
MA 515
Test 1 Study Guide

Metric Spaces

Metric space. (X, d) is a metric space if and only if d : X ×X → [0,∞) is a function satisfying

1. Positive definite, d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y

2. Symmetric, d(x, y) = d(y, x) for all x, y ∈ X

3. Triangle inequality, d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

Example metric spaces.

1. X = l∞ = {bounded real sequences} =
{
x = {xi}i∈N | xi ∈ R and supi∈N |xi| = Mx < ∞

}
and d(x, y) =

supi∈N |xi − yi|

2. X = B(A) where A ⊂ R and B(A) = {f : A → R | f is bounded} with d(f, g) = supt∈A |f(t)− g(t)|.

3. X = C[a, b] = {f : [a, b] → R | f is continuous} ⊆ B[a, b] (Why? Because continuous function on
compact set is bounded.)

4. X = any set and d(x, y) =

{
1 , x *= y
0 , x = y

.

5. (X, d) a metric space then (X, d′) is also a metric space where d′(x, y) = d(x,y)
a+d(x,y) with a > 0 fixed.

6. (X0, d0) is a metric space then (S, d) is a metric space where S =
{
x = {xi}i∈N : N → x0 | xi ∈ X0 ∀ i ∈ N

}

and d(x, y) =
∑∞

k=1
1
2k · d0(xk,yk)

a+d0(xk,yk)
where a > 0 and note that x, y ∈ S =⇒ x, y are sequences in X0.

We can further define d(x, y) =
∑∞

k=1
1
2k d1(xk, yk) where d1 is any general bounded metric.

7. X = lp =
{
x ∈ RN |

∑∞
i=1 |xi|p < ∞

}
with p ≥ 1 fixed.

Hölder’s inequality. For p > 1,

∞∑

i=1

|xiyi| ≤
( ∞∑

i=1

|xi|p
)1/p ( ∞∑

i=1

|yi|q
)1/q

where p, q are conjugates of one another, i.e. 1
p + 1

q = 1.

Minkowsky’s inequality. For p ≥ 1,
( ∞∑

i=1

|xi + yi|p
)1/p

≤
( ∞∑

i=1

|xi|p
)1/p

+

( ∞∑

i=1

|yi|p
)1/p

Lp spaces (Lesbesgue). Hölder’s inequality becomes
´

|f · g|du ≤
(´

|f |pdu
)1/p (´ |g|qdu

)1/q where p, q

are conjugates and Minkowsky’s becomes
(´

|f + g|pdu
)1/p ≤

(´
|f |pdu

)1/p
+
(´

|g|pdu
)1/p.
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Analysis Definitions

Open ball. B(x, r) = {y ∈ X | d(x, y) < r}

Closed ball. B̃(x, r) = {y ∈ X | d(x, y) ≤ r}

Sphere. S(x, r) = {y ∈ X | d(x, y) = r}

Open set. A ⊆ X is open ⇐⇒ ∀ x ∈ A ∃ δ > 0 ! B(x, δ) ⊆ A ⇐⇒ A = Å

Interior point. x ∈ M ⊆ X, x is an interior point of M ⇐⇒ ∃ δ > 0 ! B(x, δ) ⊆ M

Interior set. Å = {x ∈ A | x is an interior point of A}

Accumulation point. x is an accumulation point of M ⊆ X ⇐⇒ ∀ ε > 0, (B(x, ε)\{x}) ∩M *= ∅.

Accumulation set. acc(M) = {x ∈ X | x is an accumulation point}

Closure. M ∪ acc(M) = M̄

Topology. (X,F),F ⊆ P(X) is a topological space. F must satisfy

1. ∅, X ∈ F

2. F closed under ∪

3. F closed under finite ∩

Convergent sequence. {xn}n∈N ⊆ X, xn conergent to x ∈ X ⇐⇒ {d(xn, x)}n∈N → 0 ⇐⇒ ∀ ε >
0, ∃ N ∈ N ! d(xn, x) < ε only if n ≥ N

Continuous. T : X → Y ((X, d), (Y, d) metric spaces) is continuous (at x) ⇐⇒ ∀ ε > 0, ∃ δ > 0 ! d(a, x) <
δ =⇒ d(T (a), T (x)) < ε (where a ∈ X) ⇐⇒ ∀ ε > 0, ∃ δ > 0 ! ∀ a ∈ B(x, δ), T (a) ∈ B(T (x), ε) ⇐⇒
∀ ε > 0, ∃ δ > 0 ! T (B(x, δ)) ⊆ B(T (x), ε).

Bounded. M ⊆ X is bounded ⇐⇒ δ(M) = diam(M) = supx,y∈M d(x, y) < ∞

Separable Metric Space Examples

Dense set. A ⊆ X is dense ⇐⇒ ∀ x ∈ X, ∀ ε > 0, B(x, ε) ∩A *= ∅

Separable. X is separable ⇐⇒ ∃ A ⊆ X ! A is dense and countable (Ā = X, |A| = ℵ0)

1. Q "R is dense and countable =⇒ R is separable.

2. Qd "
(
Rd, ‖ · ‖2

)
is dense and countable =⇒ Rd is separable

3. (C, | · |) is analogous to
(
R2, ‖ · ‖2

)
=⇒ C is separable metric space (e.g. {q1 + iq2 | qi ∈ Q} is dense

and countable)

4. l∞ is not separable.
Proof. Let K = {0, 1}N = {sequences of 0’s and 1’s only} " l∞ (as sequences of 0’s and 1’s must be
bounded). Let x, y ∈ K ! x *= y. Then if ε = 1

3 , B(x, ε)∩B(y, ε) = ∅. Since there are uncountably many
sequences of 0’s and 1’s then there also exist uncountably many balls about these sequences. Thus
{B(x, ε) | x ∈ K} is uncountable. Let M be any dense set in l∞. Then every ball of {B(x, ε) | x ∈ K}
must contain an element in M . But these balls are non-intersecting so each one contains at least 1
distinct point in M . Thus there are uncountably many of these distinct points in M and therefore
M must be uncountable. Therefore every dense set in M is uncountable and therefore l∞ cannot be
separable.
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5. lp =
{
x ∈ RN |

∑∞
i=1 |xi|p < ∞

}
is separable. A =

{
q ∈ QN | qi = 0 except for finitely many qi’s

}
is

dense and countable.
Proof. A is countable. We must show that A is dense. We WTS that ∀ x ∈ lp, ∀ ε > 0 ∃ q ∈ A !
d(q, x) < ε with q *= x.
Thus let x ∈ lp =⇒

∑∞
i=1 |xi|p < ∞ =⇒ ∃ N ∈ N !

∑∞
i=N+1 |xi|p < ε1. Let

q = (q1, . . . , qN , 0, 0, . . .)

x = (x1, . . . , xN , xN+1, . . .)

Then

d(x, q) =

(
N∑

i=1

|xi − qi|p +
∞∑

i=N+1

|xi|p
)1/p

We have that Q is dense so choose qi ∈ Q, 1 ≤ i ≤ N such that |qi − xi| < ε2 =⇒ d(x, q) =(∑N
i=1 |xi − qi|p +

∑∞
i=N+1 |xi|p

)1/p
< (N · εp2 + ε1)

1/p
< ε for choice of ε1 = εp

2 and ε2 = ε
(2N)1/p

.

Completeness

Cauchy sequence. {xn}n∈N ⊆ X is Cauchy ⇐⇒ d(xn, xm) → 0 as n,m ↑ ∞ ⇐⇒ ∀ ε > 0, ∃ N ∈ N !
d(xn, xm) < ε only if n,m ≥ N .

Complete. X is complete ⇐⇒ all Cauchy sequences in X converge in X

Banach space. Complete normed vector space (contains Hilbert spaces).

Hilbert space. Banach space but with norm induced by inner product.

Theorems.

1. M ⊆ X is closed ⇐⇒ {xn} ⊆ M and xn → x =⇒ x ∈ M

Proof. “ =⇒ ” Let M ⊆ X be closed. Let x ∈ M̄ . If x ∈ M then {xn}n∈N ! xn ≡ x is a sequence in
M that converges to x ∈ M . Now let x *∈ M (i.e. x ∈ ∂M). Then it must be an accumulation point
and thus B(x, 1/n) contains an xn ∈ M such that xn *= x. This is a sequence with xn → x because
1/n → 0 as n ↑ ∞.
“⇐=” Suppose that {xn} ⊆ M such that xn → x =⇒ x ∈ M . If x ∈ M then x ∈ M̄ . Now suppose
that x *∈ M but x ∈ M̄ . But then we have that B(x, εn) contains an xn different from x and thus x
must be an accumulation point of M and therefore x ∈ M̄ .

2. M ⊆ X, X complete. M complete ⇐⇒ M closed.
Proof. Let M ⊆ X and X be complete.
“ =⇒ ” Suppose M is complete. Then all Cauchy sequences in M converge to a point in M . {xn}
Cauchy in M =⇒ xn → x ∈ M and by (1) M is closed.
“⇐=” Suppose M is closed. Then for all {xn} ⊆ M such that xn → x =⇒ x ∈ M . Let {xn} ⊆ M be
Cauchy =⇒ {xn} " X Cauchy and X complete =⇒ xn → x ∈ X but then since M is closed, by
definition x ∈ M .

3. T : X → Y is continuous ⇐⇒ ∀ V ⊆ Y open, T−1(V ) ⊂⊆ X is open.
Proof. “ =⇒ ”Suppose T is continuous and V ⊆ Y is open. If T−1(V ) = ∅ then we are done
as ∅ is open. Assume T−1(V ) *= ∅. Let x0 ∈ T−1(V ) =⇒ y0 = T (x0) for y0 ∈ V . V open
=⇒ V ⊇ B(y0, ε) = N . T continuous =⇒ T−1(V ) ⊇ B(x0, δ) = N0 such that T (B(x0, δ)) = B(y0, ε).
Since N ⊆ V,N0 ⊆ T−1(V ) so T−1(V ) open because x0 ∈ V was arbitrary.
“⇐=”Suppose that for all open V ⊆ Y , T−1(V ) is open in X. Therefore ∀ x0 ∈ X and any ε-
neighborhood N of T (x0), the inverse image N0 of N is open since N open and N0 contains x0. Thus
N0 ⊇ B(x0, δ) such that T (B(x0, δ)) = B(T (x0), ε). Therefore T is continuous at x0 and therefore T
is continuous as x0 was arbitrary.
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4. T continuous at x ⇐⇒ xn → x =⇒ T (xn) → T (x).
Proof. “ =⇒ ” Assume T is continuous at x =⇒ ∀ ε > 0, ∃ δ > 0 ! d(T (x), T (x0)) < ε if
d(x, x0) < δ. Let xn → x0. Then ∃ N ∈ N such that n ≥ N , d(xn, x0) < δ. Therefore, for n ≥ N ,
d(T (xn), T (x0)) < ε by continuity and therefore T (xn) → T (x0) by definition.
“⇐=” Assume xn → x0 =⇒ T (xn) → T (x0). Suppose for contradiction T is not continuous. Then
∃ ε > 0 such that ∀ δ > 0, ∃ x *= x0 such that d(x, x0) < δ but d(T (x), T (x0)) ≥ ε. Take δ = 1

n , then
we have an {xn} such that d(xn, x0) <

1
n and d(T (xn), T (x0)) ≥ ε. Clearly xn → x0 by this definition

but T (xn) *→ T (x0). Contradiction.

Examples of Complete Metric Spaces

1. l∞ complete
Proof. Suppose {xn}n∈N is a Cauchy sequence in l∞. Then for any ε > 0 there exists a N ∈ N such
that for n,m ≥ N ,

d(xn, xm) = sup
i∈N

∣∣∣x(n)
i − x(m)

i

∣∣∣ <
ε

2

A fortiori we thus know that
∣∣∣x(n)

i − x(m)
i

∣∣∣ < ε
2 for every fixed i. Thus the sequence

(
x(1)
i , x(2)

i , . . .
)

is a Cauchy sequence in R and therefore it converges to, say, xi. Therefore we define x = (x1, x2, . . .)

to be the sequence of these limit points in i. First, we have that x is in l∞ since for xN =
(
x(N)
i

)

i∈N
there is a number such that

∣∣∣x(N)
i

∣∣∣ ≤ KN . By the triangle inequality

|xi| ≤
∣∣∣xi − x(N)

i

∣∣∣+
∣∣∣x(N)

i

∣∣∣ <
ε

2
+KN

and the RHS does not depend on i so thus this must be true for all i ∈ N. Thus x ∈ l∞. Now,
since

∣∣∣x(n)
i − x(m)

i

∣∣∣ < ε
2 then letting m ↑ ∞ we have that

∣∣∣x(n)
i − xi

∣∣∣ < ε
2 and therefore d(xn, x) =

supi

∣∣∣x(n)
i − xi

∣∣∣ ≤ ε
2 < ε and therefore xn → x ∈ l∞.

2. lp, 1 ≤ p < ∞ complete

Proof. Remember d(x, y) = (
∑∞

i=1 |xi − yi|p)
1/p. Let {xn}n∈N ⊆ lp be Cauchy. Then

∀ ε > 0 ∃ N ∈ N such that d (xn, xm)p =
∞∑

i=1

∣∣∣x(n)
i − x(m)

i

∣∣∣ <
( ε

2

)p
only if n,m ≥ N

and thus
∣∣∣x(n)

i − x(m)
i

∣∣∣ <
(
ε
2

)p for n,m ≥ N and for all i ∈ N. Thus for a fixed i ∈ N,
{
x(n)
i

}

n∈N
is

Cauchy in R =⇒ x(n)
i → xi as n ↑ ∞. But the for ε > 0, choosing the same N as before,

r∑

i=1

∣∣∣x(n)
i − x(m)

i

∣∣∣
p
<

( ε

2

)p
=⇒ lim

m→∞

r∑

i=1

∣∣∣x(n)
i − x(m)

i

∣∣∣
p
< lim

m→∞

( ε

2

)p

=⇒
r∑

i=1

∣∣∣x(n)
i − xi

∣∣∣
p
≤

( ε

2

)p

Note that this sum is now an increasing sequence (with respect to r) and bounded above. Thus it
converges to

∞∑

i=1

∣∣∣x(n)
i − xi

∣∣∣
p
≤

( ε

2

)p
=⇒

( ∞∑

i=1

∣∣∣x(n)
i − xi

∣∣∣
p
)1/p

≤ ε

2
< ε
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and therefore d(xn, x) < ε and thus xn → x. All that remains is to show that x ∈ lp. By the Minkowsky
Inequality we may write x = xm + (x− xm) ∈ lp, m ≥ N , and thus

( ∞∑

i=1

|xi|p
)1/p

=

( ∞∑

i=1

∣∣∣x(m)
i +

(
xi − x(m)

i

)∣∣∣
p
)1/p

≤
( ∞∑

i=1

∣∣∣x(m)
i

∣∣∣
p
)1/p

+

( ∞∑

i=1

∣∣∣xi − x(m)
i

∣∣∣
p
)1/p

and the first term is < ∞ since xm ∈ lp and the second one is ≤ ε
2 and thus the sum is finite, so x ∈ lp.

3. C[a, b] complete
Comment. C[a, b] is complete with respect to the norm d(f, g) = supx∈[a,b] |f(x) − g(x)| but is not
complete with respect to d(f, g) =

´ b
a |f(t)− g(t)|dt (induced by L1[a, b] due to C[a, b] ⊆ L1[a, b] = {f :

[a, b] → R | f is integrable, i.e. d(f, g) < ∞}).
Comment. A counter-example to the completeness of C[a, b] under the L1 norm is by looking at
P[a, b] " C[a, b], the set of polynomials on [a, b] not complete. Counter-example is fn(x) = xn on [0, 1].

fn(x) → f(x) =

{
0 , x ∈ [0, 1)
1 , x = 1

*∈ P[a, b] (also not in C[a, b]).

Proof. Let {fn}n∈N be a Cauchy sequence in C[a, b] =⇒ ∀ ε > 0 ∃ N ∈ N such that d(fn, fm) < ε
if n,m ≥ N =⇒ supt∈[a,b] |fn(t) − fm(t)| < ε =⇒ |fn(t) − fm(t)| < ε ∀ t ∈ [a, b], n,m ≥ N =⇒
for fixed t0, {fn(t0)}n∈N is a Cauchy sequence in R =⇒ fn(t0) → f(t0) as n ↑ ∞. Therefore we have
shown pointwise convergence of fn(t) → f(t). We must show that f ∈ C[a, b]. Note that since {fn}
is Cauchy, then ∀ ε > 0 ∃ N ∈ N such that supt∈[a,b] |fn(t) − fm(t)| < ε

2 when n,m ≥ N . Letting
m ↑ ∞ =⇒ |fn(t)− f(t)| ≤ ε

2 < ε since fm → f . Therefore fn → f uniformly so f ∈ C[a, b].

4. Q is not complete.
Proof. Note that Q " R and R is complete. Thus it suffices to show Q is not closed in order to
show Q is not complete. Note that π ∈ acc(Q) since every ball about π contains a rational number.
But π *∈ Q and therefore we can construct a sequence in Q based on these balls that converge to π.
Therefore xn → π but π *∈ Q and therefore Q is not closed and therefore not complete.

5. c = {all convergent sequences} is complete
Proof. Note that c " l∞ and therefore c is complete ⇐⇒ c is closed. Also note that the metric on
c is induced by l∞, i.e. d(x, y) = supi |xi − yi|. We let x ∈ c̄, the closure of c. We want to show that
x ∈ c. By definition of c̄, there exists xn → x where {xn} ⊆ c. Thus for any ε > 0 there exists N ∈ N
such that for n ≥ N , ∣∣∣x(n)

i − xi

∣∣∣ ≤ sup
i

∣∣∣x(n)
i − xi

∣∣∣ = d(xn, x) <
ε

3

Note also that xn =
{
x(n)
i

}

i∈N
is itself a sequence in c that converges to xi and thus it is Cauchy.

Therefore there exists an N1 such that for n ≥ N1,
∣∣∣x(n)

i − x(n)
j

∣∣∣ <
ε

3

and therefore using the triangle inequality

|xi − xj | ≤
∣∣∣xi − x(n)

i

∣∣∣+
∣∣∣x(n)

i − x(n)
j

∣∣∣+
∣∣∣x(n)

j − xj

∣∣∣

<
ε

3
+

ε

3
+

ε

3
= ε

and therefore x is a Cauchy sequence of real numbers and therefore it converges. Therefore, by definition
of c, x ∈ c and therefore c̄ ⊆ c and a priori we knew c ⊆ c̄ so therefore c = c̄ and c is closed.

5



Completion of Metric Spaces

Isometry. A map T : X → Y with respective metrics dX and dY is an isometry if and only if it satisfies
dX(a, b) = dY (T (a), T (b)).

Isometric. Two metric spaces, X and Y , are said to be isometric if there exists a bijective isometry from
X to Y .

Normed Vector Spaces / Banach Spaces

Vector space. X = (X,+, ·) (space, addition of elements in space, scalar multiplication) over K (scalar
space, a field, usually R or C) is a vector space if and only if for x, y, z ∈ X and α,β ∈ K,

1. Closed under + : X ×X → X with (x, y) 7→ x+ y

2. Closed under · : K ×X → X with (α, x) 7→ α · x

3. (x+ y) + z = x+ (y + z)

4. There exists 0 ∈ X such that x+ 0 = 0 + x = x

5. x+ y = y + x

6. There exists −x ∈ X such that x+ (−x) = (−x) + x = 0

7. (αβ) · x = α · (β · x)

8. There exists 1 ∈ K such that 1 · x = x · 1 = x

9. (α+ β) · x = α · x+ β · x

10. α · (x+ y) = α · x+ α · y

Subspace. If X is a vector space, then Y ⊆ X is a subspace ⇐⇒ Y is a vector space ⇐⇒ Y is closed
under + and ·.

Linear combination. If xi ∈ X and αi ∈ K for i = 1, 2, . . . , n then
∑n

i=1 αi · xi is a linear combination of
elements in X.

Linear independence. x1, x2, . . . , xn ∈ X are linearly independent ⇐⇒
∑n

i=1 αi · xi = 0 =⇒ αi = 0 for
all i = 1, 2, . . . , n.

Span. For M ⊆ X, span(M) = {all linear combinations of elements of M} is a subspace. M spans
X ⇐⇒ span(M) = X.

Basis. B ⊆ X is a basis ⇐⇒ B is linearly independent and span(B) = X.

Dimension. If B is a basis for X, then dimX = |B| (cardinality of B)

Norm. A norm on a vector space X, ‖ · ‖ : X → [0,∞) defined by x 7→ ‖x‖ over K = R or C satisfies (for
x, y ∈ X and α ∈ K)

1. Positive-definiteness: ‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = 0

2. Scalar multiplication: ‖α · x‖ = |α| · ‖x‖

3. Triangle-inequality (sub-additivity): ‖x+ y‖ ≤ ‖x‖+ ‖y‖
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Semi-norm. p : X → [0,∞) is a semi-norm ⇐⇒ it satisfies properties 2 and 3 above, but not necessarily
1 (i.e. some x ∈ X that is not 0 could have p(x) = 0).

Quotient space. For X a vector space and N a subspace, X/N is a vector space.

Lesbesgue integral. f 7→ ‖f‖ is defined by ‖f‖ =
´ b
a |f(x)|dx. Note that positive-definiteness is not

satisfied for any general f and thus this is a semi-norm. If f were continuous, then this would be a norm.
Therefore we define X/N to be a normed vector space when N = kerX = {g ∈ X | ‖g‖ = 0}.

Banach space. Complete normed vector space.

Hamel basis. A basis {eα}α∈I is a Hamel basis ⇐⇒ ∀ x ∈ X ∃! {αn} ⊆ K such that x =
∑p

i=1 αi · ei.

Schauder basis. Basis for a normed vector space X is {ei}i∈I is a Schauder basis ⇐⇒ ∀ x ∈ X ∃ {αi}1≤i≤∞ ⊆
K such that x =

∑∞
i=1 αi · ei.

Theorem (Banach). If X is a normed vector space with Schauder basis, then X is separable.

Proof. We WTS ∀ x ∈ X, ∀ ε > 0, ∃ a ∈ M such that d(a, x) < ε for some M ⊆ X. I.e. we
want to show there exists some dense subset of X and then show it is countable.

Let x ∈ X and ε > 0. Let M = ∪∞
n=1An where An = {

∑n
i=1 qi · ei | qi ∈ Q}. Since Q is a dense

countable subset of K, then a finite linear combination of elements in Q will be and then a
countable union of countable sets is also countable. Therefore M is countable.

By the definition of the Schauder basis, ∃ N ∈ N such that ‖x−
∑n

i=1 αiei‖ < ε
2 if n ≥ N, {αi} ⊆

K. And further, Q is a dense subset of K =⇒ ∀ αi ∃ qi such that |αi − qi| < ε
2b where

b =
∑n

i=1 ‖ei‖. Let a =
∑n

i=1 qiei ∈ M .

‖x− a‖ =

∥∥∥∥∥x−
n∑

i=1

qiei

∥∥∥∥∥

≤

∥∥∥∥∥

n∑

i=1

αiei

∥∥∥∥∥+

∥∥∥∥∥

n∑

i=1

(αi − qi)ei

∥∥∥∥∥

<
ε

2
+

n∑

i=1

|αi − qi|‖ei‖

<
ε

2
+

n∑

i=1

ε

2b
· ‖ei‖ =

ε

2
+

ε

2
= ε

Therefore M is dense and countable =⇒ X is separable.

Bolzano-Weierstraus Theorem. Every bounded sequence has a convergent subsequence.

Observation of boundedness of vectors in X. If X is a normed vector space with Hamel basis given
by {ei}1≤i≤n (linearly independent), then ∃ c,M ∈ K such that

c ·
n∑

i=1

|αi| ≤

∥∥∥∥∥

n∑

i=1

αiei

∥∥∥∥∥ ≤ M ·
n∑

i=1

|αi|

Proof. Note that if we choose M = max1≤i≤n ‖ei‖ then the ≤ part is trivial by the triangle inequality. Note

that if c ·
∑n

i=1 |αi| ≤‖
∑n

i=1 αiei‖, then c ≤ ‖∑n
i=1 αiei‖∑n
i=1 |αi| =

∥∥∥
∑n

i=1
αi∑n

i=1 |αi|ei
∥∥∥ and taking Bi =

αi∑n
k=1 |αi|

(note that
∑n

i=1 |βi| = 1) then we want to show that ‖
∑n

i=1 βiei‖ ≥ c > 0 where
∑n

i=1 |βi| = 1. Let
M = {x = (x1, . . . , xn) ∈ Kn |

∑n
i=1 |xi| = 1}.

For contradiction assume that ∃ {βk}k∈N ⊆ K such that
∥∥∥
∑n

i=1 β
(k)
i ei

∥∥∥ → 0 with βk = (β(k)
1 , . . . ,β(k)

n )

satisfying
∑n

i=1 |β
(k)
i | = 1 for k = 1, 2, . . ..
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M is a bounded set in K (Rn,Cn). Thus βk is bounded and βk = (β(k)
1 , . . . ,β(k)

n ) ∈ M . Bolzano Weierstraus
Theorem says that there exists β(kr) such that β(kr) → γ and since β(kr) ∈ M and M is closed, then
γ ∈ M . Thus

∑n
i=1 |γi| = 1. But

∑n
i=1 βiei →

∑n
i=1 γiei and

∑n
i=1 βiei → 0 by our assumption. Thus∑n

i=1 γiei = 0 =⇒ γi = 0 for all i = 1, 2, . . . , n since ei’s are linearly independent. But then γ *∈ M is our
contradiction, as we showed it was.

Quotient Spaces

Let X be a normed vector space with scalar field K. Let N be a subspace of X. Then

X/N = {x+N | x ∈ X} is called a quotient space

Define π : X → X/N by π(x) = x+N and further define

π(x) + π(y) = π(x+ y)

α · π(x) = π(α · x)

Note that π(x) = π(x′) =⇒ π(x)− π(x′) = 0 =⇒ π(x− x′) = 0 =⇒ x− x′ ∈ 0 +N =⇒ x− x′ ∈ N .

Define the equivalence relation x ∼ y ⇐⇒ x− y ∈ N . Thus X/N = X/ ∼ and π(x) = [x].

Suppose X is a vector space with a semi-norm p(x). We want to show (X/N, ‖ · ‖) is a normed vector space.
Define ‖π(x)‖ = p(x) and let N = p−1({0}). This is a normed vector space.

Theorem. X is a normed vector space =⇒ X/N is a normed vector space ⇐⇒ N " X is a closed
subspace.

Proof. All that must be shown is that the norm defined by ‖π(x)‖ = d(x,N) = infy∈N ‖x− y‖
is a norm (where the second norm is a norm in X).

Theorem. X is a Banach space =⇒ X/N is a Banach space.

Proof. Must show that X/N is complete.

8


