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The Kronecker product

@ A ® B is a block matrix where the ijth block is a;; B:

a1 a2 a3 a11B | ai2B | a13B
a1 a2 a3 ® B= | ao1B | axnB | a3B
az2 az2 433 az2B | az2B | a33B

@ A ® B is data-sparse

o If A is m-by-n, B is p-by-¢ then:
o A ® B has mpnq entries

o ...but can be represented by mn + pq entries
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Background

Basic algebraic properties

For A e R™*™ B e R"™™™:
(A® B)T = AT @ BT
(A® B)™! =A"'® B!
(A® B)T =A" @ Bf
(A® B)(C ® D)= (AC) ® (BD)
A®B®C) =(A®B)®C
A® B = (Perfect Shuffle)” (B @ A) (Perfect Shuffle)
det(A ® B) = det(A)" det(B)™
tr(A ® B) = tr(A) tr(B)
rank(4 ® B) = rank(A) rank(B)
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Basic properties

@ Computing dense factorizations is cheap!

@ Only need to compute factorizations of A and B separately

(A® B) = (LaL%) ® (LpL%)
= (La® Lp)(La ® Lp)T

(A ® B) = (PALAUA) ®(PBLBUB)
= (P4 ® Pp)(La ® L)(Ua ® Up)
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Reshaping KP computations

@ Assume A € R™*™ B e R™*"™

e Computing y = (A ® B)z is O(m?n?) flops:
y = kron (A, B)*x

o The equivalent operation y = vec(BX AT) is O(mn(m + n)) flops:
y = reshape (Bxreshape(x, n, m)*A', mxn, 1)

e For A, B triangular, solving (A ® B)xz =y is O(mn(m + n)) flops:

aiq 0 0 X1 auB 0 0 T Y1
a1 azx 0 | @ B| 22| = |auB  agnB 0 Ta| = |Y2
aszr a3z ass x3 a31B  a3B  a3B z3 Ys
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The Khatri-Rao product

@ Definition:
A11 A12 Bll BIQ
A= A21 A22 B = BQl BQZ
Az Az B31  Bso

A1 ® Bii | A2 ® Bio
C=A®B = | Az ® By | Ax» ® Bop
As1 ® B31 | Aza ® Bs

o Assume A € R™P)x(mp) g ¢ R()x(np)
@ The resulting matrix C' is of size (mnp) x (mnp)

e MVMs and triangular solves are O(p?*mn(m + n)) flops
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Matrix equations

@ Solve KR system < Solve system of matrix equations:

B11X1A;11+—|—B,LPXPA3;:D“ ’L':L...,p

o Follow from Z Aij ® Byj)xj = vec <Z Bii X, AT>

j=1
p
@ Can embed generalized Sylvester equations Z<Ai ® Bz = f:
i=1
A ® By Ay ® By A3 ® B3| |z f
I®I —IQ®I 0 zo| = [0] (for p=3)
0 I®I —I®I| |x3 0

@ The last p — 1 rows make sure 1 = x5 = x3
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Approximate KR factorizations

The failed factorization attempt

o Compute a factorization with KR structure
Ly Lo

Ay ® By = L1 LT
Az ® By = Loy LT}
Ags ® Bog = Loy L3 + Lo L,

A ® Bii (A21 ® Baoy)T
Azl ® Bgy Ay ® Bag

L, L3
0o LI, |

e Equating blocks:

L1y and Lo clearly have KP structure

@ ..but LQQL%; = A22 ® BQQ — Lgngl does not!
@ Dense matrix factorizations do not preserve KR structure
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Approximate KR factorizations

The approximate KR idea

@ We can get an approximate KR factorization if we solve

min
A~22 cR™ Xm
Bzz ER™X™

(A2 ® Bag — Ly LY) — Az ® BmHF

@ Compute the Cholesky factorizations:
- = =(a) T ~ ~ = () T
Ap=LQP[IS]",  Bn=IP[LY)]
o Gives the approximate factorization:

A ® Bin (Az ® Ba)T 2(0) @ F B ((F(a) @ 7))
~ (LYWL L' L
{ A1 ® By Az ® B ( ) ( )

where

)

-4 8,
A F(A
L21 L22
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Approximate KR factorizations

Approximate KR-Cholesky factorization

Algorithm 1 Approximate KR-Cholesky: Finds lower triangular matrices
L™ and L(® such that C = A®B ~ (L") @ L(®))(L(*) & LT
1: for i=1:p do
2: for j=i:p do
3: [Aij, Bij] < i1
NEAREST_KP(A;; ® B;j — Z (LZ(.?)[ (A)} ) ® (L [ ;?]T))
4 if i == j then G
5 Aji + CLOSEST_SPD(A;;)
6: Bi;i  CLOSEST_SPD(B;;)
7: L(A) + CHOL(Ay)
8 L<B) + CHOL(B “-)
9: else -
. (A) (A)\ A
10: L{P « (L Ay)
: (8) NI
11: L{P « (L) \ By)
12: end if
13: end for
14: end for
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Approximate KR factorizations

Solving the nearest Kronecker product (NKP) problem

Consider V € R™*™ W € R™2X"2 [ ¢ R(mim2)x(nin2)
How do we minimize o(V,W) = |[U =V @ W||g?
Can be reshaped into o(V, W) = |R(U) — vec(V) vec(W)T || p

If u, v are the singular vectors corresponding to o1 (R(U)):

vec(Vopt) = Vo1 u, vec(Wopt) = /o1 v.

In the special case U = Zf 1 U; ® U; we have
Zvec Y vee(U;)T

@ Can solve the NKP problem in O(k(miny + mans)) in this case
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Approximate KR factorizations

Putting it all together

@ Can compute an approximate KR-Cholesky factorization efficiently

@ Can also compute an approximate KR-LU factorization:

C ~ (p(A) @p(B))(L(A) @L(B))(U(A) @U(B))

Both factorizations cost a total of O(p®(m? +n?)) flops to compute

e Compare to O((mnp)?) flops for a dense factorization

Fast MVMs and approximate factorization —> try Krylov method
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Numerical experiments

Preconditioner impact on spectrum

Random SPD matrices A and B with p =5 and m = n = 20.

Original system: x(C) = 2.9e+03

10 100 1000 10000 100000 1000000
Q)
Preconditioned system: x(P~'C) = 2.2e+01

1e-01 1 10
MPLO)

Figure: Eigenvalue spectrums of C' and P~'C.
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Numerical experiments

Numerical experiment

@ Random SPD matrices A and B with p = 10 and m = n = 100.

@ Use KR-Cholesky as a preconditioner for CG

o No Preconditioner

O Diagonal KR-Cholesky preconditioner
Approximate KR-Cholesky preconditioner|

relative residual
A

10
1078 i i foll i i i
0 100 200 300 400 500 600 700
iteration number
Figure: Convergence plot for CG.
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Numerical experiments

Numerical experiment

Preconditioner Construction time | Iteration time | Iterations
No preconditioner 0s 14.86 s 724
Block-diagonal KR-Cholesky 0.011s 16.17 s 298
KR-Cholesky 1.15s 3.15s 40

Table: Number of seconds necessary to compute each preconditioner and
number of seconds spent on CG iterations until the specified tolerance was
achieved.
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Numerical experiments

Conclusions

@ Dense factorizations do not preserve KR structure

@ Can modify the block-Cholesky/LU algorithms to compute
approximate factorizations

@ Involves solving an NKP problem in each block position
@ Works well as a preconditioner with CG/GMRES on toy problems

o | am still looking for interesting applications
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