# MA 513 <br> Test 2 Study Guide 

Zach Clawson

## General

Logarithmic $-f(z)=\log z=\ln |z|+\arg z$ and $f(z)=\log z=\ln |z|+\operatorname{Arg} z$
Trigonometric Functions $-\sin z=\frac{e^{i z}-e^{-i z}}{2 i}$ and $\cos z=\frac{e^{i z}+e^{-i z}}{2}$ and $\tan z=\frac{\sin z}{\cos z}$
Hyperbolic Functions $-\sinh z=\frac{e^{z}-e^{-z}}{2}$ and $\cosh z=\frac{e^{z}+e^{-z}}{2}$
Length of Path - $L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t=\int_{a}^{b}\left|z^{\prime}(t)\right| d t$
Line Integral - $\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$
Theorem on Bound of Integral - $C$ is a contour of length $L$ and $f$ is a piecewise continuous function on $\mathbb{C}$. If we assume $|f(z)| \leq M \forall z \in \mathbb{C}$, then

$$
\left|\int_{C} f(z)\right| \leq M \cdot L
$$

Cauchy-Goursat Theorem - If a function $f$ is analytic at all points interior to and on a simple closed contour $C$, then

$$
\int_{C} f(z) d z=0
$$

Cauchy Integral Theorem - $f$ is analytic everywhere inside and on simple closed contour $C$, in positive sense. If $z_{0}$ is interior to $C$, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

and this can be extended to

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z, \quad n=1,2, \ldots
$$

Theorem - If a function $f$ is entire and bounded in the complex plane, then $f(z)$ is constant throughout the plane.

## Series

Taylor Series Theorem - An analytic function $f$ throughout a disk $\left|z-z_{0}\right|<R_{0}$ centered at $z_{0}$ and with radius $R_{0}$ has a unique power series representation

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad, \quad a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

## Common Series

Good formulas to know:

$$
\begin{aligned}
e^{z} & =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
\sin z & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} \\
\cos z & =\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!} \\
\frac{1}{1-z} & =\sum_{n=0}^{\infty} z^{n} \quad(|z|<1)
\end{aligned}
$$

Laurent Series Theorem - Suppose that a function $f$ is analytic throughout an annular domain $R_{1}<$ $\left|z-z_{0}\right|<R_{2}$, centered at $z_{0}$, and let $C$ denote any positively oriented simple closed contour around $z_{0}$ and lying in that domain. Then, at each point in the domain, $f(z)$ has the series representation

$$
f(x)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

where

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=0,1,2 \ldots) \\
b_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} \quad(n=1,2, \ldots)
\end{aligned}
$$

## Residues and Poles

Cauchy's Residue Theorem - Let $C$ be a simple closed contour, described in the positive sense. If a function $f$ is analytic inside and on $C$ except for a finite number of singular points $z_{k}(k=1,2, \ldots, n)$ inside $C$, then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\operatorname{Res}} f(z)
$$

Residue at Infinity - Residue at infinity is given by

$$
\operatorname{Res}_{z=\infty}^{\operatorname{Res}} f(z)={ }_{z=0} \frac{1}{z^{2}} f\left(\frac{1}{z}\right)
$$

and we can use this in the formula

$$
\int_{C} f(z) d z=2 \pi i \operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]
$$

Residue Theorem 1 - An isolated singular point $z_{0}$ of a function $f$ is a pole of order $m$ if and only if $f(z)$ can be written in the form

$$
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}
$$

where $\phi(z)$ is analytic and nonzero and $z_{0}$. Moreover,

$$
\underset{z=z_{0}}{\operatorname{Res}} f(z)=\phi\left(z_{0}\right) \quad \text { if } m=1
$$

and

$$
\underset{z=z_{0}}{\operatorname{Res}}=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!} \quad \text { if } m \geq 2
$$

Residue Theorem 2 - Let two function $p$ and $q$ be analytic at a point $z_{0}$. If

$$
p\left(z_{0}\right) \neq 0, \quad q\left(z_{0}\right)=0, \quad \text { and } \quad q^{\prime}\left(z_{0}\right) \neq 0
$$

then $z_{0}$ is a simple pole of the quotient $p(z) / q(z)$ and

$$
\underset{z=z_{0}}{\operatorname{Res}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

## Applications of Residues

Cauchy Principal Value - is given by

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x
$$

## Evaluation of Improper Integrals

Steps to evaluate an integral $\int_{0}^{\infty} f(x) d x$ where $f$ is even:

1. Draw a contour from $(-R, 0)$ to $(R, 0)$ (to the right) and then a semi-circle from $(R, 0)$ to $(-R, 0)$ counter-clockwise.
2. This is a closed contour and we can write

$$
\int_{-R}^{R} f(x) d x+\int_{C_{R}} f(z) d z=2 \pi i \sum_{k=0}^{n} \underset{z=z_{k}}{\mathrm{Res}} f(z)
$$

where each $z_{k}(k=0,1, \ldots, n)$ are isolated singularities in the upper half-plane.
3. Look at when $|z|=R$ and show that $|f(z)|$ is bounded by $M_{R}$. Use this to show that

$$
\left|\int_{C_{R}} f(z) d z\right| \leq M_{R} \cdot \pi R \rightarrow 0 \Longrightarrow \int_{C_{R}} f(z) d z \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty
$$

4. Let $R \rightarrow \infty$ in 2 . above and thus we have shown that

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\operatorname{Res}} f(z)
$$

and using that $f$ is even we see

$$
\int_{0}^{\infty} f(x) d x=\pi i \sum_{k=1}^{n} \underset{z=z_{k}}{\operatorname{Res}} f(z)
$$

## Evaluation of Improper Integrals Using Indented Paths

Jordan's Lemma - Suppose that

- a function $f(z)$ is analytic at all points in the upper half plane $y \geq 0$ that are exterior to a circle $|z|=R_{0}$
- $C_{R}$ denotes a semicircle $z=R e^{i \theta}(0 \leq \theta \leq \pi)$, where $R>R_{0}$
- for all points $z$ on $C_{R}$ there is a positive constant $M_{R}$ such that

$$
|f(z)| \leq M_{R} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

Then for every positive constant $a$,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) e^{i a z} d z=0
$$

Indented Paths - Use when $f(z)$ is not analytic at $z=0$ and use the fact that

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} f(z) d z=-\pi i \cdot \operatorname{Res}_{z=0}^{\operatorname{Res}} f(z)
$$

and also use when $f(z)$ involving $\log z$ yet just show

$$
\lim _{\rho \rightarrow 0} \int_{C_{\rho}} f(z) d z=0
$$

## Definite Integrals Involving Sines and Cosines

Evaluating integrals such as

$$
\int_{0}^{2 \pi} F(\sin \theta, \cos \theta) d \theta
$$

can be done by looking at the circle $|z|=1$ and converting this integral to an integral about that contour using the substitutions

$$
\sin \theta=\frac{z-z^{-1}}{2 i}, \quad \cos \theta=\frac{z+z^{-1}}{2}, \quad d \theta=\frac{d z}{i z}
$$

## Rouche's Theorem

Let $C$ denote a simple closed contour and suppose that

- two functions $f(z)$ and $g(z)$ are analytic inside $C$
- $|f(z)| \geq|g(z)|$ at each point on $C$

Then $f(z)$ and $f(z)+g(z)$ have the same number of zeros, counting multiplicities, inside $C$.

