MA 515 Final Study Guide

Zach Clawson

November 8, 2010

Section 3.5. Series Related to Orthonormal Sequences.

Theorem (Convergence). Let (e_k) be an orthonormal sequene in a Hilbert space H. Then: (a) $\sum_{k=1}^{\infty} \alpha_k e_k$ converges (in the norm on H) $\iff \sum_{k=1}^{\infty} |\alpha_k|^2$ converges. (b) $x = \sum_{k=1}^{\infty} \alpha_k e_k$ converges $\implies \alpha_k = |\langle x, e_k \rangle|$. (c) $x \in H, x = \sum_{k=1}^{\infty} \alpha_k e_k$ converges with $\alpha_k = \langle x, e_k \rangle$ converges. **Proof.** (a) Let $s_n = \sum_{i=1}^n \alpha_i e_i$ and note

$$\|s_m - s_n\|^2 = \left\| \sum_{i=n+1}^m \alpha_i e_i \right\|^2 = \sum_{i=n+1}^m \|\alpha_i e_i\|^2 \quad (Pythagorean \ theorem)$$
$$= \sum_{i=n+1}^m |\alpha_i|^2 = t_m - t_n$$

if we take $t_k = \sum_{i=1}^k |\alpha_i|^2$. Thus if one converges then the other must. (b) $x = \sum_{i=1}^\infty \alpha_i e_i$ exists $\iff s_n = \sum_{i=1}^n \alpha_i e_i \to x$. Note

$$\langle x, e_i \rangle = \left\langle \lim_{n \to \infty} s_n, e_i \right\rangle = \lim_{n \to \infty, n > i} \langle s_n, e_i \rangle = \lim_{n \to \infty, n > i} \left\langle \sum_{j=1}^n \alpha_j e_j, e_i \right\rangle$$

which is 0 if $n \leq i$ so assume that $n > i \implies$ every term is 0 except for i^{th} one $= \alpha_i$. Thus $\alpha_i = \langle x, e_i \rangle$ for all $i \in \mathbb{N}$.

(c) By (a) we have that $\sum_{i=1}^{\infty} |\langle \alpha, e_i \rangle|^2$ exists by Bessel Inequality.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Lemma (Fourier coefficients). Any x in X inner product space can have at most countably many nonzero Fourier coefficients $\langle x, e_k \rangle$ with respect to an orthonormal family $(e_k), k \in I$, in X.

Proof. Let $x \in H$ and write $x = \sum_{\alpha \in I} \langle x, e_{\alpha} \rangle e_{\alpha}$ for all $x \in X$ which is an uncountable sum. But if we can show that there are a countable number of non-zero Fourier coefficients. Define the set for fixed $x \in H$, $J_x = \{\alpha \in I \mid \langle x, e_{\alpha} \rangle \neq 0\} \subseteq I$. We may then write

$$x = \sum_{\alpha \in I} \langle x, e_{\alpha} \rangle e_{\alpha} = \sum_{\alpha \in J_x} \langle x, e_{\alpha} \rangle e_{\alpha}$$

We want to show that the set J_x is countable. Define

$$J_k = \left\{ \alpha \in I \left| \langle x, e_\alpha \rangle > \frac{1}{k} \right. \right\}$$

noting $J_k \subseteq J_{k+1}$ and defining $J = \bigcup_{k=1}^{\infty} J_k = \lim_{k \to \infty} J_k$. We want to show that each J_k is countable in order to show that J is countable (as we would obtain a countable union of countable sets). Choose $M \subseteq J_k$ such that $M = \{\alpha_1, \ldots, \alpha_m\} \subseteq J_k$ is a finite set. Then since $\langle x, e_\alpha \rangle > \frac{1}{k}$ we then have

$$m \cdot \frac{1}{k^2} < \sum_{i=1}^m |\langle x, e_\alpha \rangle|^2 \le \|x\|^2 < \infty$$

and noting that the LHS $\uparrow \infty$ as $m \uparrow \infty$ gives a contradiction and thus m must be fixed a priori and thus each J_k must be finite, showing the countability of J_x .

Q.E.D.

Section 3.6. Total Orthonormal Sets and Sequences.

Total orthonormal set. A total set in a normed space X is a subset $M \subseteq X$ whose span is dense in X. Accordingly, an orthonormal set in an inner product space X which is total in X is called a *total orthonormal set* in X. That is, M is total in $X \iff \operatorname{span} M = X$.

Theorem (totality). Let M be a subset of an inner product space X. Then:

(a) If M is total in X, then there does not exist a nonzero $x \in X$ which is orthogonal to every element of M; that is, $x \perp M \implies x = 0$.

(b) If X Hilbert, then $x \perp M \implies x = 0$ shows M total in X.

Facts. (a) M is total in Hilbert $H \iff M^{\perp} = \{0\}$

(b) M total in $H \iff \overline{\text{span}M} = H$

(c) M total \iff Parseval's equality holds, i.e. $\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 = ||x||^2$

Theorem (Separable Hilbert spaces). Let H be a Hilbert space. Then:

(a) If H separable, every orthonormal set in H is countable.

(b) If H contains an orthonormal sequence which is total in H, then H is separable.

Section 3.7. Lenendre, Hermite and Laguerre Polynomials.

Legendre polynomials. Can represent them in many ways:

$$P_{n}(t) = \frac{1}{2^{n}n!} \frac{d^{n}}{dt^{n}} [(t^{2} - 1)^{n}]$$

=
$$\sum_{j=0}^{N} (-1)^{j} \frac{(2n - 2j)!}{2^{n}j!(n - j)!(n - 2j)!} t^{n-2j} , \quad N = \frac{n}{2} \text{ or } \frac{n-1}{2} \text{ if even/odd}$$

First few polynomials given by:

$$P_{0}(t) = 1$$

$$P_{1}(t) = t$$

$$P_{2}(t) = \frac{1}{2}(3t^{2} - 1)$$

$$P_{3}(t) = \frac{1}{2}(5t^{3} - 3t)$$

$$P_{4}(t) = \frac{1}{8}(35t^{4} - 30t^{2} + 3)$$

$$\vdots$$

And applying G-S process we can arrive at

$$e_n = \sqrt{\frac{2n+1}{2}} P_n(t)$$

Section 3.8. Representation of Functionals on Hilbert Spaces.

Riesz Lemma. Y is a closed subspace of normed vector space $X \implies \forall \theta \in (0,1) \exists x \in S_X(0,1)$ such that $d(x,Y) > \theta$.

Riesz's Theorem (RR Thm baby). Every bounded linear functional f on a Hilbert space H can be represented in terms of the inner product, namely, $f(x) = \langle x, z \rangle$ where z depends on f, is uniquely determined by f and has norm $||z||_{H} = ||f||_{op}$.

Proof. See that for $f \in H'$ we have $f(f(x) \cdot a - f(a) \cdot x) = 0$ for all $a, x \in H$ trivially. Then $f(x)a - f(a)x \in N = \ker f$. N is a closed subspace of H and thus $H = N \oplus N^{\perp}$. If $N^{\perp} = \{0\}$ then $H = N = \ker f \implies f \equiv 0$ so choose z = 0 for the inner product.

If
$$N^{\perp} \supseteq \{0\}$$
 then $\exists a \in N$ with $a \neq 0$ such that $\langle \underbrace{f(x)a - f(x)x}_{\in N}, \underbrace{a}_{\in N^{\perp}} \rangle = 0 \implies f(x) ||a||^2 = f(a) \langle x, a \rangle \implies f(x) = \frac{f(a)}{||a||^2} \langle x, a \rangle = \left\langle x, \underbrace{\overline{f(a)}}_{=z} \right\rangle$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Definition (Sesquilinear form). Let X and Y be vector spaces over the same field \mathbb{K} (\mathbb{R} or \mathbb{C}). Then a sesquilinear form (or sesquilinear functional) h on $X \times Y$ is a mapping $h : X \times Y \to \mathbb{K}$ such that for all $x, x_1, x_2 \in X$ and $y, y_1, y_2 \in Y$ we have

$$\begin{aligned} h(x_1 + x_2, y) &= h(x_1, y) + h(x_2, y) \\ h(x, y_1 + y_2) &= h(x, y_1) + h(x, y_2) \\ h(\alpha x, y) &= \alpha h(x, y) \\ h(x, \beta y) &= \bar{\beta} h(x, y) \end{aligned}$$

Note if $\mathbb{K} = \mathbb{R}$ then the last condition simply gives this is a *bilinear form*.

Norm on h. h is bounded if $|h(x,y)| \le c ||x|| ||y||$ for some $c \in [0,\infty)$. The norm is given by

$$\|h\| = \sup_{x \in X - \{0\}, y \in Y - \{0\}} \frac{|h(x, y)|}{\|x\| \|y\|} = \sup_{\|x\| = 1, \|y\| = 1} |h(x, y)|$$

Theorem (Riesz representation adult). Let H_1, H_2 be Hilbert spaces and $h: H_1 \times H_2 \to \mathbb{K}$ a bounded sesquilinear form. The h has representation $h(x, y) = \langle Sx, y \rangle$ where $S: H_1 \to H_2$ is a bounded linear operator. S is uniquely determined by h and has norm ||S|| = ||h||.

Proof. Fix $x \in H_1$ and let $f_x : H_2 \to \mathbb{K}$ defined by $f_x(y) = h(x, y)$ which is clearly bounded and linear. Bounded because $||f||_{op} \leq ||h||_{sesq} ||x||_{H}$. Thus by RR Theorem (baby) we have

$$\exists ! z_x \in H_2 \text{ s.t. } f_x(\cdot) = \langle \cdot, z_x \rangle_{H_2}$$

but we have that $f_x(\cdot) = \overline{h(x, \cdot)} \implies \overline{h(x, \cdot)} = \langle \cdot, z_x \rangle_{H_2} \implies h(x, \cdot) = \langle z_x, \cdot \rangle_{H_2}$. Thus for any choice of x we may form this relationship between h and the inner product with choice of z_x .

Define $S: H_1 \to H_2$ by $Sx = z_x$. By construction we trivially have that $h(x, y) = \langle z_x, y \rangle = \langle Sx, y \rangle$ for all $y \in H_2$ for fixed $x \in H_1$. Linearity is easy to show. Must show bounded operator and norm-preserving:

"Bounded." WTS $||Sx||_{H_2} \leq c \cdot ||x||_{H_1}$ for some $c \in [0, \infty)$. Note

$$|\langle Sx, y \rangle| = |h(x, y)| \le ||h||_{sesq} ||x||_{H_1} ||y||_{H_2} \quad \forall \ y \in H_2$$

and choosing y = Sx we thus have

$$||Sx||^{2} \le ||h||_{s} ||x|| \cdot ||Sx|| \implies ||Sx|| \le ||h||_{s} ||x|| \quad \text{(if } ||Sx|| = 0 \text{ then trivial)}$$

and thus $||S||_{op} \leq ||h||_s$.

"Norm preserving." From RR Theorem (baby) we have $||f_x||_{op} = ||z_x|| = ||Sx||$ and since $||f_x||_{op} = \sup_{\|y\|=1} |f_x(y)| = \sup_{\|y\|=1} |h(x, y)|$ we thus have

$$||Sx|| = \sup_{||y||=1} |h(x,y)|$$

and then taking sup over $x \in H_1$ with ||x|| = 1 we thus have

$$\sup_{\|x\|=1} \|Sx\| = \sup_{\|x\|=1, \|y\|=1} |h(x, y)|$$

and the LHS is $||S||_{op}$ and the RHS is $||h||_{sesq}$.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Section 3.9. Hilbert-Adjoint Operator.

Hilbert-adjoint operator T^* . Let $T : H_1 \to H_2$ be a bounded linear operator, where H_1 and H_2 are Hilbert spaces. Then the *Hilbert-adjoint operator* T^* of T is the operator $T^* : H_2 \to H_1$ such that for all $x \in H_1$ and $y \in H_2 \langle Tx, y \rangle = \langle x, T^*y \rangle$ and $||T|| = ||T^*||$.

Proof. Define $h: H_2 \times H_1 \to \mathbb{K}$ by $h(y, x) = \langle y, Tx \rangle$. *h* has a bounded sesquilinear form. Sesquilinearity is easy, to show boundedness see that

$$|h(y,x)| = |\langle y,Tx \rangle| \le ||y|| \cdot ||Tx|| \le ||y|| \cdot ||x|| \cdot ||T||_{op}$$

and T is a bounded operator so $||T||_{op} < \infty$ verifies the boundedness of this sesquilinear form.

Thus by RR Theorem (adult), $\exists S : H_2 \to H_1$ defined by $\underbrace{h(y, x)}_{=\langle y, Tx \rangle_{H_2}} = \langle Sy, x \rangle_{H_1}$ so it seems a natural selection

to take $T^* = S$.

Next see that

$$||T^*||_{op} = ||S||_{op} = ||h||_{sese}$$

and we want to show that this is $||T||_{op}$. Thus similarly define $g: H_1 \times H_2 \to \mathbb{K}$ by $g(x, y) = \langle Tx, y \rangle \Longrightarrow \exists ! S: H_1 \to H_2$ such that $g(x, y) = \langle Sx, y \rangle$ and therefore $\langle Sx, y \rangle = \langle Tx, y \rangle \Longrightarrow ||g|| = ||T||$.

It is easy to see that ||h|| = ||g|| by observing

$$\|g\|_{sesq} = \sup_{\|x\|=1, \|y\|=1} |\langle Tx, y\rangle| = \sup_{\|x\|=1, \|y\|=1} |\langle y, Tx\rangle| = \|h\|_{sesq}$$

verifying the norm preservation of the adjoint operator on a Hilbert space.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Properties of Hilbert-adjoint operators. Let H_1, H_2 be Hilbert spaces, $S: H_1 \to H_2$ and $T: H_1 \to H_2$ bounded linear operators and α any scalar. Then we have

$$\begin{array}{rcl} \langle T^*y, x \rangle & = & \langle y, Tx \rangle \\ (S+T)^* & = & S^* + T^* \\ (\alpha T)^* & = & \bar{\alpha}T^* \\ (T^*)^* & = & T \\ \|T^*T\| & = & \|TT^*\| = \|T\|^* \\ T^*T = 0 & \Longleftrightarrow & T = 0 \\ (ST)^* & = & T^*S^* \end{array}$$

Section 3.10. Self-Adjoint, Unitary and Normal Operators.

Self-adjoint, unitary and normal operators. A bounded linear operator $T: H \to H$ on a Hilbert space H is said to be

 $\begin{array}{ll} self-adjoint \mbox{ or } Hermitian \mbox{ if } & T^* = T \\ unitary \mbox{ if } T \mbox{ is bijective and } & TT^* = T^*T = I \\ normal \mbox{ if } & TT^* = T^*T \end{array}$

Theorem (Self-adjointness). Let $T: H \to H$ be a bounded linear operator on a Hilbert space H. Then:

(a) T is self-adjoint $\implies \langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H$

(b) *H* complex and $\langle Tx, x \rangle \in \mathbb{R}$ for all $x \in H \implies T$ self-adjoint

Theorem (Sequences of self-adjoint operators). Let (T_n) be a sequence of bounded self-adjoint linear operators $T_n : H \to H$ on Hilbert H. Suppose (T_n) converges, $T_n \to T$ (i.e. $||T_n - T|| \to 0$ where $|| \cdot ||$ is the norm on B(H, H)). Then T is also self-adjoint.

Section 4.2. Hahn-Banach Theorem.

Hahn-Banach Theorem (baby). X vector space over $\mathbb{K} = \mathbb{R}$, Z proper subspace of X. $f : Z \to \mathbb{R}$ is a linear functional such that $f \leq p$ where p is sub-linear (i.e. $p(\alpha x) = \alpha p(x), \alpha \geq 0$ and $p(x+y) \leq p(x) + p(y)$) $\implies \exists \ \bar{f} : X \to \mathbb{R}$ linear functional such that $\bar{f} \mid_{Z} = f$ and $\bar{f} \leq p$.

Zorn's Lemma. M partially ordered (\leq) set, i.e. (1) $a \leq a$, (2) $a \leq b, b \leq a \implies a = b$, and (3) $a \leq b, b \leq c \implies a \leq c$, and any chain (totally ordered subset) has an upper bound $\implies \exists$ maximal element in M.

Proof (HB baby). Define

$$M = \{g : \mathcal{D}(g) \to \mathbb{R} \mid g \text{ is linear functional}, Z \subseteq \mathcal{D}(g) \subseteq X, g \mid_{Z} = f, g \le p\}$$

This is a partially ordered set under the ordering of $g_1 \leq g_2 \iff \mathcal{D}(g_1) \subseteq \mathcal{D}(g_2)$ and $g_2 \mid_{\mathcal{D}(g_1)} = g_1$. Any chain $C \subseteq M$ has an upper bound given by

$$\hat{g}(x) = g(x)$$
 if $x \in \mathcal{D}(g)$ for any $g \in C$

which is clearly a linear functional with domain

$$\mathcal{D}(\hat{g}) = \bigcup_{g \in C} \mathcal{D}(g)$$

Clearly \hat{g} is an upper bound since by definition and construction we have $g \leq \hat{g}$ for all $g \in C$. Then there exists a maximal element \bar{f} in M satisfying $\bar{f} \leq p$ and $\bar{f} \mid_{Z} = f$. We want to show that $\mathcal{D}(\bar{f}) = X$. We have that $\mathcal{D}(\bar{f}) \subseteq X$ so we must show that $\mathcal{D}(\bar{f}) \supseteq X$. For contradiction assume that latter does not hold.

Then $\exists y_1 \in X - \mathcal{D}(f)$ and consider $Y_1 = \operatorname{span}(\mathcal{D}(\bar{f}), y_1)$. Note $y_1 \neq 0$ since $0 \in Z \subseteq \mathcal{D}(\bar{f})$ and $y_1 \in X - \mathcal{D}(f)$. Then for any $x \in Y_1$ we have $x = y + \alpha y_1$ for some $y \in \mathcal{D}(\bar{f})$. Note that this representation must be unique as if we have $x = y' + \alpha' y_1$ then $y' + \alpha' y_1 = y + \alpha y_1 \iff y - y' = (\alpha' - \alpha) y_1$ and the LHS is in $\mathcal{D}(\bar{f})$ and thus since $y_1 \notin \mathcal{D}(\bar{f})$ then $\alpha' - \alpha = 0 \implies \alpha' = \alpha$ and thus y = y' showing this representation is unique.

Thus define g_1 on Y_1 by $g_1(y + \alpha y_1) = \overline{f}(y) + \alpha c$ where $c \in \mathbb{R}$. Clearly this is linear. For $\alpha = 0$ then $g_1 = \overline{f}$. Then g_1 is a proper extension of \overline{f} , contradicting the maximality of \overline{f} if $g_1 \leq p$. See that

$$g_1(x) = \bar{f}(x) + \alpha c \le -\alpha p\left(-y_1 - \frac{1}{\alpha}y\right) = p(\alpha y_1 + y) = p(x)$$

providing our contradiction.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Hahn-Banach Theorem (adult). Z is a subspace of vector space X, $f : Z \to \mathbb{K}$ is \mathbb{K} -linear functional and $|f| \leq p$ where p sub-linear $(p(x+y) \leq p(x) + p(y) \text{ and } p(\alpha x) = |\alpha|p(x) \text{ for all } \alpha \in \mathbb{R}) \implies \exists \bar{f} : X \to \mathbb{K}$ is \mathbb{K} -linear functional such that $|\bar{f}| \leq p$ and $\bar{f}|_{Z} = f$.

Note. p(0) = 0 and $p(x) + p(x) = p(x) + p(-x) \ge p(x + (-x)) = p(0) = 0 \implies p(x) \ge 0$ for any $x \in X$.

Proof (HB adult). $f: Z \to \mathbb{C}$ such that $f(x) = f_1(x) + if_2(x)$ where $f_1, f_2: Z \to \mathbb{R}$ are linear functionals. Note that f_2 is uniquely determined by f_1 defined by $f_2(x) = -f_1(ix)$. We can show this by matching real parts in the following equalities

$$\underbrace{f(ix)}_{=} = f_1(ix) + if_2(ix)$$
$$\underbrace{f(x)}_{=} = if_1(x) - f_2(x)$$

Therefore

 $f(x) = f_1(x) - if_1(ix)$

Use HB baby on f_1 to extend f_1 (note $|f_1| \le |f| \le p$) to $\bar{f}_1 : X \to \mathbb{R}$. Naturally define

$$\bar{f}(x) = \bar{f}_1(x) - i\bar{f}_1(ix)$$

which is trivially a \mathbb{C} -linear functional, clearly $\bar{f}|_{Z} = f$ and we need to show that $|\bar{f}| \leq p$. Note that for any $z \in \mathbb{C}$ we have $z = re^{i\theta}$ and thus $\bar{f}(x) = |\bar{f}(x)|e^{i\theta}$ and therefore

$$|\bar{f}(x)| = \bar{f}(x)e^{-i\theta} = \bar{f}(e^{-i\theta}x) = \bar{f}_1(e^{-i\theta}x) - i\bar{f}_1(ie^{-i\theta}x)$$

and since the LHS is a real number then the imaginary part of the RHS must be 0. Then

$$0 \le |\bar{f}(x)| = \bar{f}_1(e^{-i\theta}x) = |\bar{f}_1(e^{-i\theta}x)| \le p(e^{-i\theta}x) = |e^{-i\theta}|p(x) = p(x)$$

verifying the boundedness by the sub-linear functional.

HB Application 1. Let Z be a subspace of X a normed vector space, $f : Z \to \mathbb{K}$ is a \mathbb{K} -linear functional and bounded $\implies \exists \ \bar{f} : X \to \mathbb{K}$, bounded \mathbb{K} -linear functional such that $\bar{f} \mid_{Z} = f$ and $\|\bar{f}\| = \|f\|$.

Proof. Define $p: X \to \mathbb{R}$ by $p(x) = ||f|| \cdot ||x||$ which is clearly sub-linear (note $||f|| < \infty$ and it exists since f is bounded). Use HB Theorem (adult) so then $\exists \bar{f}: X \to \mathbb{K}$ a \mathbb{K} -linear functional such that $\bar{f} \mid_{Z} = f$ and $|\bar{f}| \le p$.

 $\text{Bounded? Note } |\bar{f}(x)| \leq p(x) = \|f\| \cdot \|x\| \implies \|\bar{f}\| \leq \|f\| < \infty.$

Equality of norms? Note that we have \leq above so we WTS \geq . See that

$$\|\bar{f}\| = \sup_{x \in X - \{0\}} \frac{|f(x)|}{\|x\|} \ge \sup_{x \in Z - \{0\}} \frac{|f(x)|}{\|x\|} = \sup_{x \in Z - \{0\}} \frac{|f(x)|}{\|x\|} = \|f\|$$

verifying the equality using the boundedness above.

Q.E.D.

HB Application 2. X normed vector space, $x \in X$. X' is space of bounded linear functionals $f : X \to \mathbb{K}$ (K-linear functional). Fix $x \in X$, then

 $\bar{x}: X' \to \mathbb{K}$ defined by $\bar{x}(f) = f(x)$

Further, $||x||_X = \sup_{f \in X' - \{0\}} \frac{|f(x)|}{||f||_{op}} = ||\bar{x}||_{op}.$

Proof. Note $\|\bar{x}\|_{op} \le \|x\|_X$ since $|f(x)| \le \|f\| \cdot \|x\| \implies \frac{|f(x)|}{\|f\|_{op}} \le \|x\| \implies \|\bar{x}\|_{op} = \sup_{f \in X' - \{0\}} \frac{|f(x)|}{\|f\|_{op}} \le \|x\|_X$.

Now we want to show that $\|\bar{x}\|_{op} \ge \|x\|_X$. Construct $Z = \operatorname{span}\{x\} = \{\alpha x \mid \alpha \in \mathbb{K}\}$. Let $g : Z \to \mathbb{K}$ be such that $g(\alpha x) = \alpha \cdot \|x\|$ and it is easy to see this is a linear functional on Z that is bounded because $|g(\alpha x)| = |\alpha| \cdot \|x\| = \|\alpha x\| \implies \|g\| = \sup_{z \in Z} \frac{|g(z)|}{\|z\|} = \sup_{z = \alpha x \in Z - \{0\}} \frac{\|\alpha x\|}{\|\alpha x\|} = 1$ proving $\|g\| = 1$.

Thus $\exists \bar{g}: X \to \mathbb{K}$ is bounded linear functional such that $\bar{g}|_Z = g$ and $\|\bar{g}\| = \|g\| = 1$. Then

$$\|\bar{x}\|_{op} = \sup_{f \in X' - \{0\}} \frac{|f(x)|}{\|f\|_{op}} \ge \frac{|\bar{g}(x)|}{\|\bar{g}\|} = \frac{\|x\|}{1} = \|x\|$$

Therefore $\|\bar{x}\|_{op} \ge \|x\|_X$ verifying the equality.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Adjoint operator. $T: H_1 \to H_2$ are Hilbert spaces $\implies \exists T^*: H_2 \to H_1$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ and $||T^*|| = ||T||$.

HB Application 3 (Adjoint operator). $T: X \to Y$ where X, Y normed vector spaces and T is a bounded linear operator $\implies \exists T^x: Y' \to X'$ bounded linear operator with $||T^x|| = ||T||$.

Proof. Define $T^x: Y' \to X'$ by $g \in Y' \mapsto T^x g \in X'$ where $T^x g: X \to \mathbb{K}$ is defined by $(T^x g) = g(Tx)$. We want to check this is linear, bounded, and preserves the norm of T.

"Bounded." $|(T^{x}g)(x)| = |g(Tx)| \le ||g|| ||Tx|| \le ||g|| ||T|| ||x||$ using the boundedness of g and T.

"Linear." Cleary $T^{x}g$ as a functional on X is linear from the linearity of T and g. T^{x} 's linearity follows.

"Norm equality." First see that

$$||T^{x}g||_{op} = \sup_{x \in X - \{0\}} \frac{|(T^{x}g)(x)|}{||x||_{X}} = \sup_{x \in X - \{0\}} \frac{|g(Tx)|}{||x||} \le \sup_{x \in X - \{0\}} \frac{||g|| \cdot ||T|| \cdot ||x||}{||x||} = ||g|| \cdot ||T||$$

which verifies that $||T^x||_{op} \leq ||T||_{op}$. Next we that

$$||Tx||_{Y} = ||\overline{Tx}||_{op} = \sup_{f \in Y' - \{0\}} \frac{|(\overline{Tx})(f)|}{||f||_{op}} = \sup_{f \in Y' - \{0\}} \frac{|(\overline{Tx})(x)|}{||f||}$$

$$\leq \sup_{f \in Y' - \{0\}} \frac{||f|| \cdot ||T^{x}|| \cdot ||x||}{||f||} = ||T^{x}|| ||x||$$

showing $||T||_{op} \leq ||T^x||_{op}$. Equality follows.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

Baire's Category Theorem. Any complete metric space X is of second category.

First category. $X = \bigcup_{i \in \mathbb{N}} A_i$ where all A_i are nowhere dense. I.e. \overline{A}_i has no open subsets (i.e. "indiscrete structure").

Second category. (Not first category.) $X = \bigcup_{i \in \mathbb{N}} B_i \implies \exists B_{i_0}$ such that $B_{i_0} \supseteq$ some open set.

Proof (BC Thm). Assume X is a complete metrix space. Assume for contradiction that X is not of second category. That is, X is first category. Let $X = \bigcup_{i \in \mathbb{N}} A_i$ where each A_i is nowhere dense (we know we can write X as this by it being of first category). Note X is an open set so $X \not\subseteq A_1 \subseteq \overline{A_1}$. Thus:

- $\bar{A}_1 \not\supseteq X \implies (\bar{A}_1)^C \neq \emptyset$ and $(\bar{A}_1)^C$ is open $\implies \exists \epsilon_1 > 0, x_1 \in (\bar{A}_1)^C$ such that $K_1 = B(x_1, \epsilon_1) \subseteq (\bar{A}_1)^C$.
- $\bar{A}_2 \not\supseteq X \implies (\bar{A}_2)^C \neq \emptyset$ and $(\bar{A}_2)^C$ is open and further $B\left(x_1, \frac{\epsilon_1}{2}\right) \not\subseteq \bar{A}_2 \implies K_2 = B\left(x_1, \frac{\epsilon_1}{2}\right) \cap (\bar{A}_2)^C \neq \emptyset$ and is open $\implies \exists \epsilon_2 > 0, x_2 \in K_2$ such that $B\left(x_2, \epsilon_2\right) \subseteq K_2$ (note $\epsilon_2 \le \frac{\epsilon_1}{2} \le \epsilon_1$).
- :
- $\bar{A}_{n+1} \not\supseteq X \implies (\bar{A}_{n+1})^C \neq \emptyset$ and is open and $K_{n+1} = B\left(x_n, \frac{\epsilon_n}{2}\right) \cap (\bar{A}_{n+1})^C \neq \emptyset$ and open $\implies \exists \epsilon_{n+1} > 0, x_{n+1} \in K_{n+1}$ such that $B(x_{n+1}, \epsilon_{n+1}) \subseteq K_{n+1}$ (note $\epsilon_n \leq \frac{\epsilon_{n+1}}{2}$).

• :

Claim: $\{x_n\}_{n\in\mathbb{N}}$ are Cauchy. Note these "balls" are getting smaller and smaller, they form a nested sequence:

$$\cdots \subseteq B(x_{n+1}, \epsilon_{n+1}) \subseteq B(x_n, \epsilon_n) \subseteq \cdots$$

Assume $m \ge n \implies x_m \in B(x_m, \epsilon_m) \subseteq \cdots \subseteq B\left(x_n, \frac{\epsilon_n}{2}\right) \implies x_m \in B\left(x_n, \frac{\epsilon_n}{2}\right) \implies d(x_n, x_m) < \frac{\epsilon_n}{2} \le \frac{\epsilon_1}{2^n} \to 0$ since $\epsilon_n \le \frac{\epsilon_n}{2^{n-1}}$ as $n \uparrow \infty$. Thus $\{x_n\}_{n \in \mathbb{N}}$ is Cauchy and thus converges, $x_n \to x \in X$.

Now using $d(x_n, x_m) < \frac{\epsilon_n}{2} \implies$ taking $m \uparrow \infty$ we have $d(x_n, x_m) \to d(x_n, x) \le \frac{\epsilon_n}{2} \implies x \in B(x_n, \epsilon_n) \subseteq (\bar{A}_n)^C$ by construction $\implies x \in (\bar{A}_n)^C$ for all $n \in \mathbb{N} \implies x \in \bigcap_{n \in \mathbb{N}} (\bar{A}_n)^C = \left(\bigcup_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N} \\ = X}} \bar{A}_n\right)^C = X^C = \emptyset \implies X^C = \emptyset$

 $x \in \emptyset$ gives our contradiction.

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$

BC Theorem Application. T_n bounded linear operator, $T_n : X \to Y$ where X Banach and Y normed vector space $\implies \sup_{n \in \mathbb{N}} ||T_n||_{op} < \infty$.

Proof. T_n bounded $\implies ||T_n|| < \infty$. Let $x \in X \implies \exists k \in \mathbb{N} \Rightarrow \sup_{n \in \mathbb{N}} ||T_n x|| \le k$. Then for arbitrary $k \in \mathbb{N}$ we have

$$A_{k} = \left\{ x \in X \left| \sup_{n \in \mathbb{N}} \|T_{n}x\| \le k \right\} \implies x \in \bigcup_{k \in \mathbb{N}} A_{k}$$

and thus $X = \bigcup_{k \in \mathbb{N}} A_k$ and since X is of second category, $\exists k_0 \in \mathbb{N}$ such that A_{k_0} is nowhere dense. That is, $A_{k_0} \supseteq$ an open set $\implies B(x_0, \epsilon_0) \subseteq A_{k_0} \implies ||x - x_0|| < \epsilon_0 \implies x \in A_{k_0} \implies \sup_{n \in \mathbb{N}} ||T_n x|| \le k_0$.

Using $||T_n||_{op} = \sup_{u \in S_X(0,1)} ||T_n u||_X$. Note that for $u \in S_X(0,1)$ and $\epsilon < \epsilon_0$ we have $x_0 + \epsilon u \in B(x_0,\epsilon_0) \subseteq A_{k_0} \implies \sup_{n \in \mathbb{N}} ||T_n(x_0 + \epsilon u)||_Y \le k_0$ and thus

 $\epsilon \|T_n u\| - \|T_n x_0\| \le \|T_n x_0 + \epsilon T_n u\|_Y \le k_0 \implies \epsilon \|T_n u\| \le k_0 + \|T_n x_0\| \le k_0 + k_0 = 2k_0$

and therefore $||T_n u|| \leq \frac{2k_0}{\epsilon}$ and since k_0, ϵ were fixed then

$$\sup_{u \in S_X(0,1)} \|T_n u\| \le \frac{2k_0}{\epsilon} \implies \|T_n\|_{op} \le \frac{2k_0}{\epsilon} \implies \sup_{n \in \mathbb{N}} \|T_n\|_{op} \le \frac{2k_0}{\epsilon}$$

 $\mathbb{Q}.\mathbb{E}.\mathbb{D}.$