M converge to a point in M. {z,}
Cauchy in M = x, —» x € M and by (1) M is closed.

“«<=" Suppose M is closed. Then for all {z,,} C M such that z,, >z = x € M. Let {z,} C M be
Cauchy = {z,} € X Cauchy and X complete — z,, — = € X but then since M is closed, by
definition z € M.

3. T:X — Y is continuous <= V V CY open, T-1(V) CC X is open.

Proof. “ = "Suppose T is continuous and V C Y is open. If T7'(V) = ) then we are done
as 0 is open. Assume T (V) # 0. Let zg € T-(V) = yo = T(xg) for yo € V. V open
= V D B(yo,¢) = N. T continuous = T~1(V) D B(xg,d) = Ny such that T'(B(x¢,d)) = B(yo, €)-
Since N C V,No C T-1(V) so T~Y(V) open because xy € V was arbitrary.

“«="Suppose that for all open V' C Y, T-1(V) is open in X. Therefore V 7o € X and any e-
neighborhood N of T'(xg), the inverse image Ny of N is open since N open and Ny contains xg. Thus
Ny D B(xp,0) such that T'(B(xo,d)) = B(T(xg),€). Therefore T is continuous at xg and therefore T
is continuous as xg was arbitrary.



4. T continuous at © <= z, =2z = T(z,) = T'(x).

Proof. “ = ” Assume T is continuous at x = Ve >0, 30 > 0 5 d(T(z),T(z)) < € if
d(x,x9) < 6. Let 2, — x9. Then 3 N € N such that n > N, d(x,,z9) < . Therefore, for n > N,
d(T(zy,),T(x0)) < € by continuity and therefore T'(x,,) — T'(z¢) by definition.

4= Assume z,, - x9g = T(x,) — T(x¢). Suppose for contradiction 7" is not continuous. Then
3 e > 0 such that V § > 0, 3 x # zo such that d(z,z9) < 6 but d(T(z),T(20)) > €. Take § = 1, then
we have an {z,} such that d(z,,z0) < + and d(T(z,,),T(z0)) > €. Clearly z,, — zo by this definition
but T'(z,) 4 T(x¢). Contradiction.

Examples of Complete Metric Spaces

1. [°° complete
Proof. Suppose {x,}, cy is @ Cauchy sequence in [>°. Then for any € > 0 there exists a N € N such
that for n,m > N,
d(Tp, Tym) = sup ‘xgn) - xgm)‘ <<
i€N 2

En) — mgm)‘ < § for every fixed i. Thus the sequence (x,gl),mgz), .. )

A fortiori we thus know that ‘m
is a Cauchy sequence in R and therefore it converges to, say, x;. Therefore we define z = (1, 22, .. .)

to be the sequence of these limit points in i. First, we have that x is in [°° since for zy = (J,‘EN)) N
ic

there is a number such that xEN)‘ < Ky. By the triangle inequality

lz;| <

T; — xEN)’ +

ZCEN)’ <%+KN

and the RHS does not depend on ¢ so thus this must be true for all i € N. Thus z € [*°. Now,
xgn) - < 5 and therefore d(z,,z) =

since ‘xin) — xgm)‘ < 5 then letting m 1 oo we have that T;

sup; :rgn) —z;| < 5 <eand therefore x,, — = € [*°.

2. IP,1 < p < oo complete
Proof. Remember d(z,y) = (3.2, |2 — i) /P. Let {#n},en € I be Cauchy. Then

) o] < (£ only it n,m >
x x, <(2) only if n,m > N

K2

vV e>03 N €N such that d(xn,xm)pzz

1=

< (£)" for n,m > N and for all i € N. Thus for a fixed i € N, {xgm} "

and thus ‘xl(") — xgm)
neN

Cauchy in R = ™ - x; as n 1T 0co. But the for € > 0, choosing the same N as before,

>

i=1

P = b < (O

) T 2 m—o0 £ m—ro0
p e\P
<(3)
—\2

>
i=1

Note that this sum is now an increasing sequence (with respect to r) and bounded above. Thus it

converges to
P P > P e
€ €
<(3) = <Z ) sg=e

i=1

$§n) — X;

SC,En) — Ty JE,En) — Ty

>

i=1




and therefore d(z,,x) < € and thus z,, — x. All that remains is to show that 2 € [?. By the Minkowsky
Inequality we may write & = x,, + (x — x,,) € [P, m > N, and thus
v 1/p
=1

9] 1/p [e%S) » 1/p S » 1/p 00
(Ser) = (Sl e ))<= (SFT)+ (2
i=1 i=1 i

i=1
and the first term is < oo since x,,, € [P and the second one is < § and thus the sum is finite, so z € [P.

3. Cla,b] complete
Comment. Cla,b] is complete with respect to the norm d(f,g) = sup,c(, ) |f(2) — g(z)| but is not

complete with respect to d(f,g) = fab |f(t) —g(t)|dt (induced by L'[a,b] due to C[a,b] C L'[a,b] = {f :
[a,b] = R | f is integrable, i.e. d(f,g) < oo}).

Comment. A counter-example to the completeness of C[a,b] under the L' norm is by looking at
Pla,b] € Cla, b], the set of polynomials on [a, b] not complete. Counter-example is f,,(z) = z™ on [0, 1].

fulz) = fx) = { (1) ’ if [i)’l) & Pla, b] (also not in Cla, b]).

Proof. Let {f,}nen be a Cauchy sequence in Cla,b] = V e > 03 N € N such that d(f,, fm) < €
ifn,m>N = SUP¢e|a,b] [fu(t) = fm(®)] <€ = [fult) = f(@)| < eVt € [a,b],n,m >N =
for fixed tg, {fn(to) }nen is a Cauchy sequence in R = f,,(t9) — f(to) as n T co. Therefore we have
shown pointwise convergence of f,(t) — f(t). We must show that f € Cla,b]. Note that since {f,}
is Cauchy, then V € > 0 3 N € N such that sup,c(, ) [fn(t) — fim(t)] < § when n,m > N. Letting
m1Too = |fu(t) — f(t)] < § < esince f, — f. Therefore f, — f uniformly so f € Cla, b].

4. Q is not complete.

Proof. Note that Q@ € R and R is complete. Thus it suffices to show Q is not closed in order to
show Q is not complete. Note that 7 € acc(Q) since every ball about 7 contains a rational number.
But 7 ¢ Q and therefore we can construct a sequence in Q based on these balls that converge to .
Therefore z,, — 7 but 7 ¢ Q and therefore Q is not closed and therefore not complete.

5. ¢ = {all convergent sequences} is complete

Proof. Note that ¢ C [*° and therefore c is complete <= c is closed. Also note that the metric on
¢ is induced by [%°, i.e. d(z,y) = sup, |z; — yi|- We let = € ¢, the closure of c. We want to show that
x € c. By definition of ¢, there exists z,, — = where {z,} C c¢. Thus for any € > 0 there exists N € N
such that for n > N,

(n)

Z; — X;

< sup ‘scgn) — x| =d(xn,z) < %

Note also that =, = {xi")} is itself a sequence in ¢ that converges to x; and thus it is Cauchy.

€N
Therefore there exists an N; such that for n > Ny,

€
< —

(n) (n)
T —x; 3

and therefore using the triangle inequality

(n) (n) (n)

|z, — x| < | —ay —l—‘xi - ‘—l—’mj —z;
< €LE4¢
AT
3 3 3

and therefore z is a Cauchy sequence of real numbers and therefore it converges. Therefore, by definition
of ¢, € ¢ and therefore ¢ C ¢ and a priori we knew ¢ C ¢ so therefore ¢ = ¢ and ¢ is closed.



Completion of Metric Spaces

Isometry. A map T : X — Y with respective metrics dx and dy is an isometry if and only if it satisfies
dx(a,b) = dy (T (a), T(b)).

Isometric. Two metric spaces, X and Y, are said to be isometric if there exists a bijective isometry from
XtoY.

Normed Vector Spaces / Banach Spaces

Vector space. X = (X, +,-) (space, addition of elements in space, scalar multiplication) over K (scalar
space, a field, usually R or C) is a vector space if and only if for x,y,z € X and «, 8 € K,

1. Closed under 4+ : X x X — X with (z,y) —z+y
2. Closed under - : K x X — X with (o, 2) = a -z

3@ty tz=z+y+2)

4. There exists 0 € X suchthat t +0=0+2x =2

S. r+y=y+=x

6. There exists —z € X such that  + (—z) = (—x) +2z =0
7. (af) - x=a- (8 x)

8. There exists 1 € K such that 1 -z =2-1==x

9. (a+B) z=a-x+pf 2

10 a-(z+y)=a-z4+a-y
Subspace. If X is a vector space, then Y C X is a subspace <= Y is a vector space <= Y is closed
under + and -.

Linear combination. If z; € X and «; € K for i =1,2,...,n then Z?zl «; - x; is a linear combination of
elements in X.

Linear independence. x1,zs,...,x, € X are linearly independent <= E?Zl a;j-x;=0 = a; =0 for
allt=1,2,...,n.

Span. For M C X, span(M) = {all linear combinations of elements of M} is a subspace. M spans
X <= span(M) = X.

Basis. B C X is a basis <= B is linearly independent and span(B) = X.
Dimension. If B is a basis for X, then dim X = |B| (cardinality of B)

Norm. A norm on a vector space X, || || : X — [0,00) defined by z — ||z|| over K =R or C satisfies (for
z,y € X and a € K)

1. Positive-definiteness: ||z|| > 0 and ||z|| =0 <= =0
2. Scalar multiplication: ||« - z| = || - ||z]|

3. Triangle-inequality (sub-additivity): ||z + y|| < ||=|| + ||y||



Semi-norm. p: X — [0,00) is a semi-norm <= it satisfies properties 2 and 3 above, but not necessarily
1 (i.e. some x € X that is not 0 could have p(x) = 0).

Quotient space. For X a vector space and N a subspace, X/N is a vector space.
Lesbesgue integral. f — | f]| is defined by || f|| = f; |f(z)|dx. Note that positive-definiteness is not

satisfied for any general f and thus this is a semi-norm. If f were continuous, then this would be a norm.
Therefore we define X/N to be a normed vector space when N =ker X = {g € X | ||g]| = 0}.

Banach space. Complete normed vector space.
Hamel basis. A basis {€,}acr is a Hamel basis <= V z € X 3! {a,} C K such that z =3"_ «a; - €;.

Schauder basis. Basis for a normed vector space X is {e; };ecs is a Schauder basis <= Vz € X I {ai}1<i<oo C
K such that z =Y .2 a; - e;.

Theorem (Banach). If X is a normed vector space with Schauder basis, then X is separable.

Proof. We WISV x € X, Ve >0, 3a€ M such that d(a,z) < € for some M C X. Le. we
want to show there exists some dense subset of X and then show it is countable.

Let z € X and € > 0. Let M = U2, A, where A, = {>""" ¢ -e; | ¢; € Q}. Since Q is a dense
countable subset of K, then a finite linear combination of elements in Q will be and then a
countable union of countable sets is also countable. Therefore M is countable.

By the definition of the Schauder basis, 3 N € N such that ||z — > | cse;l| < §ifn > N, {o;} C
K. And further, Q is a dense subset of K =— V «; 3 ¢; such that |o; — ¢;| < 55 Where
b=>"llell- Let a =" gie; € M.

e —all =

n
T — E qi€;
i=1
n
E ;€
i=1

n
€
5 + ; | — qillles]|

n

Z(ai —qi)e;

i=1

IN

+

A

€ "€ € €
< §+;%-||ei||—§+§—e
Therefore M is dense and countable = X is separable.

Bolzano-Weierstraus Theorem. Every bounded sequence has a convergent subsequence.

Observation of boundedness of vectors in X. If X is a normed vector space with Hamel basis given
by {e;}1<i<n (linearly independent), then 3 ¢, M € K such that

n n n
e fal < Y aver| < -3 o]
i=1 i=1 i=1

Proof. Note that if we choose M = max;<;<y ||€;|| then the < part is trivial by the triangle inequality. Note

Do @ik

that if ¢ 377, |ai| <[l 3271, avesl, then ¢ < ”Ezﬁ = HZ?:I T e G
(note that Y., |B;| = 1) then we want to show that ||> 1, Bieil| > ¢ > 0 where > 1" | [8;] = 1. Let
M={z=(z1,...,2,) € K™ | >0 | || = 1}.

and taking B; = st

For contradiction assume that 3 {8;}reny € K such that szl:l 52-(k)ei — 0 with 8, = ( %k),..wﬁy(lk))

satisfying >, 1BM ) =1for k=1,2,....




M is a bounded set in K (R™,C™). Thus 8 is bounded and 8 = ( %k), ces T(Lk)) € M. Bolzano Weierstraus
Theorem says that there exists B7) such that %) — ~ and since %) € M and M is closed, then
v € M. Thus Y0 | |vi| =1. But Y., Bie; = > i, vie; and >, Bie; — 0 by our assumption. Thus
Z?=1 viei =0 = v, =0foralli=1,2,...,n since ¢;’s are linearly independent. But then v & M is our
contradiction, as we showed it was.

Quotient Spaces

Let X be a normed vector space with scalar field K. Let N be a subspace of X. Then
X/N ={x+ N |z € X} is called a quotient space
Define 7 : X — X/N by w(x) = x + N and further define

m(x) +7(y) = 7(r+y)
a-m(z) = 7(a-x)
Note that 7(z) = n(2') = w(z) —w(2') =0 = 7(z—2)=0 = z—2' €04+ N = z—2a’' € N.
Define the equivalence relation z ~y <= x —y € N. Thus X/N = X/ ~ and n(z) = [z].

Suppose X is a vector space with a semi-norm p(x). We want to show (X/N,| -]|) is a normed vector space.
Define ||7(x)|| = p(z) and let N = p~1({0}). This is a normed vector space.

Theorem. X is a normed vector space = X/N is a normed vector space <= N C X is a closed
subspace.

Proof. All that must be shown is that the norm defined by ||7(z)|| = d(z, N) = infyen ||z — y/|
is a norm (where the second norm is a norm in X).

Theorem. X is a Banach space = X/N is a Banach space.

Proof. Must show that X/N is complete.



