
Zachary D Clawson

CSC 116 – Test 2 Study Guide

Class variable – a method which belongs to the entire class

 public static double circleRadius;

Instance variable – a method which belongs to an instance of the class

 private double radius;

 may belong to a particular circle

Lecture 7 and Lecture 8
Boolean logic – logic that evaluates to either true or false

Boolean operator - >, <, <=, >=, !=, …

Boolean variables – boolean x = true or false; OR we can do boolean x = 8>5; ...something like that

and operator – for boolean logic: &&

or operator – for boolean logic: ||

exclusive or operator – for boolean logic: ^

not operator – for boolean logic: !. EXAMPLE: !(5>2) is FALSE

Lecture 9
switch statement – breaks a variable down into cases of occurrences

 after each case use word “break;”

 “default” is used to describe cases that aren't listed

Lecture 10
Iteration – when a program needs us to do something over and over again

Loops – used to do repetitive iterations of some code until a condition runs out

 3 types:

 while

 do-while

 for
while Loops – we want to do something over and over again but we don't know how many times, if at

all. EXAMPLE: while(x<10){x = x+1;}

do-while Loops – we want to do something over and over again, we don't know how many times, but

we want to do it at least once. EXAMPLE: do{x=x+1;}while(x<5);

for Loops – we know exactly how many times we want to execute a code

EXAMPLE: for(int i = 0; i<5; i = i + 1){System.out.println(i);}

break (in loops) – can use in a while or do-while loop in order to break if we exceed a certain

condition (use an if statement inside)

continue – stops the current iteration of a loop and restarts

Increment operator – want to add 1 to i in each iteration? Use i++ if you want to use the i first in

something, and then add 1

EX: i=0; System.out.println(i++); prints 0 then adds 1 to I

Use ++i if you want to add 1 before i is used (would print out 1 in above example)

Decrement operator – i-- does the same thing as i++

Lecture 11
Class – an abstract representation of something

Zachary D Clawson

Object – a specific instance of a class

static – this word used with methods/variables tells Java that we want them associated with the class. If

not used then we're telling it we want it associated with a particular instance of the class

creating a new object – write Example ex = new Example(); to create a new object called ex in a class

named Example. If we create an instance variable: public double x; we can assign ex.x = 5; a value to

the instance variable of the object.

Attributes – instance variables referred to in the context of objects

what if we create two objects, but set the second equal to the first?

 the first object created: Car car1 = new Car();

 the second object is created: Car car2 = car1;

 references car1

 this actually just points to the same location in memory as car1, so if we change an attribute

to car2 it will change it for car1 as well, and vice versa

 this is called creating a second reference in memory to this object

non-static methods

 we can create non static methods to be used with objects

 just create a method without the word static and then use the instance variables

 then when referencing it, just do it as: object.method();

object creation

 just saying Car myCar; declares the object as null. We could also set it equal to null.

 when we set the object = new Car(); the object is created **created when new is used

 common error is null pointer exception where object is just declared as null then used

Constructor – gives an object's instance variable and initial value; executed automatically when object

is created

EXAMPLE: public Car() {tankSize = 10.0;}

We can overload constructors so we can assign values if we want. We could ADD to the above code:

public Car(double size) {tankSize = size;}

 if we create a local variable in a constructor with the same name as an instance variable used,
we use the keyword this to point to the instance variable

 ALWAYS DECLARE INSTANCE VARIABLES AS PRIVATE

Lecture 12
Setter – used to set a variable to a specified value

Getter – used to get the variables current value

 setters and getters and useful when instance variables are private so external classes can

reference and use them

printing an object

 System.out.println(myCar); prints out something like Car@junkcode

 in order to do this, make a non-static method called toString() which returns a String with

Zachary D Clawson

information about the object

objects as parameters

 can use objects as parameters in methods

 then use setters/getters (or just reference the instance variables: object.instanceVar = 5;) to
modify object

object equality

 equals operator == does not check for equality, checks to see if two objects reference the same
space in memory

 use .equals() method to test whether two points are actually equal

 method will return boolean true or false

 first, method tests if Object o is an instance of the class
EXAMPLE

public boolean equals(Object o)

{

 if(o instanceof Point)

 {

 Point temp = (Object)o;

 if(temp.getX() == this.x && temp.getY() == this.y)

 {

 return true;

 }

 }

 return false;

}

In code, you'd type: p1.equals(p2);

Lecture 13
Package – collection of classes that all have something in common (such as they are all used for input

or output). EXAMPLE: Math or String

importing packages

 import java.util.Scanner;

 import java.io.*;

try block – must put file writing / opening / declaration / printing in a try/catch block

FileWriter class – handles opening a file for writing (it will create one if it does not exist and

overwrite if it does)

 FileWriter fw = new FileWriter(“example.txt”);
PrintWriter class – handles writing to the file, using it as a parameter

 PrintWriter pw = new PrintWriter(fw);

closing the file – if you open a file for writing (using FileWriter), you must close it

 fw.close();

errors that occur

 can occur when we open or close file

Zachary D Clawson

 so make two try statements, one for each opportunity

 to do this we must declare the file we are writing to as null before the first try block

 FileWriter fw = null;
PrintWriter pw = null;

Lecture 14
Scanner can process Strings and Files

 Scanner scan = new Scanner(stringName);

 Scanner scan = new Scanner(fileName);

Tokens – individuals words or numbers in a File/String

what if there is an error in our text file we're reading / processing?

 first use a scanner to read in the file (inside a try block)

 within that try block, start your while loop to execute while there is a line to be read

 then create a String which accepts the whole line

 assign the String with the Scanner class and read each token at a time

Lecture 15
Immutable – once its created, it cannot be changed

 Strings are these

 each time we change a String, java just creates a new one
Index – each character has a position in the string, known as an index

 first character is 0

Substring – String within another String

String methods

 format as stringName.methodName();

 char c2 = stringName.charAt(2);

 int x = s.indexOf(“er”);

 returns 2 if String s = “over there”;

 prints -1 if substring does not occur in String at all

 String up = s.toUpperCase();

 String dn = s.toLowerCase();

 String sub = s.substring(6); → prints everything starting at index 6 and to the right

 String sub = s.substring(2,6); → prints everything starting at index 2 and ending at 5

format String method

 basically build a String which has text formatted the way you want, with a % sign to denote

where data falls

 %d – integer

 %f – decimal / floating pt number

 %s – String

 %c – Single character

 EXAMPLE: String formatString = “%s %d %s”;

 formats a string so that it will have String, integer, String with a space between each

Zachary D Clawson

 then we would do something like:

 String output1 = String.format(formatString, “Joe”, 16, “Male”);

 we can add a number between the % and the letter to specify how many spaces we want to
allot for the word

 automatically right-aligned, but if you put a – before the number, you get left alignment

 can also specify number of decimal places. EXAMPLE of 2 decimal places for a number
taking up 8 spaces: %8.2f

