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Background: Global optimization

Global optimization problem (GOP)

minimize f(x)
x ∈ Ω

f : Ω→ R a continuous, deterministic, expensive black-box

Ω ⊂ Rd is compact (usually a hypercube)
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Background: Surrogate optimization

Use a surrogate f̂ (- - -) to approximate f (——–)

Common surrogates: RBFs, Kriging, MARS, polynomials

Main idea: Sample, fit the surrogate f̂ , repeat
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Background: Limits and heuristics

Theorem (Törn and Zilinskas)

Convergence of GOP for all f ∈ C(Ω) =⇒ dense sampling.

Possible retorts:

Give up on global convergence
(Con: Can get arbitrarily bad answers in principle)

Use methods that eventually sample densely
(Con: Eventually, we all die)

Assume a more regular class of functions
(Our approach today)
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Cubic splines and beam bending

The bending energy for a beam is:

Ψ[u] =
1

2

∫ β

α
u′′(x)2 dx

Natural spline minimizes this energy subject to interpolation
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More splines

A particular representation of a piece-wise cubic:

s(x) = c0 + c1x+

n∑
j=1

λj |x− xj |3

Make natural: Add s(xj) = f(xj),
n∑
j=1

λj = 0,
n∑
j=1

λjxj = 0

Can write Ψ[s] = 1
6λ

TΦλ where Φij = |xi − xj |3

Want to minimize Ψ subject to P Tλ = 0 and interpolation

The KKT conditions are:[
Φ P
P T 0

] [
λ
c

]
=

[
fX
0

]
, where P T =

[
1 1 . . . 1
x1 x2 . . . xn

]
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Beyond beams bending

Ψ[u] =
1

2

∫
Ω

(∇2u)2 dΩ

7 / 26



From cubic splines to RBFs

Functional form of the interpolant:

sf,X(x) =

n∑
j=1

λjϕ(‖x− xj‖) + p(x)

Interpolation constraints:

s(xi) = f(xi), i = 1, . . . , n

Discrete orthogonality:

n∑
j=1

λjq(xj) = 0, ∀q ∈ Πd
k−1

X = {xi}ni=1 pairwise distinct interpolation nodes

ϕ : R≥0 → R is CPD of order k

p ∈ Πd
k−1 a polynomial in d dims of degree at most k − 1
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Conditional positive definite RBFs

ϕ is conditionally positive definite of order k if for all
X = {x1, . . . , xn} distinct and λ 6= 0 s.t.

n∑
j=1

λjq(xj) = 0, ∀q ∈ Πd
k−1

we have that ∑
i,j

λiλjϕ(‖xi − xj‖) > 0.
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Popular RBF kernels

Name ϕ(x) Order Example

Gaussian e−ε
2‖x‖2 k = 0

Inverse multiquadric
(
1 + ε2‖x‖2

)β
, β < 0 k = 0 1√

1+ε2‖x‖2

Multiquadric (−1)dβe
(
1 + ε2‖x‖2

)β
, 0 < β /∈ N k = dβe

√
1 + ε2‖x‖2

Radial powers (−1)dβ/2e‖x‖β, 0 < β /∈ 2N k = dβ/2e ‖x‖3

Thin-plate spline (−1)β+1‖x‖2β log(‖x‖), β ∈ N k = β + 1 ‖x‖2 log(‖x‖)

Cubic RBF + linear tail is popular for surrogate optimization

Gaussian RBF is popular in ML

Choice of shape parameter ε > 0 is critical
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Native spaces and semi-inner products

The RBF space Aϕ,k is the space of functions of the form

sf,X(x) =

n∑
j=1

λjϕ(‖x− xj‖) + p(x)

that satisfy

n∑
j=1

λjq(xj) = 0, ∀q ∈ Πd
k−1.

Aϕ,k can be equipped with the semi-inner product

〈s, u〉 = (−1)k
n(s)∑
i=1

λiu(xi)

for s, u ∈ Aϕ,k.

11 / 26



Semi-norms and energy

We can define a semi-norm on Aϕ,k via

|sf,X |2 := 〈sf,X , sf,X〉

= (−1)k
n∑
i=1

λisf,X(xi)

= (−1)k
n∑

i,j=1

λiλjϕ(‖xi − xj‖)

= (−1)kλTΦλ.

Native space: Closure of splines under semi-norm

Native space semi-norm:

|f |Nϕ,k
= sup

X⊂Ω, |X|<∞
|sf,X |
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RBF interpolation

For RBFs the KKT conditions of

min
x∈Ω

1

2
λTΦλ− λT fX s.t. P Tλ = 0

are [
0 P T

P Φ

] [
c
λ

]
=

[
0
fX

]
(Aw = b)

where

Φij = ϕ(‖xi − xj‖)
Pij = πj(xi), and {πj}mj=1 is a basis for Πd

k−1

When is this well-posed?

If rank(P ) = m

deg(p) = k − 1 is at least the order of the CPD kernel ϕ
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Special cases of native spaces

Native space for radial powers and thin-plate splines:

BL`(Rd) = {f ∈ C(Rd) : Dαf ∈ L2(Rd), ∀|α| = `, α ∈ Nd}.

Native space for Gaussians and (inverse) multiquadrics harder
to characterize

These spaces are rather small
For the Gaussian, the Fourier transform of f ∈ N (Ω) must
decay faster than the Fourier transform of a Gaussian
These spaces are unlikely to contain functions in applications
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Estimates for functions in the native space

Generic error estimate:

|f(x)− sf,X(x)| ≤ PX,ϕ(x)
√
|f |2Nϕ,k

− |sf,X |2Nϕ,k

Power function:

[PX,ϕ(x)]2 = ϕ(0)− v(x)TA−1v(x)

where

v(x) = [π1(x), . . . , πm(x), ϕ(‖x− x1‖), . . . , ϕ(‖x− xn‖)]T .

Can be seen as the Schur complement of the extended system:[
A v(x)

v(x)T ϕ(0)

] [
w
µ

]
=

[
b

f(x)

]
PX,ϕ(x) tells us how stiff the surface is at a given point
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Power function
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Power function for X = [−π,−π/2, 0, π]

Cubic kernel + Linear tail
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Lower bounds

The error estimate gives a lower bound for f(x):

f(x) ≥ `f,X(x) := sf,X(x)− PX,ϕ(x)
√
|f |2Nϕ,k

− |sf,X |2Nϕ,k

Requires that we know |f |Nϕ,k
or an upper bound

Use semi-norm of initial spline times a fudge factor?

A natural thing to do is to minimize `f,X
Potentially hard, since it can be multimodal
Evaluating `f,X cheap compared to f
Acceptable to brute-force
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Algorithm

Algorithm 1: Optimization algorithm that minimizes the lower
bound at each step
1: Tolerance ε
2: X0 initial points

3: fX0 initial function values

4: Build sf,X0 from (X0, fX0)
5: n← 0
6: while

∣∣min fXn −min
x∈Ω

`f,Xn(x)
∣∣ > ε do

7: y ← arg min
x∈Ω

`f,Xn(x)

8: Xn+1 ← Xn ∪ {y}
9: fXn+1 ← fXn ∪ {f(y)}
10: Build sf,Xn+1 from (Xn+1, fXn+1)
11: n← n+ 1
12: end while
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Gutmann + Vary the semi-norm budget

Unlikely that all energy will be used for one point

Solution: Vary the fraction of energy that is used in `f,X
Gutmann proposed sampling based on a target value

Samples where the least energy is needed to reach target value
This makes the surface less bumpy
Target values are cycled

We can do similarly with the amount of energy that we use

Energy is more natural than target values
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Vary the semi-norm budget
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Exploration vs exploitation
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Convergence rates and fill-in distance

At the global minimium x∗ :

|f(x∗)− `f,Xn(x∗)| = |f(x∗)− sf,Xn(x∗) + γPXn,ϕ(x∗)|
≤ |f(x∗)− sf,Xn(x∗)|+ γPXn,ϕ(x∗)

≤ 2γPXn,ϕ(x∗)

Convergence rates for the power function depends on the
fill-in distance:

hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2.

Can be shown that:

|f(x)− sf,Xn(x)| ≤ C
√
F (hXn,Ω) |f |Nϕ,k

, ∀x ∈ Ω,

Problem: Our goal was to not sample densely, so hX,Ω may
be large

ε-modification gives this rate, but this is an undesirable
solution
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Sampling pattern
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Figure: Convergence rates for the Camel function

Looking for: en = f(x∗)−min
x∈Ω

`f,Xn(x) = Cn−β

β = 3/4 is expected from theory for cubic kernel + linear tail23 / 26
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en produced by the optimization algorithm

Least squares fit Cn−β (C = 1.48e+04, β = 1.75)

Figure: Convergence rates for Hartman3

Looking for: en = f(x∗)−min
x∈Ω

`f,Xn(x) = Cn−β

β = 1/2 is expected from theory for cubic kernel + linear tail24 / 26



Conclusions

Covered today:

Connection between energy budgets and optimization

Globally convergent algorithm that does not sample densely

Numerical convergence rates agree with RBF theory

Sampling patterns are beautiful

Next steps:

Estimation of the semi-norm

Deal with functions that are not in the native space

The algorithm will be added to pySOT
(github.com/dme65/pySOT)

Use our algorithm on a real-world optimization problem
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Thank you for your attention!
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