MA 513 Study Guide

January 30, 2011

1 Basic Definitions

Given z = x + iy we define $\operatorname{Re} z = x$ and $\operatorname{Im} z = y$. We also define $\overline{z} = \overline{x + iy} = x - iy$.

2 Basic Theorems

 $|z_1 + z_2| \le |z_1| + |z_2|$ and $||z_1| - |z_2|| \le |z_1 - z_2|$

3 Limits

Definition - Let a function f be defined at all points z in some deleted neighborhood of z_0 . The statement that the limit of f(z) as z approaches z_0 is a number w_0 , or that

$$\lim_{z \to z_0} f(z) = w_0$$

means that $\forall \; \epsilon > 0 \; \exists \; \delta \; \; \flat$

$$|f(z) - w_0| < \epsilon$$
 whenever $0 < |z - z_0| < \delta$

3.1 Limits Involving the Point at Infinity

$$\lim_{z \to z_0} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0 \tag{1}$$

$$\lim_{z \to \infty} f(z) = w_0 \quad \text{if and only if} \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0 \tag{2}$$

$$\lim_{z \to \infty} f(z) = \infty \quad \text{if and only if} \quad \lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0 \tag{3}$$

Theorem on Limits (like L'Hobital's) - Suppose f(z), g(z) are differentiable at $z_0, f(z_0) = g(z_0) = 0$, $g'(z_0) \neq 0$, then

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}$$

4 Topology

Interior point - z_0 is an interior point of a set S if $\exists \epsilon > 0 \Rightarrow B(z_0, \epsilon) = \{z \mid |z - z_0| < \epsilon\} \subset S$.

Exterior point - z_0 is an exterior point of a set S if $\exists \epsilon > 0 \ if B (z_0, \epsilon) \cap S = \emptyset$

Boundary point - z_0 is neither of the above

Open set - a set that contains no boundary points

Closed set - a set that contains all of its boundary points OR a set that contains all its accumulation points **Accumulation point** - z_0 is an accumulation point if every open neighborhood about z_0 contains points in S other than z_0

5 Differentiability

Definition

Let f be a function whose domain of definition contains a neighborhood $|z - z_0| < \epsilon$ of a point z_0 . The **derivative** of f at z_0 is the limit:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

and the function f is said to be differentiable at z_0 when $f'(z_0)$ exists.

We can also write:

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

Rectangular Coordinates

Given f(z) = u(x, y) + iv(x, y) where z = x + iy, f is differentiable when the first order partials exist in a neighborhood of z and they are continuous at the point and the Cauchy-Riemann equations are satisfied:

$$u_x = v_y$$
$$u_y = -v_x$$

then $f'(z) = u_x + iv_x$.

Polar Coordinates

Given $f(z) = u(r, \theta) + iv(r, \theta)$ where $z = re^{i\theta}$, f is differentiable when the first order partials exist in a neighborhood of z and they are continuous at the point and the Cauchy-Riemann equations are satisfied:

$$ru_r = v_\theta$$
$$u_\theta = -ru_r$$

1

then $f'(z) = e^{-i\theta}(u_r + iv_r).$

Analytic Functions

Lemma - If f is analytic on D and f(z) = 0 at each point of a line segment on D, then $f(z) \equiv 0$ on D **Reflection Principle** - If f is analytic on D containing a segment of the real axis and D is symmetric about the axis, then

$$\overline{f(z)} = f(\bar{z})$$

 \iff at each point $x \in$ segment, f(z) is real.

6 Elementary Functions

Exponential - $f(z) = e^z = e^x(\cos y + i \sin y)$ Logarithmic - $f(z) = \log z = \ln |z| + \arg z$ and $f(z) = \operatorname{Log} z = \ln |z| + \operatorname{Arg} z$ Trigonometric Functions - $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ and $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ and $\tan z = \frac{\sin z}{\cos z}$ Hyperbolic Functions - $\sinh z = \frac{e^z - e^{-z}}{2}$ and $\cosh z = \frac{e^z + e^{-z}}{2}$ Inverse Trig. Functions - $\sin^{-1} z = -i \log \left[iz + (1 - z^2)^{\frac{1}{2}} \right], \cos^{-1} z = -i \log \left[z + i (1 - z^2)^{\frac{1}{2}} \right], \tan^{-1} z = \frac{i}{2} \cdot \log \frac{1+z}{1-z}$

We can prove this by letting $w = \sin z$ and looking at $z = \frac{e^{iw} - e^{-iw}}{2i}$ and solving for e^{iw} . **Inverse Hyperbolic Trig Functions** - $\sinh^{-1} z = \log \left[z + (z^2 + 1)^{\frac{1}{2}} \right]$, $\cosh^{-1} z = \log \left[z + (z^2 - 1)^{\frac{1}{2}} \right]$, $\tanh^{-1} = \frac{1}{2} \cdot \log \frac{1+z}{1-z}$

7 Integration

.

Length of Path - $L = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \int_a^b |z'(t)| dt$ Line Integral - $\int_C f(z) dz = \int_a^b f(z(t)) z'(t) dt$

Theorem on Bound of Integral - C is a contour of length L and f is a piecewise continuous function on \mathbb{C} . If we assume $|f(z)| \leq M \,\forall z \in \mathbb{C}$, then

$$\left| \int_{C} f(z) \right| \le M \cdot L$$

Cauchy-Goursat Theorem

Theorem - Let f(z) be analytic at all points interior to and on a closed contour C, then

$$\int_C f(z)dz = 0$$

Corollary - C, C_1, C_2, \ldots, C_k are simply connected closed contours with each C_i interior to C such that C is oriented counter-clockwise and each C_i is clockwise. If f(z) is analytic on each C_i and C and also at all points in the multiply connected domain, then

$$\int_C f(z)dz + \sum_{i=1}^k \int_{C_i} f(z)dz = 0$$

Corollary - $C_2 \subset C_1$ and f(z) is analytic on and between the two, then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

Cauchy Integral Formula

Theorem - f is analytic everywhere inside and on simple closed contour C, in positive sense. If z_0 is interior to C, then

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

and this can be extended to

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^{n+1}} dz, \qquad n = 1, 2, \dots$$