

Write K_{XX} as K when unambiguous

GP Regression

Bayesian framework: prior is $f \sim GP(\mu, k)$ Obtain noisy measurements:

$$y_i = f(x_i) + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma^2)$$

Posterior is $GP(\mu', k')$ with

$$\mu'(x) = \mu(x) + K_{xX}c$$

 $k'(x,y) = K_{xy} - K_{xX}\tilde{K}^{-1}K_{Xy}$

- where $\tilde{K}c = y \mu_X$, $\tilde{K} = K_{XX} + \sigma^2 I$ Compute c (and hence posterior mean) via Cholesky or CG
- ► For fast CG, make matvecs with K scale via
- Low rank approximation (inducing point methods)
- Interpolation to regular grid + FFT
- Fast multipole expansions
- What about learning kernel parameters as well?

Kernel learning

- Typically k depends on a vector of hyperparameters θ
- Estimate θ from data by maximizing the (log) likelihood

$$\mathscr{L}(\theta|\mathbf{y}) = \mathscr{L}_{\mathbf{y}} + \mathscr{L}_{|\mathcal{K}|} - \frac{n}{2}\log(2\pi)$$

where (again with
$$c = ilde{K}^{-1}(y - \mu_X))$$

$$\begin{split} \mathscr{L}_{y} &= -rac{1}{2}(y-\mu)^{T}c, \ \mathscr{C}_{|K|} &= -rac{1}{2}\log\det ilde{K}, \end{split}$$

$$\frac{\partial \mathscr{L}_{y}}{\partial \theta_{i}} = \frac{1}{2} c^{T} \left(\frac{\partial \tilde{K}}{\partial \theta_{i}} \right) c$$
$$\frac{\partial \mathscr{L}_{|K|}}{\partial \theta_{i}} = -\frac{1}{2} \operatorname{tr} \left(\tilde{K}^{-1} \frac{\partial \tilde{K}}{\partial \theta_{i}} \right) c$$

- Can efficiently compute \mathscr{L}_V via iterative method given fast MVMs
- ► Naively computing $\mathscr{L}_{|K|}$ requires Cholesky factorization

Scaled eigenvalue method

• Approximate eigenvalues λ_i of K_{XX} using the *n* largest eigenvalues μ_i of K_{YY} on a full grid with *m* points such that $X \subset Y$:

$$\log |K_{XX} + \sigma^2 I| = \sum_{i=1}^n \log(\lambda_i + \sigma^2) \approx \sum_{i=1}^n \log\left(\frac{n}{m}\mu_i + \sigma^2\right)$$

Can handle non-Gaussian likelihoods via the Fielder bound

Scalable Log Determinants for Gaussian Process Kernel Learning

Applied Math¹, CS², ORIE³, Philips Research⁴

 \blacktriangleright Our goal is to estimate, for a symmetric positive definite matrix \tilde{K}

$$\mathscr{L}_{|K|} = -\frac{1}{2} \operatorname{tr}(\log(\tilde{K})) \text{ and } \frac{\partial \mathscr{L}_{|K|}}{\partial \theta_i}$$

Stochastic expression for $\mathscr{L}_{|K|}$ and first derivatives:

$$\mathscr{L}_{|K|} = -\frac{1}{2} \mathbb{E}\left[z^T (\log \tilde{K})z\right], \qquad \qquad \frac{\partial \mathscr{L}}{\partial t}$$

- Common choices of probe vectors z: ▷ Hutchinson: $z_i = \pm 1$ with probability 0.5 ▷ Gaussian: $z_i \sim \mathcal{N}(0,1)$
- Estimate via sample means with several random probe vectors
- Need to multiply $\log(\tilde{K})$ by probe vectors efficiently

Lanczos

- Function application with fast MVMs \implies try Lanczos:
- \blacktriangleright Lanczos on \tilde{K} computes partial tridiagonalization:

$$KQ_k = Q_k T_k + q_{k+1} e'_k \beta_k, \qquad Q'_k Q'_k$$

$$Q_K \equiv \begin{bmatrix} q_1 \ \dots \ q_k \end{bmatrix}, \qquad T_k \equiv$$

Start from $q_1 = z/||z||$ and compute approximations

$$U = K^{-1}z \qquad \approx \|z\|Q_kT_k^{-1}e_1$$
$$\kappa = z^T \left(\log \tilde{K}\right)z \approx \|z\|^2 e_1^T \left(\log \tilde{T}_k\right)e_1$$

Chebyshev

- Based on a polynomial approximation of the log
- Minimizes the worst-case error over an interval
- Lanczos is sensitive to the locations of the eigenvalues and tends to yield better accuracy

Fast MVMs

- Our experiments use structured kernel interpolation (SKI) $K_{XX} \approx W K_{UU} W^T$
- \blacktriangleright W is a sparse *n*-by-*m* matrix of interpolation weights
- ► The points *U* are referred to as inducing points
- > 1D, rectilinear grid, product covariance \implies Kronecker structure
- 1D, regular grid, stationary covariance \implies Toeplitz structure
- \blacktriangleright > 1D, regular grid, stationary covariance \implies BTTB structure

Diagonal correction

- SKI may provide a poor estimate of the diagonal entries
- Modify the SKI approximation to add a diagonal matrix D:
 - $K_{XX} \approx W K_{UU} W^T + D,$ $diag(K_{XX}) = diag(W K_{UU} W^T + D)$
- Not supported by scaled eigenvalues, works with our MVM based approach

David Eriksson¹ Kun Dong¹ Hannes Nickisch⁴ David Bindel² Andrew Gordon Wilson³

	n	m	MSE	Time [min]
	528k	3M	0.613	14.3
ues	528k	3M	0.621	15.9
	12k	-	0.903	11.8