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Gaussian Processes (GPs)

I Multivariate normals are distributions over vectors
I Gaussian processes are distributions over functions

µ :Rd→R is the mean field; k :Rd×Rd→R is the kernel
f ∼GP(µ,k ) means

∀X = (x1, . . . ,xn), xi ∈Rd :

fX ∼ N(µX ,KXX) where

fX ∈Rn; (fX)i = f(xi)

µX ∈Rn; (µX)i = µ(xi)

KXX ∈Rn×n; (KXX)ij = k (xi,xj)

Write KXX as K when unambiguous

GP Regression

Bayesian framework: prior is f ∼GP(µ,k )
Obtain noisy measurements:

yi = f(xi)+ εi, εi ∼ N(0,σ2)

Posterior is GP(µ ′,k ′) with

µ
′(x) = µ(x)+KxXc

k ′(x,y) = Kxy−KxX K̃−1 KXy

where K̃c = y−µX , K̃ = KXX +σ2I
I Compute c (and hence posterior mean) via Cholesky or CG
I For fast CG, make matvecs with K scale via

. Low rank approximation (inducing point methods)

. Interpolation to regular grid + FFT

. Fast multipole expansions
I What about learning kernel parameters as well?

Kernel learning

I Typically k depends on a vector of hyperparameters θ

I Estimate θ from data by maximizing the (log) likelihood

L (θ |y) = Ly +L|K |−
n
2
log(2π)

where (again with c = K̃−1(y−µX))
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2
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I Can efficiently compute Ly via iterative method given fast MVMs
I Naively computing L|K | requires Cholesky factorization

Scaled eigenvalue method

I Approximate eigenvalues λi of KXX using the n largest eigenvalues µi of KYY
on a full grid with m points such that X ⊂ Y :

log |KXX +σ
2I| =
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I Can handle non-Gaussian likelihoods via the Fielder bound

Stochastic trace estimation

I Our goal is to estimate, for a symmetric positive definite matrix K̃
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tr(log(K̃ )) and
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I Stochastic expression for L|K | and first derivatives:
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I Common choices of probe vectors z:
. Hutchinson: zi =±1 with probability 0.5
. Gaussian: zi ∼N (0,1)

I Estimate via sample means with several random probe vectors
I Need to multiply log(K̃ ) by probe vectors efficiently

Lanczos

I Function application with fast MVMs =⇒ try Lanczos:
I Lanczos on K̃ computes partial tridiagonalization:

K̃Qk = QkTk +qk+1eT
k βk , QT

k Qk = I

QK ≡
[
q1 . . . qk

]
, Tk ≡ tridiag

(
β1 . . . βk−1

α1 α2 . . . αk
β1 . . . βk−1

)
I Start from q1 = z/‖z‖ and compute approximations

u = K̃−1z ≈ ‖z‖QkT−1
k e1 (Conjugate gradients)

κ = zT
(
log K̃

)
z ≈ ‖z‖2eT

1

(
log T̃k

)
e1 (Gauss quadrature)

Chebyshev

I Based on a polynomial approximation of the log
I Minimizes the worst-case error over an interval
I Lanczos is sensitive to the locations of the eigenvalues and tends to yield

better accuracy

Fast MVMs

I Our experiments use structured kernel interpolation (SKI)

KXX ≈WKUUWT

I W is a sparse n-by-m matrix of interpolation weights
I The points U are referred to as inducing points
I > 1D, rectilinear grid, product covariance =⇒ Kronecker structure
I 1D, regular grid, stationary covariance =⇒ Toeplitz structure
I > 1D, regular grid, stationary covariance =⇒ BTTB structure

Diagonal correction

I SKI may provide a poor estimate of the diagonal entries
I Modify the SKI approximation to add a diagonal matrix D:

KXX ≈WKUUWT +D, diag(KXX) = diag(WKUUWT +D)

I Not supported by scaled eigenvalues, works with our MVM based approach

Log det accuracy
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(a) RBF kernel
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(b) Matérn 1/2 kernel

I The data is 1000 points drawn from N (0,2).
I The exact values are (•), Lanczos with diagonal replacement is (—–),

Chebyshev with diagonal replacement is (—–), Lanczos without diagonal
replacement is (—–), Chebyshev without diagonal replacement is (—–),
Scaled eigenvalues is (×).

I The error bars of Lanczos and Chebyshev were computed from 10 runs

Daily precipitation

Method n m MSE Time [min]
Lanczos 528k 3M 0.613 14.3

Scaled eigenvalues 528k 3M 0.621 15.9
Exact 12k - 0.903 11.8

I Precipitation data collected from ≈ 5500 US weather stations
I Use induced grid of size 100×100×300
I Use a subset of 12,000 entries for training with the exact method

Hickory Data Set

(a) Point pattern data (b) Prediction by exact (c) Scaled eigenvalues (d) Lanczos

I Fitted log-Gaussian Cox process model to hickory tree counts in Michigan
I Area discretized using a 60×60 grid
I The scaled eigenvalue method was used in conjunction with the Fiedler bound

Discussion

I New method to efficiently compute the log det and derivatives
I Lanczos outperforms Chebyshev in general
I Our method is flexible and requires only fast MVMs
I Can explore same ideas for computing higher-order derivatives
I Supports diagonal correction and non-Gaussian likelihoods
I Implementations are available at:

https://github.com/kd383/GPML_SLD
https://github.com/jrg365/gpytorch

https://people.cam.cornell.edu/~dme65/ dme65@cornell.edu
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