General

Logarithmic - \(f(z) = \log z = \ln |z| + \arg z \) and \(f(z) = \Log z = \ln |z| + \Arg z \)

Trigonometric Functions - \(\sin z = \frac{e^{iz} - e^{-iz}}{2i} \) and \(\cos z = \frac{e^{iz} + e^{-iz}}{2} \) and \(\tan z = \frac{\sin z}{\cos z} \)

Hyperbolic Functions - \(\sinh z = \frac{e^{z} - e^{-z}}{2} \) and \(\cosh z = \frac{e^{z} + e^{-z}}{2} \)

Length of Path - \(L = \int_{a}^{b} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = |z'(t)| \, dt \)

Line Integral - \(\int_{C} f(z) \, dz = \int_{a}^{b} f(z(t)) z'(t) \, dt \)

Theorem on Bound of Integral - If \(C \) is a contour of length \(L \) and \(f \) is a piecewise continuous function on \(\mathbb{C} \). If we assume \(|f(z)| \leq M \forall z \in \mathbb{C} \), then

\[
\left| \int_{C} f(z) \right| \leq M \cdot L
\]

Cauchy-Goursat Theorem - If a function \(f \) is analytic at all points interior to and on a simple closed contour \(C \), then

\[
\int_{C} f(z) \, dz = 0
\]

Cauchy Integral Theorem - \(f \) is analytic everywhere inside and on simple closed contour \(C \), in positive sense. If \(z_0 \) is interior to \(C \), then

\[
f(z_0) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_0} \, dz
\]

and this can be extended to

\[
f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{C} \frac{f(z)}{(z - z_0)^{n+1}} \, dz, \quad n = 1, 2, \ldots
\]

Theorem - If a function \(f \) is entire and bounded in the complex plane, then \(f(z) \) is constant throughout the plane.

Series

Taylor Series Theorem - An analytic function \(f \) throughout a disk \(|z - z_0| < R_0 \) centered at \(z_0 \) and with radius \(R_0 \) has a unique power series representation

\[
f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \quad , \quad a_n = \frac{f^{(n)}(z_0)}{n!}
\]
Common Series

Good formulas to know:

\[e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \]

\[\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \]

\[\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!} \]

\[\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \quad (|z| < 1) \]

Laurent Series Theorem - Suppose that a function \(f \) is analytic throughout an annular domain \(R_1 < |z - z_0| < R_2 \), centered at \(z_0 \), and let \(C \) denote any positively oriented simple closed contour around \(z_0 \) and lying in that domain. Then, at each point in the domain, \(f(z) \) has the series representation

\[f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} \]

where

\[a_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z - z_0)^{n+1}} \quad (n = 0, 1, 2, \ldots) \]

\[b_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{-n+1}} \quad (n = 1, 2, \ldots) \]

Residues and Poles

Cauchy’s Residue Theorem - Let \(C \) be a simple closed contour, described in the positive sense. If a function \(f \) is analytic inside and on \(C \) except for a finite number of singular points \(z_k \) (\(k = 1, 2, \ldots, n \)) inside \(C \), then

\[\int_C f(z)dz = 2\pi i \sum_{k=1}^{n} \text{Res}_{z=z_k} f(z) \]

Residue at Infinity - Residue at infinity is given by

\[\text{Res}_{z=\infty} f(z) = \text{Res}_{z=0} \left(\frac{1}{z} \right) f\left(\frac{1}{z} \right) \]

and we can use this in the formula

\[\int_C f(z)dz = 2\pi i \sum_{z=\infty} \text{Res}_{z=0} \left(\frac{1}{z} \right) f\left(\frac{1}{z} \right) \]

Residue Theorem 1 - An isolated singular point \(z_0 \) of a function \(f \) is a pole of order \(m \) if and only if \(f(z) \) can be written in the form

\[f(z) = \frac{\phi(z)}{(z - z_0)^m} \]

where \(\phi(z) \) is analytic and nonzero and \(z_0 \). Moreover,

\[\text{Res}_{z=0} f(z) = \phi(z_0) \quad \text{if } m = 1 \]
and
\[\text{Res}_{z=z_0} = \frac{\phi^{(m-1)}(z_0)}{(m-1)!} \quad \text{if} \quad m \geq 2 \]

Residue Theorem 2 - Let two functions \(p \) and \(q \) be analytic at a point \(z_0 \). If
\[p(z_0) \neq 0, \quad q(z_0) = 0, \quad \text{and} \quad q'(z_0) \neq 0 \]
then \(z_0 \) is a simple pole of the quotient \(p(z)/q(z) \) and
\[\text{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)} \]

Applications of Residues

Cauchy Principal Value - is given by
\[\text{P.V.} \int_{-\infty}^{\infty} f(x)dx = \lim_{R \to \infty} \int_{-R}^{R} f(x)dx \]

Evaluation of Improper Integrals

Steps to evaluate an integral \(\int_{0}^{\infty} f(x)dx \) where \(f \) is even:

1. Draw a contour from \((-R,0)\) to \((R,0)\) (to the right) and then a semi-circle from \((R,0)\) to \((-R,0)\) counter-clockwise.

2. This is a closed contour and we can write
\[\int_{-R}^{R} f(x)dx + \int_{C_R} f(z)dz = 2\pi i \sum_{k=0}^{n} \text{Res}_{z=z_k} f(z) \]
where each \(z_k \) \((k = 0, 1, \ldots, n)\) are isolated singularities in the upper half-plane.

3. Look at when \(|z| = R\) and show that \(|f(z)|\) is bounded by \(M_R \). Use this to show that
\[\left| \int_{C_R} f(z)dz \right| \leq M_R \cdot \pi R \to 0 \implies \int_{C_R} f(z)dz \to 0 \quad \text{as} \quad R \to \infty \]

4. Let \(R \to \infty \) in 2. above and thus we have shown that
\[\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{k=1}^{n} \text{Res}_{z=z_k} f(z) \]
and using that \(f \) is even we see
\[\int_{0}^{\infty} f(x)dx = \pi i \sum_{k=1}^{n} \text{Res}_{z=z_k} f(z) \]

Evaluation of Improper Integrals Using Indented Paths

Jordan’s Lemma - Suppose that

- a function \(f(z) \) is analytic at all points in the upper half plane \(y \geq 0 \) that are exterior to a circle
\[|z| = R_0 \]
• C_R denotes a semicircle $z = Re^{i\theta}$ $(0 \leq \theta \leq \pi)$, where $R > R_0$

• for all points z on C_R there is a positive constant M_R such that

$$|f(z)| \leq M_R \to 0 \quad \text{as } R \to \infty$$

Then for every positive constant a,

$$\lim_{R \to \infty} \int_{C_R} f(z)e^{iaz}dz = 0$$

Indented Paths - Use when $f(z)$ is not analytic at $z = 0$ and use the fact that

$$\lim_{\rho \to 0} \int_{C_{\rho}} f(z)dz = -\pi i \cdot \text{Res}_{z=0} f(z)$$

and also use when $f(z)$ involving $\log z$ yet just show

$$\lim_{\rho \to 0} \int_{C_{\rho}} f(z)dz = 0$$

Definite Integrals Involving Sines and Cosines

Evaluating integrals such as

$$\int_{0}^{2\pi} F(\sin \theta, \cos \theta)d\theta$$

can be done by looking at the circle $|z| = 1$ and converting this integral to an integral about that contour using the substitutions

$$\sin \theta = \frac{z - z^{-1}}{2i}, \quad \cos \theta = \frac{z + z^{-1}}{2}, \quad d\theta = \frac{dz}{iz}$$

Rouche’s Theorem

Let C denote a simple closed contour and suppose that

• two functions $f(z)$ and $g(z)$ are analytic inside C

• $|f(z)| \geq |g(z)|$ at each point on C

Then $f(z)$ and $f(z) + g(z)$ have the same number of zeros, counting multiplicities, inside C.

4