MA 515
 Final Study Guide

Zach Clawson

November 8, 2010

Section 3.5. Series Related to Orthonormal Sequences.

Theorem (Convergence). Let $\left(e_{k}\right)$ be an orthonormal sequene in a Hilbert space H. Then:
(a) $\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ converges (in the norm on $\left.H\right) \Longleftrightarrow \sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{2}$ converges.
(b) $x=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ converges $\Longrightarrow \alpha_{k}=\left|\left\langle x, e_{k}\right\rangle\right|$.
(c) $x \in H, x=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ converges with $\alpha_{k}=\left\langle x, e_{k}\right\rangle$ converges.

Proof. (a) Let $s_{n}=\sum_{i=1}^{n} \alpha_{i} e_{i}$ and note

$$
\begin{aligned}
\left\|s_{m}-s_{n}\right\|^{2} & =\left\|\sum_{i=n+1}^{m} \alpha_{i} e_{i}\right\|^{2}=\sum_{i=n+1}^{m}\left\|\alpha_{i} e_{i}\right\|^{2} \quad(\text { Pythagorean theorem }) \\
& =\sum_{i=n+1}^{m}\left|\alpha_{i}\right|^{2}=t_{m}-t_{n}
\end{aligned}
$$

if we take $t_{k}=\sum_{i=1}^{k}\left|\alpha_{i}\right|^{2}$. Thus if one converges then the other must.
(b) $x=\sum_{i=1}^{\infty} \alpha_{i} e_{i}$ exists $\Longleftrightarrow s_{n}=\sum_{i=1}^{n} \alpha_{i} e_{i} \rightarrow x$. Note

$$
\left\langle x, e_{i}\right\rangle=\left\langle\lim _{n \rightarrow \infty} s_{n}, e_{i}\right\rangle=\lim _{n \rightarrow \infty, n>i}\left\langle s_{n}, e_{i}\right\rangle=\lim _{n \rightarrow \infty, n>i}\left\langle\sum_{j=1}^{n} \alpha_{j} e_{j}, e_{i}\right\rangle
$$

which is 0 if $n \leq i$ so assume that $n>i \Longrightarrow$ every term is 0 except for $i^{\text {th }}$ one $=\alpha_{i}$. Thus $\alpha_{i}=\left\langle x, e_{i}\right\rangle$ for all $i \in \mathbb{N}$.
(c) By (a) we have that $\sum_{i=1}^{\infty}\left|\left\langle\alpha, e_{i}\right\rangle\right|^{2}$ exists by Bessel Inequality.

Lemma (Fourier coefficients). Any x in X inner product space can have at most countably many nonzero Fourier coefficients $\left\langle x, e_{k}\right\rangle$ with respect to an orthonormal family $\left(e_{k}\right), k \in I$, in X.
Proof. Let $x \in H$ and write $x=\sum_{\alpha \in I}\left\langle x, e_{\alpha}\right\rangle e_{\alpha}$ for all $x \in X$ which is an uncountable sum. But if we can show that there are a countable number of non-zero Fourier coefficients. Define the set for fixed $x \in H$, $J_{x}=\left\{\alpha \in I \mid\left\langle x, e_{\alpha}\right\rangle \neq 0\right\} \subseteq I$. We may then write

$$
x=\sum_{\alpha \in I}\left\langle x, e_{\alpha}\right\rangle e_{\alpha}=\sum_{\alpha \in J_{x}}\left\langle x, e_{\alpha}\right\rangle e_{\alpha}
$$

We want to show that the set J_{x} is countable. Define

$$
J_{k}=\left\{\alpha \in I \left\lvert\,\left\langle x, e_{\alpha}\right\rangle>\frac{1}{k}\right.\right\}
$$

noting $J_{k} \subseteq J_{k+1}$ and defining $J=\bigcup_{k=1}^{\infty} J_{k}=\lim _{k \rightarrow \infty} J_{k}$. We want to show that each J_{k} is countable in order to show that J is countable (as we would obtain a countable union of countable sets). Choose $M \subseteq J_{k}$ such that $M=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \subseteq J_{k}$ is a finite set. Then since $\left\langle x, e_{\alpha}\right\rangle>\frac{1}{k}$ we then have

$$
m \cdot \frac{1}{k^{2}}<\sum_{i=1}^{m}\left|\left\langle x, e_{\alpha}\right\rangle\right|^{2} \leq\|x\|^{2}<\infty
$$

and noting that the LHS $\uparrow \infty$ as $m \uparrow \infty$ gives a contradiction and thus m must be fixed a priori and thus each J_{k} must be finite, showing the countability of J_{x}.

Section 3.6. Total Orthonormal Sets and Sequences.

Total orthonormal set. A total set in a normed space X is a subset $M \subseteq X$ whose span is dense in X. Accordingly, an orthonormal set in an inner product space X which is total in X is called a total orthonormal set in X. That is, M is total in $X \Longleftrightarrow \overline{\operatorname{span} M}=X$.

Theorem (totality). Let M be a subset of an inner product space X. Then:
(a) If M is total in X, then there does not exist a nonzero $x \in X$ whch is orthogonal to every element of M; that is, $x \perp M \Longrightarrow x=0$.
(b) If X Hilbert, then $x \perp M \Longrightarrow x=0$ shows M total in X.

Facts. (a) M is total in Hilbert $H \Longleftrightarrow M^{\perp}=\{0\}$
(b) M total in $H \Longleftrightarrow \overline{\operatorname{span} M}=H$
(c) M total \Longleftrightarrow Parseval's equality holds, i.e. $\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2}=\|x\|^{2}$

Theorem (Separable Hilbert spaces). Let H be a Hilbert space. Then:
(a) If H separable, every orthonormal set in H is countable.
(b) If H contains an orthonormal sequence which is total in H, then H is separable.

Section 3.7. Lenendre, Hermite and Laguerre Polynomials.

Legendre polynomials. Can represent them in many ways:

$$
\begin{aligned}
P_{n}(t) & =\frac{1}{2^{n} n!} \frac{d^{n}}{d t^{n}}\left[\left(t^{2}-1\right)^{n}\right] \\
& =\sum_{j=0}^{N}(-1)^{j} \frac{(2 n-2 j)!}{2^{n} j!(n-j)!(n-2 j)!} t^{n-2 j} \quad, \quad N=\frac{n}{2} \text { or } \frac{n-1}{2} \text { if even/odd }
\end{aligned}
$$

First few polynomials given by:

$$
\begin{aligned}
P_{0}(t) & =1 \\
P_{1}(t) & =t \\
P_{2}(t) & =\frac{1}{2}\left(3 t^{2}-1\right) \\
P_{3}(t) & =\frac{1}{2}\left(5 t^{3}-3 t\right) \\
P_{4}(t) & =\frac{1}{8}\left(35 t^{4}-30 t^{2}+3\right) \\
& \vdots
\end{aligned}
$$

And applying G-S process we can arrive at

$$
e_{n}=\sqrt{\frac{2 n+1}{2}} P_{n}(t)
$$

Section 3.8. Representation of Functionals on Hilbert Spaces.

Riesz Lemma. Y is a closed subspace of normed vector space $X \Longrightarrow \forall \theta \in(0,1) \exists x \in S_{X}(0,1)$ such that $d(x, Y)>\theta$.
Riesz's Theorem (RR Thm baby). Every bounded linear functional f on a Hilbert space H can be represented in terms of the inner product, namely, $f(x)=\langle x, z\rangle$ where z depends on f, is uniquely determined by f and has norm $\|z\|_{H}=\|f\|_{o p}$.
Proof. See that for $f \in H^{\prime}$ we have $f(f(x) \cdot a-f(a) \cdot x)=0$ for all $a, x \in H$ trivially. Then $f(x) a-f(a) x \in$ $N=\operatorname{ker} f . N$ is a closed subspace of H and thus $H=N \oplus N^{\perp}$. If $N^{\perp}=\{0\}$ then $H=N=\operatorname{ker} f \Longrightarrow f \equiv 0$ so choose $z=0$ for the inner product.
If $N^{\perp} \supsetneq\{0\}$ then $\exists a \in N$ with $a \neq 0$ such that $\langle\underbrace{f(x) a-f(x) x}_{\in N} \underbrace{a}_{\in N^{\perp}}\rangle=0 \Longrightarrow f(x)\|a\|^{2}=f(a)\langle x, a\rangle \Longrightarrow$ $f(x)=\frac{f(a)}{\|a\|^{2}}\langle x, a\rangle=\langle x, \underbrace{\frac{\overline{f(a)}}{\|a\|^{2}}}_{=z} \cdot a\rangle$

Definition (Sesquilinear form). Let X and Y be vector spaces over the same field $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$. Then a sesquilinear form (or sesquilinear functional) h on $X \times Y$ is a mapping $h: X \times Y \rightarrow \mathbb{K}$ such that for all $x, x_{1}, x_{2} \in X$ and $y, y_{1}, y_{2} \in Y$ we have

$$
\begin{aligned}
h\left(x_{1}+x_{2}, y\right) & =h\left(x_{1}, y\right)+h\left(x_{2}, y\right) \\
h\left(x, y_{1}+y_{2}\right) & =h\left(x, y_{1}\right)+h\left(x, y_{2}\right) \\
h(\alpha x, y) & =\alpha h(x, y) \\
h(x, \beta y) & =\bar{\beta} h(x, y)
\end{aligned}
$$

Note if $\mathbb{K}=\mathbb{R}$ then the last condition simply gives this is a bilinear form.
Norm on h. h is bounded if $|h(x, y)| \leq c\|x\|\|y\|$ for some $c \in[0, \infty)$. The norm is given by

$$
\|h\|=\sup _{x \in X-\{0\}, y \in Y-\{0\}} \frac{|h(x, y)|}{\|x\|\|y\|}=\sup _{\|x\|=1,\|y\|=1}|h(x, y)|
$$

Theorem (Riesz representation adult). Let H_{1}, H_{2} be Hilbert spaces and $h: H_{1} \times H_{2} \rightarrow \mathbb{K}$ a bounded sesquilinear form. The h has representation $h(x, y)=\langle S x, y\rangle$ where $S: H_{1} \rightarrow H_{2}$ is a bounded linear operator. S is uniquely determined by h and has norm $\|S\|=\|h\|$.
Proof. Fix $x \in H_{1}$ and let $f_{x}: H_{2} \rightarrow \mathbb{K}$ defined by $f_{x}(y)=\overline{h(x, y)}$ which is clearly bounded and linear. Bounded because $\|f\|_{o p} \leq\|h\|_{\text {sesq }}\|x\|_{H}$. Thus by RR Theorem (baby) we have

$$
\exists!z_{x} \in H_{2} \text { s.t. } f_{x}(\cdot)=\left\langle\cdot, z_{x}\right\rangle_{H_{2}}
$$

but we have that $f_{x}(\cdot)=\overline{h(x, \cdot)} \Longrightarrow \overline{h(x, \cdot)}=\left\langle\cdot, z_{x}\right\rangle_{H_{2}} \Longrightarrow h(x, \cdot)=\left\langle z_{x}, \cdot\right\rangle_{H_{2}}$. Thus for any choice of x we may form this relationship between h and the inner product with choice of z_{x}.

Define $S: H_{1} \rightarrow H_{2}$ by $S x=z_{x}$. By construction we trivially have that $h(x, y)=\left\langle z_{x}, y\right\rangle=\langle S x, y\rangle$ for all $y \in H_{2}$ for fixed $x \in H_{1}$. Linearity is easy to show. Must show bounded operator and norm-preserving:
"Bounded." WTS $\|S x\|_{H_{2}} \leq c \cdot\|x\|_{H_{1}}$ for some $c \in[0, \infty)$. Note

$$
|\langle S x, y\rangle|=|h(x, y)| \leq\|h\|_{\text {sesq }}\|x\|_{H_{1}}\|y\|_{H_{2}} \quad \forall y \in H_{2}
$$

and choosing $y=S x$ we thus have

$$
\|S x\|^{2} \leq\|h\|_{s}\|x\| \cdot\|S x\| \Longrightarrow\|S x\| \leq\|h\|_{s}\|x\| \quad \text { (if }\|S x\|=0 \text { then trivial) }
$$

and thus $\|S\|_{o p} \leq\|h\|_{s}$.
"Norm preserving." From RR Theorem (baby) we have $\left\|f_{x}\right\|_{o p}=\left\|z_{x}\right\|=\|S x\|$ and since $\left\|f_{x}\right\|_{o p}=$ $\sup _{\|y\|_{H_{2}}=1}\left|f_{x}(y)\right|=\sup _{\|y\|=1} \mid h(x, y \mid$ we thus have

$$
\|S x\|=\sup _{\|y\|=1}|h(x, y)|
$$

and then taking sup over $x \in H_{1}$ with $\|x\|=1$ we thus have

$$
\sup _{\|x\|=1}\|S x\|=\sup _{\|x\|=1,\|y\|=1}|h(x, y)|
$$

and the LHS is $\|S\|_{o p}$ and the RHS is $\|h\|_{\text {sesq }}$.
Q.E.D.

Section 3.9. Hilbert-Adjoint Operator.

Hilbert-adjoint operator T^{*}. Let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator, where H_{1} and H_{2} are Hilbert spaces. Then the Hilbert-adjoint operator T^{*} of T is the operator $T^{*}: H_{2} \rightarrow H_{1}$ such that for all $x \in H_{1}$ and $y \in H_{2}\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ and $\|T\|=\left\|T^{*}\right\|$.
Proof. Define $h: H_{2} \times H_{1} \rightarrow \mathbb{K}$ by $h(y, x)=\langle y, T x\rangle$. h has a bounded sesquilinear form. Sesquilinearity is easy, to show boundedness see that

$$
|h(y, x)|=|\langle y, T x\rangle| \leq\|y\| \cdot\|T x\| \leq\|y\| \cdot\|x\| \cdot\|T\|_{o p}
$$

and T is a bounded operator so $\|T\|_{o p}<\infty$ verifies the boundedness of this sesquilinear form.
Thus by RR Theorem (adult), $\exists S: H_{2} \rightarrow H_{1}$ defined by $\underbrace{h(y, x)}=\langle S y, x\rangle_{H_{1}}$ so it seems a natural selection

$$
\underbrace{}_{=\langle y, T x\rangle_{H_{2}}}
$$

to take $T^{*}=S$.
Next see that

$$
\left\|T^{*}\right\|_{o p}=\|S\|_{o p}=\|h\|_{s e s q}
$$

and we want to show that this is $\|T\|_{o p}$. Thus similarly define $g: H_{1} \times H_{2} \rightarrow \mathbb{K}$ by $g(x, y)=\langle T x, y\rangle \Longrightarrow$ $\exists!S: H_{1} \rightarrow H_{2}$ such that $g(x, y)=\langle S x, y\rangle$ and therefore $\langle S x, y\rangle=\langle T x, y\rangle \Longrightarrow\|g\|=\|T\|$.
It is easy to see that $\|h\|=\|g\|$ by observing

$$
\|g\|_{\text {sesq }}=\sup _{\|x\|=1,\|y\|=1}|\langle T x, y\rangle|=\sup _{\|x\|=1,\|y\|=1}|\langle y, T x\rangle|=\|h\|_{\text {sesq }}
$$

verifying the norm preservation of the adjoint operator on a Hilbert space.
Q.E.D.

Properties of Hilbert-adjoint operators. Let H_{1}, H_{2} be Hilbert spaces, $S: H_{1} \rightarrow H_{2}$ and $T: H_{1} \rightarrow H_{2}$ bounded linear operators and α any scalar. Then we have

$$
\begin{aligned}
\left\langle T^{*} y, x\right\rangle & =\langle y, T x\rangle \\
(S+T)^{*} & =S^{*}+T^{*} \\
(\alpha T)^{*} & =\bar{\alpha} T^{*} \\
\left(T^{*}\right)^{*} & =T \\
\left\|T^{*} T\right\| & =\left\|T T^{*}\right\|=\|T\|^{*} \\
T^{*} T=0 & \Longleftrightarrow T=0 \\
(S T)^{*} & =T^{*} S^{*}
\end{aligned}
$$

Section 3.10. Self-Adjoint, Unitary and Normal Operators.

Self-adjoint, unitary and normal operators. A bounded linear operator $T: H \rightarrow H$ on a Hilbert space H is said to be

$$
\begin{aligned}
\text { sel } f-\text { adjoint or Hermitian if } & T^{*}=T \\
\text { unitary if } T \text { is bijective and } & T T^{*}=T^{*} T=I \\
\text { normal if } & T T^{*}=T^{*} T
\end{aligned}
$$

Theorem (Self-adjointness). Let $T: H \rightarrow H$ be a bounded linear operator on a Hilbert space H. Then:
(a) T is self-adjoint $\Longrightarrow\langle T x, x\rangle \in \mathbb{R}$ for all $x \in H$
(b) H complex and $\langle T x, x\rangle \in \mathbb{R}$ for all $x \in H \Longrightarrow T$ self-adjoint

Theorem (Sequences of self-adjoint operators). Let $\left(T_{n}\right)$ be a sequence of bounded self-adjoint linear operators $T_{n}: H \rightarrow H$ on Hilbert H. Suppose $\left(T_{n}\right)$ converges, $T_{n} \rightarrow T$ (i.e. $\left\|T_{n}-T\right\| \rightarrow 0$ where $\|\cdot\|$ is the norm on $B(H, H))$. Then T is also self-adjoint.

Section 4.2. Hahn-Banach Theorem.

Hahn-Banach Theorem (baby). X vector space over $\mathbb{K}=\mathbb{R}, Z$ proper subspace of $X . f: Z \rightarrow \mathbb{R}$ is a linear functional such that $f \leq p$ where p is sub-linear (i.e. $p(\alpha x)=\alpha p(x), \alpha \geq 0$ and $p(x+y) \leq p(x)+p(y))$ $\Longrightarrow \exists \bar{f}: X \rightarrow \mathbb{R}$ linear functional such that $\left.\bar{f}\right|_{Z}=f$ and $\bar{f} \leq p$.

Zorn's Lemma. M partially ordered (\leq) set, i.e. (1) $a \leq a$, (2) $a \leq b, b \leq a \Longrightarrow a=b$, and (3) $a \leq b, b \leq c \Longrightarrow a \leq c$, and any chain (totally ordered subset) has an upper bound $\Longrightarrow \exists$ maximal element in M.

Proof (HB baby). Define

$$
M=\left\{g: \mathcal{D}(g) \rightarrow \mathbb{R} \mid g \text { is linear functional, } Z \subseteq \mathcal{D}(g) \subseteq X,\left.g\right|_{Z}=f, g \leq p\right\}
$$

This is a partially ordered set under the ordering of $g_{1} \leq g_{2} \Longleftrightarrow \mathcal{D}\left(g_{1}\right) \subseteq \mathcal{D}\left(g_{2}\right)$ and $\left.g_{2}\right|_{\mathcal{D}\left(g_{1}\right)}=g_{1}$. Any chain $C \subseteq M$ has an upper bound given by

$$
\hat{g}(x)=g(x) \text { if } x \in \mathcal{D}(g) \quad \text { for any } g \in C
$$

which is clearly a linear functional with domain

$$
\mathcal{D}(\hat{g})=\bigcup_{g \in C} \mathcal{D}(g)
$$

Clearly \hat{g} is an upper bound since by definition and construction we have $g \leq \hat{g}$ for all $g \in C$. Then there exists a maximal element \bar{f} in M satisfying $\bar{f} \leq p$ and $\left.\bar{f}\right|_{Z}=f$. We want to show that $\mathcal{D}(\bar{f})=X$. We have that $\mathcal{D}(\bar{f}) \subseteq X$ so we must show that $\mathcal{D}(\bar{f}) \supseteq X$. For contradiction assume that latter does not hold.
Then $\exists y_{1} \in X-\mathcal{D}(\bar{f})$ and consider $Y_{1}=\operatorname{span}\left(\mathcal{D}(\bar{f}), y_{1}\right)$. Note $y_{1} \neq 0$ since $0 \in Z \subseteq \mathcal{D}(\bar{f})$ and $y_{1} \in X-\mathcal{D}(\bar{f})$. Then for any $x \in Y_{1}$ we have $x=y+\alpha y_{1}$ for some $y \in \mathcal{D}(\bar{f})$. Note that this representation must be unique as if we have $x=y^{\prime}+\alpha^{\prime} y_{1}$ then $y^{\prime}+\alpha^{\prime} y_{1}=y+\alpha y_{1} \Longleftrightarrow y-y^{\prime}=\left(\alpha^{\prime}-\alpha\right) y_{1}$ and the LHS is in $\mathcal{D}(\bar{f})$ and thus since $y_{1} \notin \mathcal{D}(\bar{f})$ then $\alpha^{\prime}-\alpha=0 \Longrightarrow \alpha^{\prime}=\alpha$ and thus $y=y^{\prime}$ showing this representation is unique.
Thus define g_{1} on Y_{1} by $g_{1}\left(y+\alpha y_{\overline{1}}\right)=\bar{f}(y)+\alpha c$ where $c \in \mathbb{R}$. Clearly this is linear. For $\alpha=0$ then $g_{1}=\bar{f}$. Then g_{1} is a proper extension of \bar{f}, contradicting the maximality of \bar{f} if $g_{1} \leq p$. See that

$$
g_{1}(x)=\bar{f}(x)+\alpha c \leq-\alpha p\left(-y_{1}-\frac{1}{\alpha} y\right)=p\left(\alpha y_{1}+y\right)=p(x)
$$

providing our contradiction.
Q.E. \mathbb{D}.

Hahn-Banach Theorem (adult). Z is a subspace of vector space $X, f: Z \rightarrow \mathbb{K}$ is \mathbb{K}-linear functional and $|f| \leq p$ where p sub-linear $(p(x+y) \leq p(x)+p(y)$ and $p(\alpha x)=|\alpha| p(x)$ for all $\alpha \in \mathbb{R}) \Longrightarrow \exists \bar{f}: X \rightarrow \mathbb{K}$ is \mathbb{K}-linear functional such that $|\bar{f}| \leq p$ and $\left.\bar{f}\right|_{Z}=f$.

Note. $p(0)=0$ and $p(x)+p(x)=p(x)+p(-x) \geq p(x+(-x))=p(0)=0 \Longrightarrow p(x) \geq 0$ for any $x \in X$.
Proof (HB adult). $f: Z \rightarrow \mathbb{C}$ such that $f(x)=f_{1}(x)+i f_{2}(x)$ where $f_{1}, f_{2}: Z \rightarrow \mathbb{R}$ are linear functionals. Note that f_{2} is uniquely determined by f_{1} defined by $f_{2}(x)=-f_{1}(i x)$. We can show this by matching real parts in the following equalities

$$
\begin{aligned}
& \underbrace{f(i x)}_{=}=f_{1}(i x)+i f_{2}(i x) \\
& i f(x)=i f_{1}(x)-f_{2}(x)
\end{aligned}
$$

Therefore

$$
f(x)=f_{1}(x)-i f_{1}(i x)
$$

Use HB baby on f_{1} to extend f_{1} (note $\left.\left|f_{1}\right| \leq|f| \leq p\right)$ to $\bar{f}_{1}: X \rightarrow \mathbb{R}$. Naturally define

$$
\bar{f}(x)=\bar{f}_{1}(x)-i \bar{f}_{1}(i x)
$$

which is trivially a \mathbb{C}-linear functional, clearly $\left.\bar{f}\right|_{Z}=f$ and we need to show that $|\bar{f}| \leq p$. Note that for any $z \in \mathbb{C}$ we have $z=r e^{i \theta}$ and thus $\bar{f}(x)=|\bar{f}(x)| e^{i \theta}$ and therefore

$$
|\bar{f}(x)|=\bar{f}(x) e^{-i \theta}=\bar{f}\left(e^{-i \theta} x\right)=\bar{f}_{1}\left(e^{-i \theta} x\right)-i \bar{f}_{1}\left(i e^{-i \theta} x\right)
$$

and since the LHS is a real number then the imaginary part of the RHS must be 0 . Then

$$
0 \leq|\bar{f}(x)|=\bar{f}_{1}\left(e^{-i \theta} x\right)=\left|\bar{f}_{1}\left(e^{-i \theta} x\right)\right| \leq p\left(e^{-i \theta} x\right)=\left|e^{-i \theta}\right| p(x)=p(x)
$$

verifying the boundedness by the sub-linear functional.

HB Application 1. Let Z be a subspace of X a normed vector space, $f: Z \rightarrow \mathbb{K}$ is a \mathbb{K}-linear functional and bounded $\Longrightarrow \exists \bar{f}: X \rightarrow \mathbb{K}$, bounded \mathbb{K}-linear functional such that $\left.\bar{f}\right|_{Z}=f$ and $\|\bar{f}\|=\|f\|$.
Proof. Define $p: X \rightarrow \mathbb{R}$ by $p(x)=\|f\| \cdot\|x\|$ which is clearly sub-linear (note $\|f\|<\infty$ and it exists since f is bounded). Use HB Theorem (adult) so then $\exists \bar{f}: X \rightarrow \mathbb{K}$ a \mathbb{K}-linear functional such that $\left.\bar{f}\right|_{Z}=f$ and $|\bar{f}| \leq p$.
Bounded? Note $|\bar{f}(x)| \leq p(x)=\|f\| \cdot\|x\| \Longrightarrow\|\bar{f}\| \leq\|f\|<\infty$.
Equality of norms? Note that we have \leq above so we WTS \geq. See that

$$
\|\bar{f}\|=\sup _{x \in X-\{0\}} \frac{|\bar{f}(x)|}{\|x\|} \geq \sup _{x \in Z-\{0\}} \frac{|\bar{f}(x)|}{\|x\|}=\sup _{x \in Z-\{0\}} \frac{|f(x)|}{\|x\|}=\|f\|
$$

verifying the equality using the boundedness above.
$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.
HB Application 2. X normed vector space, $x \in X . X^{\prime}$ is space of bounded linear functionals $f: X \rightarrow \mathbb{K}$ (K)-linear functional). Fix $x \in X$, then

$$
\bar{x}: X^{\prime} \rightarrow \mathbb{K} \text { defined by } \bar{x}(f)=f(x)
$$

Further, $\|x\|_{X}=\sup _{f \in X^{\prime}-\{0\}} \frac{|f(x)|}{\|f\|_{o p}}=\|\bar{x}\|_{o p}$.
Proof. Note $\|\bar{x}\|_{o p} \leq\|x\|_{X}$ since $|f(x)| \leq\|f\| \cdot\|x\| \Longrightarrow \frac{|f(x)|}{\|f\|_{o p}} \leq\|x\| \Longrightarrow\|\bar{x}\|_{o p}=\sup _{f \in X^{\prime}-\{0\}} \frac{|f(x)|}{\|f\|_{o p}} \leq$ $\|x\|_{X}$.
Now we want to show that $\|\bar{x}\|_{o p} \geq\|x\|_{X}$. Construct $Z=\operatorname{span}\{x\}=\{\alpha x \mid \alpha \in \mathbb{K}\}$. Let $g: Z \rightarrow \mathbb{K}$ be such that $g(\alpha x)=\alpha \cdot\|x\|$ and it is easy to see this is a linear functional on Z that is bounded because $|g(\alpha x)|=|\alpha| \cdot\|x\|=\|\alpha x\| \Longrightarrow\|g\|=\sup _{z \in Z} \frac{|g(z)|}{\|z\|}=\sup _{z=\alpha x \in Z-\{0\}} \frac{\|\alpha x\|}{\|\alpha x\|}=1$ proving $\|g\|=1$.
Thus $\exists \bar{g}: X \rightarrow \mathbb{K}$ is bounded linear functional such that $\left.\bar{g}\right|_{Z}=g$ and $\|\bar{g}\|=\|g\|=1$. Then

$$
\|\bar{x}\|_{o p}=\sup _{f \in X^{\prime}-\{0\}} \frac{|f(x)|}{\|f\|_{o p}} \geq \frac{|\bar{g}(x)|}{\|\bar{g}\|}=\frac{\|x\|}{1}=\|x\|
$$

Therefore $\left\|\left.\bar{x}\right|_{o p} \geq\right\| x \|_{X}$ verifying the equality.
Q.E.D.

Adjoint operator. $T: H_{1} \rightarrow H_{2}$ are Hilbert spaces $\Longrightarrow \exists T^{*}: H_{2} \rightarrow H_{1}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ and $\left\|T^{*}\right\|=\|T\|$.
HB Application 3 (Adjoint operator). $T: X \rightarrow Y$ where X, Y normed vector spaces and T is a bounded linear operator $\Longrightarrow \exists T^{x}: Y^{\prime} \rightarrow X^{\prime}$ bounded linear operator with $\left\|T^{x}\right\|=\|T\|$.
Proof. Define $T^{x}: Y^{\prime} \rightarrow X^{\prime}$ by $g \in Y^{\prime} \mapsto T^{x} g \in X^{\prime}$ where $T^{x} g: X \rightarrow \mathbb{K}$ is defined by $\left(T^{x} g\right)=g(T x)$. We want to check this is linear, bounded, and preserves the norm of T.
"Bounded." $\left|\left(T^{x} g\right)(x)\right|=|g(T x)| \leq\|g\|\|T x\| \leq\|g\|\|T\|\|x\|$ using the boundedness of g and T.
"Linear." Cleary $T^{x} g$ as a functional on X is linear from the linearity of T and $g . T^{x}$'s linearity follows.
"Norm equality." First see that

$$
\left\|T^{x} g\right\|_{o p}=\sup _{x \in X-\{0\}} \frac{\left|\left(T^{x} g\right)(x)\right|}{\|x\|_{X}}=\sup _{x \in X-\{0\}} \frac{|g(T x)|}{\|x\|} \leq \sup _{x \in X-\{0\}} \frac{\|g\| \cdot\|T\| \cdot\|x\|}{\|x\|}=\|g\| \cdot\|T\|
$$

which verifies that $\left\|T^{x}\right\|_{o p} \leq\|T\|_{o p}$. Next wee that

$$
\begin{aligned}
\|T x\|_{Y} & =\|\overline{T x}\|_{o p}=\sup _{f \in Y^{\prime}-\{0\}} \frac{|(\overline{T x})(f)|}{\|f\|_{o p}}=\sup _{f \in Y^{\prime}-\{0\}} \frac{\overbrace{|f(T x)|}^{\left|\left(T^{x} f\right)(x)\right|}}{\|f\|} \\
& \leq \sup _{f \in Y^{\prime}-\{0\}} \frac{\|f\| \cdot\left\|T^{x}\right\| \cdot\|x\|}{\|f\|}=\left\|T^{x}\right\|\|x\|
\end{aligned}
$$

showing $\|T\|_{o p} \leq\left\|T^{x}\right\|_{o p}$. Equality follows.
$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.

Baire's Category Theorem. Any complete metric space X is of second category.
First category. $X=\bigcup_{i \in \mathbb{N}} A_{i}$ where all A_{i} are nowhere dense. I.e. \bar{A}_{i} has no open subsets (i.e. "indiscrete structure").
Second category. (Not first category.) $X=\bigcup_{i \in \mathbb{N}} B_{i} \Longrightarrow \exists B_{i_{0}}$ such that $B_{i_{0}} \supseteq$ some open set.
Proof (BC Thm). Assume X is a complete metrix space. Assume for contradiction that X is not of second category. That is, X is first category. Let $X=\bigcup_{i \in \mathbb{N}} A_{i}$ where each A_{i} is nowhere dense (we know we can write X as this by it being of first category). Note X is an open set so $X \nsubseteq A_{1} \subseteq \bar{A}_{1}$. Thus:

- $\bar{A}_{1} \nsupseteq X \Longrightarrow\left(\bar{A}_{1}\right)^{C} \neq \emptyset$ and $\left(\bar{A}_{1}\right)^{C}$ is open $\Longrightarrow \exists \epsilon_{1}>0, x_{1} \in\left(\bar{A}_{1}\right)^{C}$ such that $K_{1}=B\left(x_{1}, \epsilon_{1}\right) \subseteq$ $\left(\bar{A}_{1}\right)^{C}$.
- $\bar{A}_{2} \nsupseteq X \Longrightarrow\left(\bar{A}_{2}\right)^{C} \neq \emptyset$ and $\left(\bar{A}_{2}\right)^{C}$ is open and further $B\left(x_{1}, \frac{\epsilon_{1}}{2}\right) \nsubseteq \bar{A}_{2} \Longrightarrow K_{2}=B\left(x_{1}, \frac{\epsilon_{1}}{2}\right) \cap$ $\left(\bar{A}_{2}\right)^{C} \neq \emptyset$ and is open $\Longrightarrow \exists \epsilon_{2}>0, x_{2} \in K_{2}$ such that $B\left(x_{2}, \epsilon_{2}\right) \subseteq K_{2}\left(\right.$ note $\left.\epsilon_{2} \leq \frac{\epsilon_{1}}{2} \leq \epsilon_{1}\right)$.
-
- $\bar{A}_{n+1} \nsupseteq X \Longrightarrow\left(\bar{A}_{n+1}\right)^{C} \neq \emptyset$ and is open and $K_{n+1}=B\left(x_{n}, \frac{\epsilon_{n}}{2}\right) \cap\left(\bar{A}_{n+1}\right)^{C} \neq \emptyset$ and open $\Longrightarrow \exists \epsilon_{n+1}>0, x_{n+1} \in K_{n+1}$ such that $B\left(x_{n+1}, \epsilon_{n+1}\right) \subseteq K_{n+1}\left(\right.$ note $\left.\epsilon_{n} \leq \frac{\epsilon_{n+1}}{2}\right)$.
-

Claim: $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ are Cauchy. Note these "balls" are getting smaller and smaller, they form a nested sequence:

$$
\cdots \subseteq B\left(x_{n+1}, \epsilon_{n+1}\right) \subseteq B\left(x_{n}, \epsilon_{n}\right) \subseteq \cdots
$$

Assume $m \geq n \Longrightarrow x_{m} \in B\left(x_{m}, \epsilon_{m}\right) \subseteq \cdots \subseteq B\left(x_{n}, \frac{\epsilon_{n}}{2}\right) \Longrightarrow x_{m} \in B\left(x_{n}, \frac{\epsilon_{n}}{2}\right) \Longrightarrow d\left(x_{n}, x_{m}\right)<\frac{\epsilon_{n}}{2} \leq$ $\frac{\epsilon_{1}}{2^{n}} \rightarrow 0$ since $\epsilon_{n} \leq \frac{\epsilon_{n}}{2^{n-1}}$ as $n \uparrow \infty$. Thus $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy and thus converges, $x_{n} \rightarrow x \in X$.
Now using $d\left(x_{n}, x_{m}\right)<\frac{\epsilon_{n}}{2} \Longrightarrow$ taking $m \uparrow \infty$ we have $d\left(x_{n}, x_{m}\right) \rightarrow d\left(x_{n}, x\right) \leq \frac{\epsilon_{n}}{2} \Longrightarrow x \in B\left(x_{n}, \epsilon_{n}\right) \subseteq$ $\left(\bar{A}_{n}\right)^{C}$ by construction $\Longrightarrow x \in\left(\bar{A}_{n}\right)^{C}$ for all $n \in \mathbb{N} \Longrightarrow x \in \bigcap_{n \in \mathbb{N}}\left(\bar{A}_{n}\right)^{C}=(\underbrace{\bigcup_{n \in \mathbb{N}} \bar{A}_{n}}_{=X})^{C}=X^{C}=\emptyset \Longrightarrow$ $x \in \emptyset$ gives our contradiction.

BC Theorem Application. T_{n} bounded linear operator, $T_{n}: X \rightarrow Y$ where X Banach and Y normed vector space $\Longrightarrow \sup _{n \in \mathbb{N}}\left\|T_{n}\right\|_{o p}<\infty$.
Proof. T_{n} bounded $\Longrightarrow\left\|T_{n}\right\|<\infty$. Let $x \in X \Longrightarrow \exists k \in \mathbb{N}$ э $\sup _{n \in \mathbb{N}}\left\|T_{n} x\right\| \leq k$. Then for arbitrary $k \in \mathbb{N}$ we have

$$
A_{k}=\left\{x \in X \mid \sup _{n \in \mathbb{N}}\left\|T_{n} x\right\| \leq k\right\} \Longrightarrow x \in \bigcup_{k \in \mathbb{N}} A_{k}
$$

and thus $X=\bigcup_{k \in \mathbb{N}} A_{k}$ and since X is of second category, $\exists k_{0} \in \mathbb{N}$ such that $A_{k_{0}}$ is nowhere dense. That is, $A_{k_{0}} \supseteq$ an open set $\Longrightarrow B\left(x_{0}, \epsilon_{0}\right) \subseteq A_{k_{0}} \Longrightarrow\left\|x-x_{0}\right\|<\epsilon_{0} \Longrightarrow x \in A_{k_{0}} \Longrightarrow \sup _{n \in \mathbb{N}}\left\|T_{n} x\right\| \leq k_{0}$.
Using $\left\|T_{n}\right\|_{o p}=\sup _{u \in S_{X}(0,1)}\left\|T_{n} u\right\|_{X}$. Note that for $u \in S_{X}(0,1)$ and $\epsilon<\epsilon_{0}$ we have $x_{0}+\epsilon u \in B\left(x_{0}, \epsilon_{0}\right) \subseteq$ $A_{k_{0}} \Longrightarrow \sup _{n \in \mathbb{N}}\left\|T_{n}\left(x_{0}+\epsilon u\right)\right\|_{Y} \leq k_{0}$ and thus

$$
\epsilon\left\|T_{n} u\right\|-\left\|T_{n} x_{0}\right\| \leq\left\|T_{n} x_{0}+\epsilon T_{n} u\right\|_{Y} \leq k_{0} \Longrightarrow \epsilon\left\|T_{n} u\right\| \leq k_{0}+\left\|T_{n} x_{0}\right\| \leq k_{0}+k_{0}=2 k_{0}
$$

and therefore $\left\|T_{n} u\right\| \leq \frac{2 k_{0}}{\epsilon}$ and since k_{0}, ϵ were fixed then

$$
\sup _{u \in S_{X}(0,1)}\left\|T_{n} u\right\| \leq \frac{2 k_{0}}{\epsilon} \Longrightarrow\left\|T_{n}\right\|_{o p} \leq \frac{2 k_{0}}{\epsilon} \Longrightarrow \sup _{n \in \mathbb{N}}\left\|T_{n}\right\|_{o p} \leq \frac{2 k_{0}}{\epsilon}
$$

$\mathbb{Q} . \mathbb{E} . \mathbb{D}$.

