MA 513
 Study Guide

January 30, 2011

1 Basic Definitions

Given $z=x+i y$ we define $\operatorname{Re} z=x$ and $\operatorname{Im} z=y$. We also define $\bar{z}=\overline{x+i y}=x-i y$.

2 Basic Theorems

$$
\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \text { and }\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|
$$

3 Limits

Definition - Let a function f be defined at all points z in some deleted neighborhood of z_{0}. The statement that the limit of $f(z)$ as z approaches z_{0} is a number w_{0}, or that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

means that $\forall \epsilon>0 \exists \delta$ э

$$
\left|f(z)-w_{0}\right|<\epsilon \quad \text { whenever } \quad 0<\left|z-z_{0}\right|<\delta .
$$

3.1 Limits Involving the Point at Infinity

$$
\begin{array}{ccc}
\lim _{z \rightarrow z_{0}} f(z)=\infty & \text { if and only if } & \lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0 \\
\lim _{z \rightarrow \infty} f(z)=w_{0} & \text { if and only if } & \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0} \\
\lim _{z \rightarrow \infty} f(z)=\infty & \text { if and only if } & \lim _{z \rightarrow 0} \frac{1}{f\left(\frac{1}{z}\right)}=0 \tag{3}
\end{array}
$$

Theorem on Limits (like L'Hobital's) - Suppose $f(z), g(z)$ are differentiable at $z_{0}, f\left(z_{0}\right)=g\left(z_{0}\right)=0$, $g^{\prime}\left(z_{0}\right) \neq 0$, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

4 Topology

Interior point - z_{0} is an interior point of a set S if $\exists \epsilon>0$ э $B\left(z_{0}, \epsilon\right)=\left\{z \| z-z_{0} \mid<\epsilon\right\} \subset S$.
Exterior point - z_{0} is an exterior point of a set S if $\exists \epsilon>0 \ni B\left(z_{0}, \epsilon\right) \cap S=\emptyset$
Boundary point - z_{0} is neither of the above
Open set - a set that contains no boundary points
Closed set - a set that contains all of its boundary points OR a set that contains all its accumulation points
Accumulation point - z_{0} is an accumulation point if every open neighborhood about z_{0} contains points in S other than z_{0}

5 Differentiability

Definition
Let f be a function whose domain of definition contains a neighborhood $\left|z-z_{0}\right|<\epsilon$ of a point z_{0}. The derivative of f at z_{0} is the limit:

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

and the function f is said to be differentiable at z_{0} when $f^{\prime}\left(z_{0}\right)$ exists.
We can also write:

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}
$$

Rectangular Coordinates

Given $f(z)=u(x, y)+i v(x, y)$ where $z=x+i y, f$ is differentiable when the first order partials exist in a neighborhood of z and they are continuous at the point and the Cauchy-Riemann equations are satisfied:

$$
\begin{gathered}
u_{x}=v_{y} \\
u_{y}=-v_{x}
\end{gathered}
$$

then $f^{\prime}(z)=u_{x}+i v_{x}$.

Polar Coordinates

Given $f(z)=u(r, \theta)+i v(r, \theta)$ where $z=r e^{i \theta}, f$ is differentiable when the first order partials exist in a neighborhood of z and they are continuous at the point and the Cauchy-Riemann equations are satisfied:

$$
\begin{gathered}
r u_{r}=v_{\theta} \\
u_{\theta}=-r u_{r}
\end{gathered}
$$

then $f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$.

Analytic Functions

Lemma - If f is analytic on D and $f(z)=0$ at each point of a line segment on D, then $f(z) \equiv 0$ on D
Reflection Principle - If f is analytic on D containing a segment of the real axis and D is symmetric about the axis, then

$$
\overline{f(z)}=f(\bar{z})
$$

\Longleftrightarrow at each point $x \in$ segment, $f(z)$ is real.

6 Elementary Functions

Exponential - $f(z)=e^{z}=e^{x}(\cos y+i \sin y)$
Logarithmic $-f(z)=\log z=\ln |z|+\arg z$ and $f(z)=\log z=\ln |z|+\operatorname{Arg} z$
Trigonometric Functions $-\sin z=\frac{e^{i z}-e^{-i z}}{2 i}$ and $\cos z=\frac{e^{i z}+e^{-i z}}{2}$ and $\tan z=\frac{\sin z}{\cos z}$
Hyperbolic Functions $-\sinh z=\frac{e^{z}-e^{-z}}{2}$ and $\cosh z=\frac{e^{z}+e^{-z}}{2}$
Inverse Trig. Functions $-\sin ^{-1} z=-i \log \left[i z+\left(1-z^{2}\right)^{\frac{1}{2}}\right], \cos ^{-1} z=-i \log \left[z+i\left(1-z^{2}\right)^{\frac{1}{2}}\right], \tan ^{-1} z=$ $\frac{i}{2} \cdot \log \frac{1+z}{1-z}$

We can prove this by letting $w=\sin z$ and looking at $z=\frac{e^{i w}-e^{-i w}}{2 i}$ and solving for $e^{i w}$.
Inverse Hyperbolic Trig Functions $-\sinh ^{-1} z=\log \left[z+\left(z^{2}+1\right)^{\frac{1}{2}}\right], \cosh ^{-1} z=\log \left[z+\left(z^{2}-1\right)^{\frac{1}{2}}\right]$, $\tanh ^{-1}=\frac{1}{2} \cdot \log \frac{1+z}{1-z}$

7 Integration

Length of Path - $L=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t=\int_{a}^{b}\left|z^{\prime}(t)\right| d t$
Line Integral - $\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t$
Theorem on Bound of Integral - C is a contour of length L and f is a piecewise continuous function on \mathbb{C}. If we assume $|f(z)| \leq M \forall z \in \mathbb{C}$, then

$$
\left|\int_{C} f(z)\right| \leq M \cdot L
$$

Cauchy-Goursat Theorem

Theorem - Let $f(z)$ be analytic at all points interior to and on a closed contour C, then

$$
\int_{C} f(z) d z=0
$$

Corollary - $C, C_{1}, C_{2}, \ldots, C_{k}$ are simply connected closed contours with each C_{i} interior to C such that C is oriented counter-clockwise and each C_{i} is clockwise. If $f(z)$ is analytic on each C_{i} and C and also at all points in the multiply connected domain, then

$$
\int_{C} f(z) d z+\sum_{i=1}^{k} \int_{C_{i}} f(z) d z=0
$$

Corollary - $C_{2} \subset C_{1}$ and $f(z)$ is analytic on and between the two, then

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

Cauchy Integral Formula

Theorem - f is analytic everywhere inside and on simple closed contour C, in positive sense. If z_{0} is interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z
$$

and this can be extended to

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z, \quad n=1,2, \ldots
$$

