On solving Khatri-Rao systems of equations

David Eriksson
Center for Applied Mathematics
Cornell University
dme65@cornell.edu

November 20, 2017

Joint work with Charles Van Loan and Alex Townsend

The Kronecker product

- $A \otimes B$ is a block matrix where the $i j$ th block is $a_{i j} B$:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{32} & a_{32} & a_{33}
\end{array}\right] \otimes B=\left[\begin{array}{c|c|c}
a_{11} B & a_{12} B & a_{13} B \\
\hline a_{21} B & a_{22} B & a_{23} B \\
\hline a_{32} B & a_{32} B & a_{33} B
\end{array}\right]
$$

- $A \otimes B$ is data-sparse
- If A is m-by- n, B is p-by- q then:
- $A \otimes B$ has mpnq entries
- ...but can be represented by $m n+p q$ entries

Basic algebraic properties

For $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{n \times n}$:

$$
\begin{array}{ll}
(A \otimes B)^{T} & =A^{T} \otimes B^{T} \\
(A \otimes B)^{-1} & =A^{-1} \otimes B^{-1} \\
(A \otimes B)^{\dagger} & =A^{\dagger} \otimes B^{\dagger} \\
(A \otimes B)(C \otimes D) & =(A C) \otimes(B D) \\
A \otimes(B \otimes C) & =(A \otimes B) \otimes C \\
A \otimes B & =(\text { Perfect Shuffle })^{T}(B \otimes A) \text { (Perfect Shuffle) } \\
\operatorname{det}(A \otimes B) & =\operatorname{det}(A)^{n} \operatorname{det}(B)^{m} \\
\operatorname{tr}(A \otimes B) & =\operatorname{tr}(A) \operatorname{tr}(B) \\
\operatorname{rank}(A \otimes B) & =\operatorname{rank}(A) \operatorname{rank}(B)
\end{array}
$$

Basic properties

- Computing dense factorizations is cheap!
- Only need to compute factorizations of A and B separately

$$
\begin{aligned}
(A \otimes B) & =\left(L_{A} L_{A}^{T}\right) \otimes\left(L_{B} L_{B}^{T}\right) \\
& =\left(L_{A} \otimes L_{B}\right)\left(L_{A} \otimes L_{B}\right)^{T} \\
(A \otimes B) & =\left(P_{A} L_{A} U_{A}\right) \otimes\left(P_{B} L_{B} U_{B}\right) \\
& =\left(P_{A} \otimes P_{B}\right)\left(L_{A} \otimes L_{B}\right)\left(U_{A} \otimes U_{B}\right)
\end{aligned}
$$

Reshaping KP computations

- Assume $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{n \times n}$
- Computing $y=(A \otimes B) x$ is $\mathcal{O}\left(m^{2} n^{2}\right)$ flops:

$$
y=\operatorname{kron}(A, B) * x
$$

- The equivalent operation $y=\operatorname{vec}\left(B X A^{T}\right)$ is $\mathcal{O}(m n(m+n))$ flops:

$$
y=\text { reshape }\left(B * r e s h a p e(x, n, m) * A^{\prime}, m * n, 1\right)
$$

- For A, B triangular, solving $(A \otimes B) x=y$ is $\mathcal{O}(m n(m+n))$ flops:

$$
\left(\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \otimes B\right)\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} B & 0 & 0 \\
a_{21} B & a_{22} B & 0 \\
a_{31} B & a_{32} B & a_{33} B
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

- For $k=1: m$ do $z_{k}=\frac{y_{k}-\sum_{i=1}^{k-1} a_{k i} z_{i}}{a_{k k}}, x_{k}=B^{-1} z_{k}$

The Khatri-Rao product

- Definition:

$$
\begin{gathered}
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right] \quad B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22} \\
B_{31} & B_{32}
\end{array}\right] \\
C=A \otimes B=\left[\begin{array}{lll}
A_{11} \otimes B_{11} & A_{12} \otimes B_{12} \\
\hline A_{21} \otimes B_{21} & A_{22} \otimes B_{22} \\
\hline A_{31} \otimes B_{31} & A_{32} \otimes B_{32}
\end{array}\right]
\end{gathered}
$$

- Assume $A \in \mathbb{R}^{(m p) \times(m p)}, B \in \mathbb{R}^{(n p) \times(n p)}$
- The resulting matrix C is of size $(m n p) \times(m n p)$
- MVMs and triangular solves are $\mathcal{O}\left(p^{2} m n(m+n)\right)$ flops

Matrix equations

- Solve KR system \Leftrightarrow Solve system of matrix equations:

$$
B_{i 1} X_{1} A_{i 1}^{T}+\cdots+B_{i p} X_{p} A_{i p}^{T}=D_{i}, \quad i=1, \ldots, p
$$

- Follow from $\sum_{j=1}^{p}\left(A_{i j} \otimes B_{i j}\right) x_{j}=\operatorname{vec}\left(\sum_{i=1}^{p} B_{i j} X_{j} A_{i j}^{T}\right)$
- Can embed generalized Sylvester equations $\sum_{i=1}^{p}\left(A_{i} \otimes B_{i}\right) x=f$:

$$
\left[\begin{array}{ccc}
A_{1} \otimes B_{1} & A_{2} \otimes B_{2} & A_{3} \otimes B_{3} \\
I \otimes I & -I \otimes I & 0 \\
0 & I \otimes I & -I \otimes I
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
f \\
0 \\
0
\end{array}\right] \quad(\text { for } p=3)
$$

- The last $p-1$ rows make sure $x_{1}=x_{2}=x_{3}$

The failed factorization attempt

- Compute a factorization with KR structure

$$
\left[\begin{array}{cc}
A_{11} \otimes B_{11} & \left(A_{21} \otimes B_{21}\right)^{T} \\
A_{21} \otimes B_{21} & A_{22} \otimes B_{22}
\end{array}\right]=\left[\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
L_{11}^{T} & L_{21}^{T} \\
0 & L_{22}^{T}
\end{array}\right] .
$$

- Equating blocks:

$$
\begin{aligned}
& A_{11} \otimes B_{11}=L_{11} L_{11}^{T} \\
& A_{21} \otimes B_{21}=L_{21} L_{11}^{T} \\
& A_{22} \otimes B_{22}=L_{21} L_{21}^{T}+L_{22} L_{22}^{T}
\end{aligned}
$$

- L_{11} and L_{21} clearly have KP structure
- ...but $L_{22} L_{22}^{T}=A_{22} \otimes B_{22}-L_{21} L_{21}^{T}$ does not!
- Dense matrix factorizations do not preserve KR structure

The approximate KR idea

- We can get an approximate KR factorization if we solve

$$
\min _{\substack{\tilde{A}_{22} \in \mathbb{R}^{m \times m} \\ \tilde{B}_{22} \in \mathbb{R}^{n \times n}}}\left\|\left(A_{22} \otimes B_{22}-L_{21} L_{21}^{T}\right)-\tilde{A}_{22} \otimes \tilde{B}_{22}\right\|_{F}
$$

- Compute the Cholesky factorizations:

$$
\tilde{A}_{22}=\tilde{L}_{22}^{(A)}\left[\tilde{L}_{22}^{(A)}\right]^{T}, \quad \tilde{B}_{22}=\tilde{L}_{22}^{(B)}\left[\tilde{L}_{22}^{(B)}\right]^{T}
$$

- Gives the approximate factorization:

$$
\left[\begin{array}{cc}
A_{11} \otimes B_{11} & \left(A_{21} \otimes B_{21}\right)^{T} \\
A_{21} \otimes B_{21} & A_{22} \otimes B_{22}
\end{array}\right] \approx\left(\tilde{L}^{(A)} \otimes \tilde{L}^{(B)}\right)\left(\tilde{L}^{(A)} \otimes \tilde{L}^{(B)}\right)^{T}
$$

where

$$
\tilde{L}^{(A)}=\left[\begin{array}{cc}
L_{11}^{(A)} & 0 \\
L_{21}^{(A)} & \tilde{L}_{22}^{(A)}
\end{array}\right], \quad \tilde{L}^{(B)}=\left[\begin{array}{cc}
L_{11}^{(B)} & 0 \\
L_{21}^{(B)} & \tilde{L}_{22}^{(B)}
\end{array}\right]
$$

Approximate KR-Cholesky factorization

Algorithm 1 Approximate KR-Cholesky: Finds lower triangular matrices $L^{(A)}$ and $L^{(B)}$ such that $C=A \otimes B \approx\left(L^{(A)} \otimes L^{(B)}\right)\left(L^{(A)} \otimes L^{(B)}\right)^{T}$

```
1: for \(i=1: p\) do
2: \(\quad\) for \(\mathrm{j}=\mathrm{i}: \mathrm{p}\) do
3: \(\quad\left[\tilde{A}_{i j}, \tilde{B}_{i j}\right] \leftarrow\)
                NEAREST_KP \(\left(A_{i j} \otimes B_{i j}-\sum_{\ell=1}^{i-1}\left(L_{i \ell}^{(A)}\left[L_{j \ell}^{(A)}\right]^{T}\right) \otimes\left(L_{i \ell}^{(B)}\left[L_{j \ell}^{(B)}\right]^{T}\right)\right)\)
            if \(i \underset{\sim}{=}=j\) then
            \(\tilde{\tilde{A}}_{i i} \leftarrow\) CLOSEST_SPD \(\left(\tilde{A}_{\tilde{B}} i\right)\)
                \(\tilde{B}_{i i} \leftarrow\) CLOSEST_SPD \(\left(\tilde{B}_{i i}\right)\)
                    \(L_{i i}^{(A)} \leftarrow \operatorname{CHOL}\left(\tilde{A}_{i i}\right)\)
                        \(L_{i i}^{(B)} \leftarrow \operatorname{CHOL}\left(\tilde{B}_{i i}\right)\)
        else
\(10:\)
11: \(\quad L_{j i}^{(B)} \leftarrow\left(L_{i i}^{(B)} \backslash \tilde{B}_{i j}\right)^{T}\)
        end if
    end for
14: end for
```


Solving the nearest Kronecker product (NKP) problem

- Consider $V \in \mathbb{R}^{m_{1} \times n_{1}}, W \in \mathbb{R}^{m_{2} \times n_{2}}, U \in \mathbb{R}^{\left(m_{1} m_{2}\right) \times\left(n_{1} n_{2}\right)}$
- How do we minimize $\varphi(V, W)=\|U-V \otimes W\|_{F}$?
- Can be reshaped into $\varphi(V, W)=\left\|\mathcal{R}(U)-\operatorname{vec}(V) \operatorname{vec}(W)^{T}\right\|_{F}$
- If u, v are the singular vectors corresponding to $\sigma_{1}(\mathcal{R}(U))$:

$$
\operatorname{vec}\left(V_{o p t}\right)=\sqrt{\sigma_{1}} u, \quad \operatorname{vec}\left(W_{o p t}\right)=\sqrt{\sigma_{1}} v
$$

- In the special case $U=\sum_{i=1}^{k} \tilde{U}_{i} \otimes \hat{U}_{i}$ we have

$$
\mathcal{R}(U)=\sum_{i=1}^{k} \operatorname{vec}\left(\tilde{U}_{i}\right) \operatorname{vec}\left(\hat{U}_{i}\right)^{T}
$$

- Can solve the NKP problem in $\mathcal{O}\left(k\left(m_{1} n_{1}+m_{2} n_{2}\right)\right)$ in this case

Putting it all together

- Can compute an approximate KR-Cholesky factorization efficiently
- Can also compute an approximate KR-LU factorization:

$$
C \approx\left(P^{(A)} \otimes P^{(B)}\right)\left(L^{(A)} \otimes L^{(B)}\right)\left(U^{(A)} \otimes U^{(B)}\right)
$$

- Both factorizations cost a total of $\mathcal{O}\left(p^{3}\left(m^{3}+n^{3}\right)\right)$ flops to compute
- Compare to $\mathcal{O}\left((m n p)^{3}\right)$ flops for a dense factorization
- Fast MVMs and approximate factorization \Longrightarrow try Krylov method

Preconditioner impact on spectrum

Random SPD matrices A and B with $p=5$ and $m=n=20$.

Figure: Eigenvalue spectrums of C and $P^{-1} C$.

Numerical experiment

- Random SPD matrices A and B with $p=10$ and $m=n=100$.
- Use KR-Cholesky as a preconditioner for CG

Figure: Convergence plot for CG.

Numerical experiment

Preconditioner	Construction time	Iteration time	Iterations
No preconditioner	0 s	14.86 s	724
Block-diagonal KR-Cholesky	0.011 s	16.17 s	298
KR-Cholesky	1.15 s	3.15 s	40

Table: Number of seconds necessary to compute each preconditioner and number of seconds spent on CG iterations until the specified tolerance was achieved.

Conclusions

- Dense factorizations do not preserve KR structure
- Can modify the block-Cholesky/LU algorithms to compute approximate factorizations
- Involves solving an NKP problem in each block position
- Works well as a preconditioner with CG/GMRES on toy problems
- I am still looking for interesting applications

