MA 515
 Test 1 Study Guide

Metric Spaces

Metric space. (X, d) is a metric space if and only if $d: X \times X \rightarrow[0, \infty)$ is a function satisfying

1. Positive definite, $d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$
2. Symmetric, $d(x, y)=d(y, x)$ for all $x, y \in X$
3. Triangle inequality, $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$

Example metric spaces.

1. $X=l^{\infty}=\{$ bounded real sequences $\}=\left\{x=\left\{x_{i}\right\}_{i \in \mathbb{N}} \mid x_{i} \in \mathbb{R}\right.$ and $\left.\sup _{i \in \mathbb{N}}\left|x_{i}\right|=M_{x}<\infty\right\}$ and $d(x, y)=$ $\sup _{i \in \mathbb{N}}\left|x_{i}-y_{i}\right|$
2. $X=B(A)$ where $A \subset \mathbb{R}$ and $B(A)=\{f: A \rightarrow \mathbb{R} \mid f$ is bounded $\}$ with $d(f, g)=\sup _{t \in A}|f(t)-g(t)|$.
3. $X=\mathcal{C}[a, b]=\{f:[a, b] \rightarrow \mathbb{R} \mid f$ is continuous $\} \subseteq B[a, b]$ (Why? Because continuous function on compact set is bounded.)
4. $X=$ any set and $d(x, y)=\left\{\begin{array}{lll}1 & , & x \neq y \\ 0 & , & x=y\end{array}\right.$.
5. (X, d) a metric space then $\left(X, d^{\prime}\right)$ is also a metric space where $d^{\prime}(x, y)=\frac{d(x, y)}{a+d(x, y)}$ with $a>0$ fixed.
6. $\left(X_{0}, d_{0}\right)$ is a metric space then (\mathcal{S}, d) is a metric space where $\mathcal{S}=\left\{x=\left\{x_{i}\right\}_{i \in \mathbb{N}}: \mathbb{N} \rightarrow x_{0} \mid x_{i} \in X_{0} \forall i \in \mathbb{N}\right\}$ and $d(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} \cdot \frac{d_{0}\left(x_{k}, y_{k}\right)}{a+d_{0}\left(x_{k}, y_{k}\right)}$ where $a>0$ and note that $x, y \in \mathcal{S} \Longrightarrow x, y$ are sequences in X_{0}. We can further define $d(x, y)=\sum_{k=1}^{\infty} \frac{1}{2^{k}} d_{1}\left(x_{k}, y_{k}\right)$ where d_{1} is any general bounded metric.
7. $X=l^{p}=\left\{\left.x \in \mathbb{R}^{\mathbb{N}}\left|\sum_{i=1}^{\infty}\right| x_{i}\right|^{p}<\infty\right\}$ with $p \geq 1$ fixed.

Hölder's inequality. For $p>1$,

$$
\sum_{i=1}^{\infty}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{\infty}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

where p, q are conjugates of one another, i.e. $\frac{1}{p}+\frac{1}{q}=1$.
Minkowsky's inequality. For $p \geq 1$,

$$
\left(\sum_{i=1}^{\infty}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|y_{i}\right|^{p}\right)^{1 / p}
$$

L^{p} spaces (Lesbesgue). Hölder's inequality becomes $\int|f \cdot g| d u \leq\left(\int|f|^{p} d u\right)^{1 / p}\left(\int|g|^{q} d u\right)^{1 / q}$ where p, q are conjugates and Minkowsky's becomes $\left(\int|f+g|^{p} d u\right)^{1 / p} \leq\left(\int|f|^{p} d u\right)^{1 / p}+\left(\int|g|^{p} d u\right)^{1 / p}$.

Analysis Definitions

Open ball. $B(x, r)=\{y \in X \mid d(x, y)<r\}$
Closed ball. $\tilde{B}(x, r)=\{y \in X \mid d(x, y) \leq r\}$
Sphere. $S(x, r)=\{y \in X \mid d(x, y)=r\}$
Open set. $A \subseteq X$ is open $\Longleftrightarrow \forall x \in A \exists \delta>0 \ni B(x, \delta) \subseteq A \Longleftrightarrow A=\AA$
Interior point. $x \in M \subseteq X, x$ is an interior point of $M \Longleftrightarrow \exists \delta>0 \ni B(x, \delta) \subseteq M$
Interior set. $\AA=\{x \in A \mid x$ is an interior point of $A\}$
Accumulation point. x is an accumulation point of $M \subseteq X \Longleftrightarrow \forall \epsilon>0,(B(x, \epsilon) \backslash\{x\}) \cap M \neq \emptyset$.
Accumulation set. $\operatorname{acc}(M)=\{x \in X \mid x$ is an accumulation point $\}$
Closure. $M \cup \operatorname{acc}(M)=\bar{M}$
Topology. $(X, \mathcal{F}), \mathcal{F} \subseteq \mathcal{P}(X)$ is a topological space. \mathcal{F} must satisfy

1. $\emptyset, X \in \mathcal{F}$
2. \mathcal{F} closed under \cup
3. \mathcal{F} closed under finite \cap

Convergent sequence. $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq X, x_{n}$ conergent to $x \in X \Longleftrightarrow\left\{d\left(x_{n}, x\right)\right\}_{n \in \mathbb{N}} \rightarrow 0 \Longleftrightarrow \forall \epsilon>$ $0, \exists N \in \mathbb{N} \ni d\left(x_{n}, x\right)<\epsilon$ only if $n \geq N$
Continuous. $T: X \rightarrow Y((X, d),(Y, d)$ metric spaces) is continuous (at $x) \Longleftrightarrow \forall \epsilon>0, \exists \delta>0 \ni d(a, x)<$ $\delta \Longrightarrow d(T(a), T(x))<\epsilon($ where $a \in X) \Longleftrightarrow \forall \epsilon>0, \exists \delta>0 \ni \forall a \in B(x, \delta), T(a) \in B(T(x), \epsilon) \Longleftrightarrow$ $\forall \epsilon>0, \exists \delta>0$ э $T(B(x, \delta)) \subseteq B(T(x), \epsilon)$.
Bounded. $M \subseteq X$ is bounded $\Longleftrightarrow \delta(M)=\operatorname{diam}(M)=\sup _{x, y \in M} d(x, y)<\infty$

Separable Metric Space Examples

Dense set. $A \subseteq X$ is dense $\Longleftrightarrow \forall x \in X, \forall \epsilon>0, B(x, \epsilon) \cap A \neq \emptyset$
Separable. X is separable $\Longleftrightarrow \exists A \subseteq X \ni A$ is dense and countable $\left(\bar{A}=X,|A|=\aleph_{0}\right)$

1. $\mathbb{Q} \subsetneq \mathbb{R}$ is dense and countable $\Longrightarrow \mathbb{R}$ is separable.
2. $\mathbb{Q}^{d} \subsetneq\left(\mathbb{R}^{d},\|\cdot\|_{2}\right)$ is dense and countable $\Longrightarrow \mathbb{R}^{d}$ is separable
3. $(\mathbb{C},|\cdot|)$ is analogous to $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right) \Longrightarrow \mathbb{C}$ is separable metric space (e.g. $\left\{q_{1}+i q_{2} \mid q_{i} \in \mathbb{Q}\right\}$ is dense and countable)
4. l^{∞} is not separable.

Proof. Let $K=\{0,1\}^{\mathbb{N}}=\{$ sequences of 0 's and 1 's only $\} \subsetneq l^{\infty}$ (as sequences of 0 's and 1 's must be bounded). Let $x, y \in K \ni x \neq y$. Then if $\epsilon=\frac{1}{3}, B(x, \epsilon) \cap B(y, \epsilon)=\emptyset$. Since there are uncountably many sequences of 0 's and 1's then there also exist uncountably many balls about these sequences. Thus $\{B(x, \epsilon) \mid x \in K\}$ is uncountable. Let M be any dense set in l^{∞}. Then every ball of $\{B(x, \epsilon) \mid x \in K\}$ must contain an element in M. But these balls are non-intersecting so each one contains at least 1 distinct point in M. Thus there are uncountably many of these distinct points in M and therefore M must be uncountable. Therefore every dense set in M is uncountable and therefore l^{∞} cannot be separable.
5. $l^{p}=\left\{\left.x \in \mathbb{R}^{\mathbb{N}}\left|\sum_{i=1}^{\infty}\right| x_{i}\right|^{p}<\infty\right\}$ is separable. $A=\left\{q \in \mathbb{Q}^{\mathbb{N}} \mid q_{i}=0\right.$ except for finitely many q_{i} 's $\}$ is dense and countable.
Proof. A is countable. We must show that A is dense. We WTS that $\forall x \in l^{p}, \forall \epsilon>0 \exists q \in A$ э $d(q, x)<\epsilon$ with $q \neq x$.
Thus let $x \in l^{p} \Longrightarrow \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty \Longrightarrow \exists N \in \mathbb{N}$ э $\sum_{i=N+1}^{\infty}\left|x_{i}\right|^{p}<\epsilon_{1}$. Let

$$
\begin{aligned}
q & =\left(q_{1}, \ldots, q_{N}, 0,0, \ldots\right) \\
x & =\left(x_{1}, \ldots, x_{N}, x_{N+1}, \ldots\right)
\end{aligned}
$$

Then

$$
d(x, q)=\left(\sum_{i=1}^{N}\left|x_{i}-q_{i}\right|^{p}+\sum_{i=N+1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

We have that \mathbb{Q} is dense so choose $q_{i} \in \mathbb{Q}, 1 \leq i \leq N$ such that $\left|q_{i}-x_{i}\right|<\epsilon_{2} \Longrightarrow d(x, q)=$ $\left(\sum_{i=1}^{N}\left|x_{i}-q_{i}\right|^{p}+\sum_{i=N+1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}<\left(N \cdot \epsilon_{2}^{p}+\epsilon_{1}\right)^{1 / p}<\epsilon$ for choice of $\epsilon_{1}=\frac{\epsilon^{p}}{2}$ and $\epsilon_{2}=\frac{\epsilon}{(2 N)^{1 / p}}$.

Completeness

Cauchy sequence. $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq X$ is Cauchy $\Longleftrightarrow d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \uparrow \infty \Longleftrightarrow \forall \epsilon>0, \exists N \in \mathbb{N}$ э $d\left(x_{n}, x_{m}\right)<\epsilon$ only if $n, m \geq N$.
Complete. X is complete \Longleftrightarrow all Cauchy sequences in X converge in X
Banach space. Complete normed vector space (contains Hilbert spaces).
Hilbert space. Banach space but with norm induced by inner product.
Theorems.

1. $M \subseteq X$ is closed $\Longleftrightarrow\left\{x_{n}\right\} \subseteq M$ and $x_{n} \rightarrow x \Longrightarrow x \in M$

Proof. " \Longrightarrow "Let $M \subseteq X$ be closed. Let $x \in \bar{M}$. If $x \in M$ then $\left\{x_{n}\right\}_{n \in \mathbb{N}} \ni x_{n} \equiv x$ is a sequence in M that converges to $x \in M$. Now let $x \notin M$ (i.e. $x \in \partial M$). Then it must be an accumulation point and thus $B(x, 1 / n)$ contains an $x_{n} \in M$ such that $x_{n} \neq x$. This is a sequence with $x_{n} \rightarrow x$ because $1 / n \rightarrow 0$ as $n \uparrow \infty$.
" " Suppose that $\left\{x_{n}\right\} \subseteq M$ such that $x_{n} \rightarrow x \Longrightarrow x \in M$. If $x \in M$ then $x \in \bar{M}$. Now suppose that $x \notin M$ but $x \in \bar{M}$. But then we have that $B\left(x, \epsilon_{n}\right)$ contains an x_{n} different from x and thus x must be an accumulation point of M and therefore $x \in \bar{M}$.
2. $M \subseteq X, X$ complete. M complete $\Longleftrightarrow M$ closed.

Proof. Let $M \subseteq X$ and X be complete.
" \Longrightarrow "Suppose M is complete. Then all Cauchy sequences in M converge to a point in $M .\left\{x_{n}\right\}$ Cauchy in $M \Longrightarrow x_{n} \rightarrow x \in M$ and by (1) M is closed.
" " Suppose M is closed. Then for all $\left\{x_{n}\right\} \subseteq M$ such that $x_{n} \rightarrow x \Longrightarrow x \in M$. Let $\left\{x_{n}\right\} \subseteq M$ be Cauchy $\Longrightarrow\left\{x_{n}\right\} \subsetneq X$ Cauchy and X complete $\Longrightarrow x_{n} \rightarrow x \in X$ but then since M is closed, by definition $x \in M$.
3. $T: X \rightarrow Y$ is continuous $\Longleftrightarrow \forall V \subseteq Y$ open, $T^{-1}(V) \subset \subseteq X$ is open.

Proof. " \Longrightarrow "Suppose T is continuous and $V \subseteq Y$ is open. If $T^{-1}(V)=\emptyset$ then we are done as \emptyset is open. Assume $T^{-1}(V) \neq \emptyset$. Let $x_{0} \in T^{-1}(V) \Longrightarrow y_{0}=T\left(x_{0}\right)$ for $y_{0} \in V$. V open $\Longrightarrow V \supseteq B\left(y_{0}, \epsilon\right)=N . T$ continuous $\Longrightarrow T^{-1}(V) \supseteq B\left(x_{0}, \delta\right)=N_{0}$ such that $T\left(B\left(x_{0}, \delta\right)\right)=B\left(y_{0}, \epsilon\right)$. Since $N \subseteq V, N_{0} \subseteq T^{-1}(V)$ so $T^{-1}(V)$ open because $x_{0} \in V$ was arbitrary.
" \Longleftarrow "Suppose that for all open $V \subseteq Y, T^{-1}(V)$ is open in X. Therefore $\forall x_{0} \in X$ and any ϵ neighborhood N of $T\left(x_{0}\right)$, the inverse image N_{0} of N is open since N open and N_{0} contains x_{0}. Thus $N_{0} \supseteq B\left(x_{0}, \delta\right)$ such that $T\left(B\left(x_{0}, \delta\right)\right)=B\left(T\left(x_{0}\right), \epsilon\right)$. Therefore T is continuous at x_{0} and therefore T is continuous as x_{0} was arbitrary.
4. T continuous at $x \Longleftrightarrow x_{n} \rightarrow x \Longrightarrow T\left(x_{n}\right) \rightarrow T(x)$.

Proof. " \Longrightarrow "Assume T is continuous at $x \Longrightarrow \forall \epsilon>0, \exists \delta>0 \ni d\left(T(x), T\left(x_{0}\right)\right)<\epsilon$ if $d\left(x, x_{0}\right)<\delta$. Let $x_{n} \rightarrow x_{0}$. Then $\exists N \in \mathbb{N}$ such that $n \geq N, d\left(x_{n}, x_{0}\right)<\delta$. Therefore, for $n \geq N$, $d\left(T\left(x_{n}\right), T\left(x_{0}\right)\right)<\epsilon$ by continuity and therefore $T\left(x_{n}\right) \rightarrow T\left(x_{0}\right)$ by definition.
" $\Longleftarrow "$ Assume $x_{n} \rightarrow x_{0} \Longrightarrow T\left(x_{n}\right) \rightarrow T\left(x_{0}\right)$. Suppose for contradiction T is not continuous. Then $\exists \epsilon>0$ such that $\forall \delta>0, \exists x \neq x_{0}$ such that $d\left(x, x_{0}\right)<\delta$ but $d\left(T(x), T\left(x_{0}\right)\right) \geq \epsilon$. Take $\delta=\frac{1}{n}$, then we have an $\left\{x_{n}\right\}$ such that $d\left(x_{n}, x_{0}\right)<\frac{1}{n}$ and $d\left(T\left(x_{n}\right), T\left(x_{0}\right)\right) \geq \epsilon$. Clearly $x_{n} \rightarrow x_{0}$ by this definition but $T\left(x_{n}\right) \nrightarrow T\left(x_{0}\right)$. Contradiction.

Examples of Complete Metric Spaces

1. l^{∞} complete

Proof. Suppose $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in l^{∞}. Then for any $\epsilon>0$ there exists a $N \in \mathbb{N}$ such that for $n, m \geq N$,

$$
d\left(x_{n}, x_{m}\right)=\sup _{i \in \mathbb{N}}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\frac{\epsilon}{2}
$$

A fortiori we thus know that $\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\frac{\epsilon}{2}$ for every fixed i. Thus the sequence $\left(x_{i}^{(1)}, x_{i}^{(2)}, \ldots\right)$ is a Cauchy sequence in \mathbb{R} and therefore it converges to, say, x_{i}. Therefore we define $x=\left(x_{1}, x_{2}, \ldots\right)$ to be the sequence of these limit points in i. First, we have that x is in l^{∞} since for $x_{N}=\left(x_{i}^{(N)}\right)_{i \in \mathbb{N}}$ there is a number such that $\left|x_{i}^{(N)}\right| \leq K_{N}$. By the triangle inequality

$$
\left|x_{i}\right| \leq\left|x_{i}-x_{i}^{(N)}\right|+\left|x_{i}^{(N)}\right|<\frac{\epsilon}{2}+K_{N}
$$

and the RHS does not depend on i so thus this must be true for all $i \in \mathbb{N}$. Thus $x \in l^{\infty}$. Now, since $\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\frac{\epsilon}{2}$ then letting $m \uparrow \infty$ we have that $\left|x_{i}^{(n)}-x_{i}\right|<\frac{\epsilon}{2}$ and therefore $d\left(x_{n}, x\right)=$ $\sup _{i}\left|x_{i}^{(n)}-x_{i}\right| \leq \frac{\epsilon}{2}<\epsilon$ and therefore $x_{n} \rightarrow x \in l^{\infty}$.
2. $l^{p}, 1 \leq p<\infty$ complete

Proof. Remember $d(x, y)=\left(\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}$. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq l^{p}$ be Cauchy. Then

$$
\forall \epsilon>0 \exists N \in \mathbb{N} \text { such that } d\left(x_{n}, x_{m}\right)^{p}=\sum_{i=1}^{\infty}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\left(\frac{\epsilon}{2}\right)^{p} \text { only if } n, m \geq N
$$

and thus $\left|x_{i}^{(n)}-x_{i}^{(m)}\right|<\left(\frac{\epsilon}{2}\right)^{p}$ for $n, m \geq N$ and for all $i \in \mathbb{N}$. Thus for a fixed $i \in \mathbb{N},\left\{x_{i}^{(n)}\right\}_{n \in \mathbb{N}}$ is Cauchy in $\mathbb{R} \Longrightarrow x_{i}^{(n)} \rightarrow x_{i}$ as $n \uparrow \infty$. But the for $\epsilon>0$, choosing the same N as before,

$$
\begin{aligned}
\sum_{i=1}^{r}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|^{p}<\left(\frac{\epsilon}{2}\right)^{p} & \Longrightarrow \lim _{m \rightarrow \infty} \sum_{i=1}^{r}\left|x_{i}^{(n)}-x_{i}^{(m)}\right|^{p}<\lim _{m \rightarrow \infty}\left(\frac{\epsilon}{2}\right)^{p} \\
& \Longrightarrow \sum_{i=1}^{r}\left|x_{i}^{(n)}-x_{i}\right|^{p} \leq\left(\frac{\epsilon}{2}\right)^{p}
\end{aligned}
$$

Note that this sum is now an increasing sequence (with respect to r) and bounded above. Thus it converges to

$$
\sum_{i=1}^{\infty}\left|x_{i}^{(n)}-x_{i}\right|^{p} \leq\left(\frac{\epsilon}{2}\right)^{p} \Longrightarrow\left(\sum_{i=1}^{\infty}\left|x_{i}^{(n)}-x_{i}\right|^{p}\right)^{1 / p} \leq \frac{\epsilon}{2}<\epsilon
$$

and therefore $d\left(x_{n}, x\right)<\epsilon$ and thus $x_{n} \rightarrow x$. All that remains is to show that $x \in l^{p}$. By the Minkowsky Inequality we may write $x=x_{m}+\left(x-x_{m}\right) \in l^{p}, m \geq N$, and thus

$$
\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}=\left(\sum_{i=1}^{\infty}\left|x_{i}^{(m)}+\left(x_{i}-x_{i}^{(m)}\right)\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{\infty}\left|x_{i}^{(m)}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|x_{i}-x_{i}^{(m)}\right|^{p}\right)^{1 / p}
$$

and the first term is $<\infty$ since $x_{m} \in l^{p}$ and the second one is $\leq \frac{\epsilon}{2}$ and thus the sum is finite, so $x \in l^{p}$.
3. $\mathcal{C}[a, b]$ complete

Comment. $\mathcal{C}[a, b]$ is complete with respect to the norm $d(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)|$ but is not complete with respect to $d(f, g)=\int_{a}^{b}|f(t)-g(t)| d t$ (induced by $L^{1}[a, b]$ due to $\mathcal{C}[a, b] \subseteq L^{1}[a, b]=\{f$: $[a, b] \rightarrow R \mid f$ is integrable, i.e. $d(f, g)<\infty\})$.
Comment. A counter-example to the completeness of $\mathcal{C}[a, b]$ under the L^{1} norm is by looking at $\mathbb{P}[a, b] \subsetneq \mathcal{C}[a, b]$, the set of polynomials on $[a, b]$ not complete. Counter-example is $f_{n}(x)=x^{n}$ on $[0,1]$. $f_{n}(x) \rightarrow f(x)=\left\{\begin{array}{lll}0 & , & x \in[0,1) \\ 1 & , & x=1\end{array} \notin \mathbb{P}[a, b]\right.$ (also not in $\mathcal{C}[a, b]$).
Proof. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $\mathcal{C}[a, b] \Longrightarrow \forall \epsilon>0 \exists N \in \mathbb{N}$ such that $d\left(f_{n}, f_{m}\right)<\epsilon$ if $n, m \geq N \Longrightarrow \sup _{t \in[a, b]}\left|f_{n}(t)-f_{m}(t)\right|<\epsilon \Longrightarrow\left|f_{n}(t)-f_{m}(t)\right|<\epsilon \forall t \in[a, b], n, m \geq N \Longrightarrow$ for fixed $t_{0},\left\{f_{n}\left(t_{0}\right)\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathbb{R} \Longrightarrow f_{n}\left(t_{0}\right) \rightarrow f\left(t_{0}\right)$ as $n \uparrow \infty$. Therefore we have shown pointwise convergence of $f_{n}(t) \rightarrow f(t)$. We must show that $f \in \mathcal{C}[a, b]$. Note that since $\left\{f_{n}\right\}$ is Cauchy, then $\forall \epsilon>0 \exists N \in \mathbb{N}$ such that $\sup _{t \in[a, b]}\left|f_{n}(t)-f_{m}(t)\right|<\frac{\epsilon}{2}$ when $n, m \geq N$. Letting $m \uparrow \infty \Longrightarrow\left|f_{n}(t)-f(t)\right| \leq \frac{\epsilon}{2}<\epsilon$ since $f_{m} \rightarrow f$. Therefore $f_{n} \rightarrow f$ uniformly so $f \in \mathcal{C}[a, b]$.
4. \mathbb{Q} is not complete.

Proof. Note that $\mathbb{Q} \subsetneq \mathbb{R}$ and \mathbb{R} is complete. Thus it suffices to show \mathbb{Q} is not closed in order to show \mathbb{Q} is not complete. Note that $\pi \in \operatorname{acc}(\mathbb{Q})$ since every ball about π contains a rational number. But $\pi \notin \mathbb{Q}$ and therefore we can construct a sequence in \mathbb{Q} based on these balls that converge to π. Therefore $x_{n} \rightarrow \pi$ but $\pi \notin \mathbb{Q}$ and therefore \mathbb{Q} is not closed and therefore not complete.
5. $c=\{$ all convergent sequences $\}$ is complete

Proof. Note that $c \subsetneq l^{\infty}$ and therefore c is complete $\Longleftrightarrow c$ is closed. Also note that the metric on c is induced by l^{∞}, i.e. $d(x, y)=\sup _{i}\left|x_{i}-y_{i}\right|$. We let $x \in \bar{c}$, the closure of c. We want to show that $x \in c$. By definition of \bar{c}, there exists $x_{n} \rightarrow x$ where $\left\{x_{n}\right\} \subseteq c$. Thus for any $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\left|x_{i}^{(n)}-x_{i}\right| \leq \sup _{i}\left|x_{i}^{(n)}-x_{i}\right|=d\left(x_{n}, x\right)<\frac{\epsilon}{3}
$$

Note also that $x_{n}=\left\{x_{i}^{(n)}\right\}_{i \in \mathbb{N}}$ is itself a sequence in c that converges to x_{i} and thus it is Cauchy. Therefore there exists an N_{1} such that for $n \geq N_{1}$,

$$
\left|x_{i}^{(n)}-x_{j}^{(n)}\right|<\frac{\epsilon}{3}
$$

and therefore using the triangle inequality

$$
\begin{aligned}
\left|x_{i}-x_{j}\right| & \leq\left|x_{i}-x_{i}^{(n)}\right|+\left|x_{i}^{(n)}-x_{j}^{(n)}\right|+\left|x_{j}^{(n)}-x_{j}\right| \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

and therefore x is a Cauchy sequence of real numbers and therefore it converges. Therefore, by definition of $c, x \in c$ and therefore $\bar{c} \subseteq c$ and a priori we knew $c \subseteq \bar{c}$ so therefore $c=\bar{c}$ and c is closed.

Completion of Metric Spaces

Isometry. A map $T: X \rightarrow Y$ with respective metrics d_{X} and d_{Y} is an isometry if and only if it satisfies $d_{X}(a, b)=d_{Y}(T(a), T(b))$.
Isometric. Two metric spaces, X and Y, are said to be isometric if there exists a bijective isometry from X to Y.

Normed Vector Spaces / Banach Spaces

Vector space. $X=(X,+, \cdot)$ (space, addition of elements in space, scalar multiplication) over K (scalar space, a field, usually \mathbb{R} or \mathbb{C}) is a vector space if and only if for $x, y, z \in X$ and $\alpha, \beta \in K$,

1. Closed under $+: X \times X \rightarrow X$ with $(x, y) \mapsto x+y$
2. Closed under $\cdot: K \times X \rightarrow X$ with $(\alpha, x) \mapsto \alpha \cdot x$
3. $(x+y)+z=x+(y+z)$
4. There exists $0 \in X$ such that $x+0=0+x=x$
5. $x+y=y+x$
6. There exists $-x \in X$ such that $x+(-x)=(-x)+x=0$
7. $(\alpha \beta) \cdot x=\alpha \cdot(\beta \cdot x)$
8. There exists $1 \in K$ such that $1 \cdot x=x \cdot 1=x$
9. $(\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x$
10. $\alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y$

Subspace. If X is a vector space, then $Y \subseteq X$ is a subspace $\Longleftrightarrow Y$ is a vector space $\Longleftrightarrow Y$ is closed under + and \cdot.
Linear combination. If $x_{i} \in X$ and $\alpha_{i} \in K$ for $i=1,2, \ldots, n$ then $\sum_{i=1}^{n} \alpha_{i} \cdot x_{i}$ is a linear combination of elements in X.

Linear independence. $x_{1}, x_{2}, \ldots, x_{n} \in X$ are linearly independent $\Longleftrightarrow \sum_{i=1}^{n} \alpha_{i} \cdot x_{i}=0 \Longrightarrow \alpha_{i}=0$ for all $i=1,2, \ldots, n$.
Span. For $M \subseteq X, \operatorname{span}(M)=\{$ all linear combinations of elements of $M\}$ is a subspace. M spans $X \Longleftrightarrow \operatorname{span}(M)=X$.

Basis. $B \subseteq X$ is a basis $\Longleftrightarrow B$ is linearly independent and $\operatorname{span}(B)=X$.
Dimension. If B is a basis for X, then $\operatorname{dim} X=|B|$ (cardinality of B)
Norm. A norm on a vector space $X,\|\cdot\|: X \rightarrow[0, \infty)$ defined by $x \mapsto\|x\|$ over $K=\mathbb{R}$ or \mathbb{C} satisfies (for $x, y \in X$ and $\alpha \in K$)

1. Positive-definiteness: $\|x\| \geq 0$ and $\|x\|=0 \Longleftrightarrow x=0$
2. Scalar multiplication: $\|\alpha \cdot x\|=|\alpha| \cdot\|x\|$
3. Triangle-inequality (sub-additivity): $\|x+y\| \leq\|x\|+\|y\|$

Semi-norm. $p: X \rightarrow[0, \infty)$ is a semi-norm \Longleftrightarrow it satisfies properties 2 and 3 above, but not necessarily 1 (i.e. some $x \in X$ that is not 0 could have $p(x)=0$).
Quotient space. For X a vector space and N a subspace, X / N is a vector space.
Lesbesgue integral. $f \mapsto\|f\|$ is defined by $\|f\|=\int_{a}^{b}|f(x)| d x$. Note that positive-definiteness is not satisfied for any general f and thus this is a semi-norm. If f were continuous, then this would be a norm. Therefore we define X / N to be a normed vector space when $N=\operatorname{ker} X=\{g \in X \mid\|g\|=0\}$.
Banach space. Complete normed vector space.
Hamel basis. A basis $\left\{e_{\alpha}\right\}_{\alpha \in I}$ is a Hamel basis $\Longleftrightarrow \forall x \in X \exists!\left\{\alpha_{n}\right\} \subseteq K$ such that $x=\sum_{i=1}^{p} \alpha_{i} \cdot e_{i}$.
Schauder basis. Basis for a normed vector space X is $\left\{e_{i}\right\}_{i \in I}$ is a Schauder basis $\Longleftrightarrow \forall x \in X \exists\left\{\alpha_{i}\right\}_{1 \leq i \leq \infty} \subseteq$ K such that $x=\sum_{i=1}^{\infty} \alpha_{i} \cdot e_{i}$.

Theorem (Banach). If X is a normed vector space with Schauder basis, then X is separable.

Proof. We WTS $\forall x \in X, \forall \epsilon>0, \exists a \in M$ such that $d(a, x)<\epsilon$ for some $M \subseteq X$. I.e. we want to show there exists some dense subset of X and then show it is countable.
Let $x \in X$ and $\epsilon>0$. Let $M=\cup_{n=1}^{\infty} A_{n}$ where $A_{n}=\left\{\sum_{i=1}^{n} q_{i} \cdot e_{i} \mid q_{i} \in \mathbb{Q}\right\}$. Since \mathbb{Q} is a dense countable subset of K, then a finite linear combination of elements in \mathbb{Q} will be and then a countable union of countable sets is also countable. Therefore M is countable.

By the definition of the Schauder basis, $\exists N \in \mathbb{N}$ such that $\left\|x-\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|<\frac{\epsilon}{2}$ if $n \geq N,\left\{\alpha_{i}\right\} \subseteq$ K. And further, \mathbb{Q} is a dense subset of $K \Longrightarrow \forall \alpha_{i} \exists q_{i}$ such that $\left|\alpha_{i}-q_{i}\right|<\frac{\epsilon}{2 b}$ where $b=\sum_{i=1}^{n}\left\|e_{i}\right\|$. Let $a=\sum_{i=1}^{n} q_{i} e_{i} \in M$.

$$
\begin{aligned}
\|x-a\| & =\left\|x-\sum_{i=1}^{n} q_{i} e_{i}\right\| \\
& \leq\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|+\left\|\sum_{i=1}^{n}\left(\alpha_{i}-q_{i}\right) e_{i}\right\| \\
& <\frac{\epsilon}{2}+\sum_{i=1}^{n}\left|\alpha_{i}-q_{i}\right|\left\|e_{i}\right\| \\
& <\frac{\epsilon}{2}+\sum_{i=1}^{n} \frac{\epsilon}{2 b} \cdot\left\|e_{i}\right\|=\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Therefore M is dense and countable $\Longrightarrow X$ is separable.
Bolzano-Weierstraus Theorem. Every bounded sequence has a convergent subsequence.
Observation of boundedness of vectors in X. If X is a normed vector space with Hamel basis given by $\left\{e_{i}\right\}_{1 \leq i \leq n}$ (linearly independent), then $\exists c, M \in K$ such that

$$
c \cdot \sum_{i=1}^{n}\left|\alpha_{i}\right| \leq\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\| \leq M \cdot \sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

Proof. Note that if we choose $M=\max _{1 \leq i \leq n}\left\|e_{i}\right\|$ then the \leq part is trivial by the triangle inequality. Note that if $c \cdot \sum_{i=1}^{n}\left|\alpha_{i}\right| \leq\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|$, then $c \leq \frac{\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|}{\sum_{i=1}^{n}\left|\alpha_{i}\right|}=\left\|\sum_{i=1}^{n} \frac{\alpha_{i}}{\sum_{i=1}^{n}\left|\alpha_{i}\right|} e_{i}\right\|$ and taking $B_{i}=\frac{\alpha_{i}}{\sum_{k=1}^{n}\left|\alpha_{i}\right|}$ (note that $\sum_{i=1}^{n}\left|\beta_{i}\right|=1$) then we want to show that $\left\|\sum_{i=1}^{n} \beta_{i} e_{i}\right\| \geq c>0$ where $\sum_{i=1}^{n}\left|\beta_{i}\right|=1$. Let $M=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid=1\right\}$ 。
For contradiction assume that $\exists\left\{\beta_{k}\right\}_{k \in \mathbb{N}} \subseteq K$ such that $\left\|\sum_{i=1}^{n} \beta_{i}^{(k)} e_{i}\right\| \rightarrow 0$ with $\beta_{k}=\left(\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}\right)$ satisfying $\sum_{i=1}^{n}\left|\beta_{i}^{(k)}\right|=1$ for $k=1,2, \ldots$.
M is a bounded set in $K\left(\mathbb{R}^{n}, \mathbb{C}^{n}\right)$. Thus β_{k} is bounded and $\beta_{k}=\left(\beta_{1}^{(k)}, \ldots, \beta_{n}^{(k)}\right) \in M$. Bolzano Weierstraus Theorem says that there exists $\beta^{\left(k_{r}\right)}$ such that $\beta^{\left(k_{r}\right)} \rightarrow \gamma$ and since $\beta^{\left(k_{r}\right)} \in M$ and M is closed, then $\gamma \in M$. Thus $\sum_{i=1}^{n}\left|\gamma_{i}\right|=1$. But $\sum_{i=1}^{n} \beta_{i} e_{i} \rightarrow \sum_{i=1}^{n} \gamma_{i} e_{i}$ and $\sum_{i=1}^{n} \beta_{i} e_{i} \rightarrow 0$ by our assumption. Thus $\sum_{i=1}^{n} \gamma_{i} e_{i}=0 \Longrightarrow \gamma_{i}=0$ for all $i=1,2, \ldots, n$ since e_{i} 's are linearly independent. But then $\gamma \notin M$ is our contradiction, as we showed it was.

Quotient Spaces

Let X be a normed vector space with scalar field K. Let N be a subspace of X. Then

$$
X / N=\{x+N \mid x \in X\} \text { is called a quotient space }
$$

Define $\pi: X \rightarrow X / N$ by $\pi(x)=x+N$ and further define

$$
\begin{aligned}
\pi(x)+\pi(y) & =\pi(x+y) \\
\alpha \cdot \pi(x) & =\pi(\alpha \cdot x)
\end{aligned}
$$

Note that $\pi(x)=\pi\left(x^{\prime}\right) \Longrightarrow \pi(x)-\pi\left(x^{\prime}\right)=0 \Longrightarrow \pi\left(x-x^{\prime}\right)=0 \Longrightarrow x-x^{\prime} \in 0+N \Longrightarrow x-x^{\prime} \in N$.
Define the equivalence relation $x \sim y \Longleftrightarrow x-y \in N$. Thus $X / N=X / \sim$ and $\pi(x)=[x]$.
Suppose X is a vector space with a semi-norm $p(x)$. We want to show $(X / N,\|\cdot\|)$ is a normed vector space. Define $\|\pi(x)\|=p(x)$ and let $N=p^{-1}(\{0\})$. This is a normed vector space.

Theorem. X is a normed vector space $\Longrightarrow X / N$ is a normed vector space $\Longleftrightarrow N \subsetneq X$ is a closed subspace.

Proof. All that must be shown is that the norm defined by $\|\pi(x)\|=d(x, N)=\inf _{y \in N}\|x-y\|$ is a norm (where the second norm is a norm in X).

Theorem. X is a Banach space $\Longrightarrow X / N$ is a Banach space.

Proof. Must show that X / N is complete.

