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Background: Global optimization

e Global optimization problem (GOP)

minimize f(x)
x €

e f:Q — R a continuous, deterministic, expensive black-box

e O c R%is compact (usually a hypercube)
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Background: Surrogate optimization

o Use a surrogate f (- - -) to approximate f (——)

@ Common surrogates: RBFs, Kriging, MARS, polynomials

Main idea: Sample, fit the surrogate f repeat
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Background: Limits and heuristics

Theorem (T6rn and Zilinskas)

Convergence of GOP for all f € C(2) = dense sampling.

Possible retorts:

@ Give up on global convergence
(Con: Can get arbitrarily bad answers in principle)

@ Use methods that eventually sample densely
(Con: Eventually, we all die)

@ Assume a more regular class of functions
(Our approach today)
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Cubic splines and beam bending

@ The bending energy for a beam is:

@ Natural spline minimizes this energy subject to interpolation
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More splines

@ A particular representation of a piece-wise cubic:

n
s(z) =co+ iz + Z)\j|x — asj|3
j=1

o Make natural: Add s(z;) = f(z;), Z)\ =0, Z/\xJ—O

o Can write U[s] = $AT®X where <I>,-j = |z; — xjy
e Want to minimize ¥ subject to P7\ = 0 and interpolation
@ The KKT conditions are:

A A G e



Beyond beams bending
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From cubic splines to RBFs

Functional form of the interpolant:
n
spx(@) =Y Ajelllr — ;) + p(x)
j=1
Interpolation constraints:
s(xzi) = f(zi), i=1,...,n

Discrete orthogonality:

Z Ajq(x;) =0, Vg eT1g
j=1

o X = {z;}", pairwise distinct interpolation nodes
@ p:R>g— Ris CPD of order k£
@ pE Hg_l a polynomial in d dims of degree at most k£ — 1
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Conditional positive definite RBFs

 is conditionally positive definite of order k if for all
X ={z1,...,z,} distinct and XA # 0 s.t.

Z Ajq(zj) =0, VgelIld |
j=1

we have that
Y Aidje(llzi — 5]) > 0.
4,J

9/26



Popular RBF kernels

Name o(z) Order Example
Gaussian o€ llell® k=0

Inverse multiquadric (1+ 62||x|\2)ﬁ, B<0 k=0 m
Multiquadric D 1+ S22’ 0<B¢N| k=[] | VIt
Radial powers (=12 z|%, 0< B ¢ 2N k=1[8/2] 1B
Thin-plate spline (=15 2| ¥ log(ll2ll), BEN | k=p+1 | [la|* log(|lz])

@ Cubic RBF + linear tail is popular for surrogate optimization
@ Gaussian RBF is popular in ML

@ Choice of shape parameter ¢ > 0 is critical
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Native spaces and semi-inner products

@ The RBF space A, ; is the space of functions of the form
spx(r) =Y Ne(llz = zj]) + p(x)
j=1

that satisfy
n
> Njglz;) =0, Vgellf_,.
j=1

e A, can be equipped with the semi-inner product

n(s)
(s,u) = (=1)" > Nu(x;)

i=1
for s, u € Ay .
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Semi-norms and energy

@ We can define a semi-norm on A ;, via
|spx1% = (sf.x,87,x)
= (—1)k2/\i8f,x($i)
i=1
= (=" > Mide(llas — )
ij=1
= (=)Ao,

@ Native space: Closure of splines under semi-norm

@ Native space semi-norm:

v, = sup  Ispx]
XCQ,|X|<oo
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RBF interpolation

For RBFs the KKT conditions of

1
min ~A'®X - AT fx st. PTA=0
zeQ 2

0 PT e
P @ A
where

° & = p([lwi — ;)
o Pyj = mj(x:), and {m;}7L, is a basis for IT{_,

are

I
oo
=
g
I
=

When is this well-posed?
o If rank(P) =m
o deg(p) = k — 1 is at least the order of the CPD kernel ¢
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Special cases of native spaces

@ Native space for radial powers and thin-plate splines:
BL/(R?Y) = {f € C(R?) : D*f € L*(R?), V|a| ={, a € N¢}.

o Native space for Gaussians and (inverse) multiquadrics harder
to characterize
o These spaces are rather small
o For the Gaussian, the Fourier transform of f € N (Q) must
decay faster than the Fourier transform of a Gaussian
e These spaces are unlikely to contain functions in applications
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Estimates for functions in the native space

@ Generic error estimate:

F@) = spx(@)] < P\ /IF R, — lsrxlir,,

o Power function:
[Pxp(2)]? = 0(0) — v(z)T A" u(x)
where
v(e) = [m(2), ..., T (@), o(lz = z1ll), ..., ol — zal )]

@ Can be seen as the Schur complement of the extended system:

o ool ) = L)

o Px ,(x) tells us how stiff the surface is at a given point
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Power function
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e Power function for X = [—-m, —7/2,0, 7]

@ Cubic kernel 4 Linear tail
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@ The error estimate gives a lower bound for f(z):

F(@) 2 tx (@) = spx(@) = Pxp(@)/If i, , — lsrxlie,,

o Requires that we know |f|xr,, or an upper bound
o Use semi-norm of initial spline times a fudge factor?
@ A natural thing to do is to minimize £ x

e Potentially hard, since it can be multimodal
o Evaluating ¢y x cheap compared to f
o Acceptable to brute-force
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Algorithm

Algorithm 1: Optimization algorithm that minimizes the lower
bound at each step

1:

10:
11:
12:

D O W N

Tolerance ¢

Xo initial points

fx, initial function values

Build sy x, from (Xo,on)

n <0

while |min fx, —»ngnfﬂxh(x)|>>e do

ye—mgmmﬁﬂm()
€N

Xnt1 <— X, U{y}
IXo & fx, U{f(W)}
Build sy x,., from (X,i1,fx..,)
n+<n-+1
end while
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Gutmann + Vary the semi-norm budget

Unlikely that all energy will be used for one point

Solution: Vary the fraction of energy that is used in £ x
Gutmann proposed sampling based on a target value

e Samples where the least energy is needed to reach target value
e This makes the surface less bumpy
e Target values are cycled

We can do similarly with the amount of energy that we use

Energy is more natural than target values
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Vary the semi-norm budget

1 —f(x)
s(x)
0.5 *s(x) — 0.5v/o(x) |
s(z) —yvo(z)
»
_ot 4
i B B T

@ Exploration vs exploitation
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Convergence rates and fill-in distance

@ At the global minimium z* :

[f(@") = lyx, (@) = |f(2") = sp.x,(27) + 7Px, o (z7)]
< |f(@") = sp.x, (27) + 7Px, 0 (27)
< 29Px,, o(27)
@ Convergence rates for the power function depends on the

fill-in distance:

hx o = sup min ||z — zj]|2.
zeQTjeX

@ Can be shown that:

|f(@) = spx,(2)| <O\ F(hx,0) fInv,e, Yz EQ,

@ Problem: Our goal was to not sample densely, so hx o may
be large

@ e-modification gives this rate, but this is an undesirable
solution
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Sampling pattern

Six-hump camel function
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Figure: Convergence rates for the Camel function

e Looking for: e, = f(z*) — mig lrx,(z)=Cn~"
T

® =3/4is expected from theory for cubic kernel + linear tail /26



10"

: @®c, produced by the optimization algorithm
| |—Least squares fit Cn~" (C = 1.48¢+04, § = 1.75)

1

100 150 ) 200 250
Iteration n

10

Figure: Convergence rates for Hartman3

e Looking for: e, = f(z*) — mig lrx,(z)=Cn~"
T

e 3 =1/2is expected from theory for cubic kernel + linear tzthl /26



Conclusions

Covered today:
@ Connection between energy budgets and optimization
@ Globally convergent algorithm that does not sample densely
@ Numerical convergence rates agree with RBF theory
@ Sampling patterns are beautiful
Next steps:
@ Estimation of the semi-norm
@ Deal with functions that are not in the native space

@ The algorithm will be added to pySOT
(github.com/dme65/pySOT)

@ Use our algorithm on a real-world optimization problem
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Thank you for your attention!
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