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The Kronecker product

A ⊗ B is a block matrix where the ijth block is aijB:

a11 a12 a13
a21 a22 a23
a32 a32 a33

 ⊗ B =

 a11B a12B a13B
a21B a22B a23B
a32B a32B a33B


A ⊗ B is data-sparse

If A is m-by-n, B is p-by-q then:

A ⊗ B has mpnq entries

...but can be represented by mn+ pq entries
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Basic algebraic properties

For A ∈ Rm×m, B ∈ Rn×n:

(A ⊗ B)T = AT ⊗ BT

(A ⊗ B)−1 = A−1 ⊗ B−1

(A ⊗ B)† = A† ⊗ B†

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C

A ⊗ B = (Perfect Shuffle)T (B ⊗ A) (Perfect Shuffle)

det(A ⊗ B) = det(A)n det(B)m

tr(A ⊗ B) = tr(A) tr(B)

rank(A ⊗ B) = rank(A) rank(B)
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Basic properties

Computing dense factorizations is cheap!

Only need to compute factorizations of A and B separately

(A ⊗ B) = (LAL
T
A) ⊗ (LBL

T
B)

= (LA ⊗ LB)(LA ⊗ LB)
T

(A ⊗ B) = (PALAUA) ⊗ (PBLBUB)

= (PA ⊗ PB)(LA ⊗ LB)(UA ⊗ UB)
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Reshaping KP computations

Assume A ∈ Rm×m, B ∈ Rn×n

Computing y = (A ⊗ B)x is O(m2n2) flops:

y = kron(A, B)*x

The equivalent operation y = vec(BXAT ) is O(mn(m+ n)) flops:

y = reshape(B*reshape(x, n, m)*A', m*n, 1)

For A, B triangular, solving (A ⊗ B)x = y is O(mn(m+ n)) flops:a11 0 0
a21 a22 0
a31 a32 a33

 ⊗ B

x1x2
x3

 =

a11B 0 0
a21B a22B 0
a31B a32B a33B

x1x2
x3

 =

y1y2
y3



For k = 1 : m do zk =
yk−

∑k−1
i=1 akizi
akk

, xk = B−1zk
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The Khatri-Rao product

Definition:

A =

A11 A12

A21 A22

A31 A32

 B =

B11 B12

B21 B22

B31 B32



C = A B =

 A11 ⊗ B11 A12 ⊗ B12

A21 ⊗ B21 A22 ⊗ B22

A31 ⊗ B31 A32 ⊗ B32



Assume A ∈ R(mp)×(mp), B ∈ R(np)×(np)

The resulting matrix C is of size (mnp)× (mnp)

MVMs and triangular solves are O(p2mn(m+ n)) flops
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Matrix equations

Solve KR system ⇔ Solve system of matrix equations:

Bi1X1A
T
i1 + · · ·+BipXpA

T
ip = Di, i = 1, . . . , p

Follow from

p∑
j=1

(Aij ⊗ Bij)xj = vec

(
p∑

i=1

BijXjA
T
ij

)

Can embed generalized Sylvester equations

p∑
i=1

(Ai ⊗ Bi)x = f :

A1 ⊗ B1 A2 ⊗ B2 A3 ⊗ B3

I ⊗ I −I ⊗ I 0
0 I ⊗ I −I ⊗ I

x1x2
x3

 =

f0
0

 (for p = 3)

The last p− 1 rows make sure x1 = x2 = x3
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The failed factorization attempt

Compute a factorization with KR structure[
A11 ⊗ B11 (A21 ⊗ B21)

T

A21 ⊗ B21 A22 ⊗ B22

]
=

[
L11 0

L21 L22

][
LT
11 LT

21

0 LT
22

]
.

Equating blocks:

A11 ⊗ B11 = L11L
T
11

A21 ⊗ B21 = L21L
T
11

A22 ⊗ B22 = L21L
T
21 + L22L

T
22

L11 and L21 clearly have KP structure

...but L22L
T
22 = A22 ⊗ B22 − L21L

T
21 does not!

Dense matrix factorizations do not preserve KR structure

≡ 1 −−−−− 2 −−−− 3 −−− 8/16



Background
Approximate KR factorizations

Numerical experiments

The approximate KR idea

We can get an approximate KR factorization if we solve

min
Ã22∈Rm×m

B̃22∈Rn×n

∥∥∥(A22 ⊗ B22 − L21L
T
21)− Ã22 ⊗ B̃22

∥∥∥
F

Compute the Cholesky factorizations:

Ã22 = L̃
(A)
22

[
L̃
(A)
22

]T
, B̃22 = L̃

(B)
22

[
L̃
(B)
22

]T
Gives the approximate factorization:[

A11 ⊗ B11 (A21 ⊗ B21)
T

A21 ⊗ B21 A22 ⊗ B22

]
≈
(
L̃(A) L̃(B)

)(
L̃(A) L̃(B)

)T
where

L̃(A) =

[
L
(A)
11 0

L
(A)
21 L̃

(A)
22

]
, L̃(B) =

[
L
(B)
11 0

L
(B)
21 L̃

(B)
22

]
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Approximate KR-Cholesky factorization

Algorithm 1 Approximate KR-Cholesky: Finds lower triangular matrices
L(A) and L(B) such that C = A B ≈ (L(A) L(B))(L(A) L(B))T

1: for i=1:p do
2: for j=i:p do
3: [Ãij , B̃ij ]←

nearest kp(Aij ⊗ Bij −
i−1∑
`=1

(
L
(A)
i`

[
L
(A)
j`

]T ) ⊗ (L(B)
i`

[
L
(B)
j`

]T )
)

4: if i == j then
5: Ãii ← closest spd(Ãii)
6: B̃ii ← closest spd(B̃ii)

7: L
(A)
ii ← chol(Ãii)

8: L
(B)
ii ← chol(B̃ii)

9: else

10: L
(A)
ji ←

(
L
(A)
ii \ Ãij

)T
11: L

(B)
ji ←

(
L
(B)
ii \ B̃ij

)T
12: end if
13: end for
14: end for
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Solving the nearest Kronecker product (NKP) problem

Consider V ∈ Rm1×n1 , W ∈ Rm2×n2 , U ∈ R(m1m2)×(n1n2)

How do we minimize ϕ(V,W ) = ‖U − V ⊗ W‖F ?

Can be reshaped into ϕ(V,W ) = ‖R(U)− vec(V ) vec(W )T ‖F
If u, v are the singular vectors corresponding to σ1(R(U)):

vec(Vopt) =
√
σ1 u, vec(Wopt) =

√
σ1 v.

In the special case U =
∑k

i=1 Ũi ⊗ Ûi we have

R(U) =

k∑
i=1

vec(Ũi) vec(Ûi)
T

Can solve the NKP problem in O(k(m1n1 +m2n2)) in this case
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Putting it all together

Can compute an approximate KR-Cholesky factorization efficiently

Can also compute an approximate KR-LU factorization:

C ≈ (P (A) P (B))(L(A) L(B))(U (A) U (B))

Both factorizations cost a total of O(p3(m3+n3)) flops to compute

Compare to O((mnp)3) flops for a dense factorization

Fast MVMs and approximate factorization =⇒ try Krylov method
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Preconditioner impact on spectrum

Random SPD matrices A and B with p = 5 and m = n = 20.

10 100 1000 10000 100000 1000000

1e-01 1 10

Figure: Eigenvalue spectrums of C and P−1C.
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Numerical experiment

Random SPD matrices A and B with p = 10 and m = n = 100.

Use KR-Cholesky as a preconditioner for CG
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Diagonal KR−Cholesky preconditioner

Approximate KR−Cholesky preconditioner

Figure: Convergence plot for CG.
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Numerical experiment

Preconditioner Construction time Iteration time Iterations
No preconditioner 0 s 14.86 s 724

Block-diagonal KR-Cholesky 0.011 s 16.17 s 298
KR-Cholesky 1.15 s 3.15 s 40

Table: Number of seconds necessary to compute each preconditioner and
number of seconds spent on CG iterations until the specified tolerance was
achieved.
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Conclusions

Dense factorizations do not preserve KR structure

Can modify the block-Cholesky/LU algorithms to compute
approximate factorizations

Involves solving an NKP problem in each block position

Works well as a preconditioner with CG/GMRES on toy problems

I am still looking for interesting applications
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