
Introduction
pySOT + POAP

Python notebooks
Summary

Asynchronous surrogate optimization in Python
(pySOT + POAP)

David Eriksson

Center for Applied Mathematics
Cornell University

dme65@cornell.edu

June 21, 2016

1 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Outline

1 Introduction

2 pySOT + POAP

3 Python notebooks

4 Summary

2 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Background

Global optimization problem (GOP)

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . ,m

x ∈ D
(1)

f : Rd → R continuous deterministic expensive black-box
function.

Inequality constraints gi (x) ≤ 0, where gi : Rd → R for
i = 1, . . . ,m.

D ⊂ Rd is a hypercube

3 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Background

Surrogate optimization methods are successful on GOP

Use a surrogate to approximate the objective function

Common surrogate models:

Radial basis functions (RBFs)
Kriging
Multivariate adaptive regression splines (MARS)
Polynomial regression

Surrogate optimization methods start by evaluating an
experimental design

The initial surrogate is fitted using these points.

4 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Surrogate optimization

Algorithm 1: Synchronous Surrogate Optimization Algorithm

Input: Optimization problem, Experimental design, Adaptive sampling
method, Surrogate model, Stopping criterion, Restart criterion

Output: Best solution and its corresponding function value
1 Generate an initial experimental design;

2 Evaluate the points in the experimental design;
3 Build a Surrogate model from the data;
4 repeat
5 if Restart criterion met then
6 Reset the Surrogate model and the Sample point strategy;
7 go to 1;

8 end
9 Use the adaptive sampling method to generate new point(s) to

evaluate;
10 Evaluate the point(s) generated using all computational resources;
11 Update the Surrogate model;

12 until Stopping criterion met;

5 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Surrogate optimization

Figure: Animation of a stochastic optimization algorithm. (Solid line) is
the objective function, (Dashed line) is the surrogate, (Circles) are the
old evaluations, (Square) is the new evaluation.

6 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Overview

Surrogate 
Model

Experimental 
Design

Optimization 
Strategy

Workers 
(threads)Controller

Adaptive
SamplingpySOT

POAP

Communication between 
POAP and pySOT

Provided by 
the user

Optimization 
Problem

Figure: Interactions between the objects in POAP and pySOT

7 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

POAP

POAP (Plumbing for Optimization with Asynchronous
Parallelism)

Hosted on GitHub: https://github.com/dbindel/POAP

A framework for building and combining asynchronous
optimization strategies

The user can provide his own strategies

Handles the communication with the objective function

Supports combined strategies

Capable of handling crashed function evaluations and workers
crashing

It is possible to retrieve partial information from the objective
function evaluation

8 / 24

https://github.com/dbindel/POAP


Introduction
pySOT + POAP

Python notebooks
Summary

POAP

Three main components
1 A strategy for proposing new evaluations
2 A set of workers that carry out function evaluations
3 A controller asking workers to run function evaluations

The controller is also responsible for
1 Accepting or rejecting proposals by the strategy
2 Controlling and monitoring the workers
3 Informing the strategy object of relevant events.

Different strategies can be composed by combining their
control actions

The workers and the strategy communicate via the controller

9 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

POAP

The multi-threaded controller employs a set of workers

Each worker is allowed to exploit parallelism

There is support for communicating with an objective function
that is not necessarily in Python (C, C++, Fortran, MATLAB,
etc.)

The user is responsible for implementing the optimization
problem

Workers can connect to a specified TCP/IP port to
communicate with the controller

10 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Back to the overview

Surrogate 
Model

Experimental 
Design

Optimization 
Strategy

Workers 
(threads)Controller

Adaptive
SamplingpySOT

POAP

Communication between 
POAP and pySOT

Provided by 
the user

Optimization 
Problem

Figure: Interactions between the objects in POAP and pySOT

11 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

pySOT

pySOT (Python Surrogate Optimization Toolbox)

Hosted on GitHub: https://github.com/dme65/pySOT

A collection of surrogate optimization strategies that can be
used with POAP

A great test-suite for doing head-to-head comparisons with
different experimental designs, surrogate models, sampling
techniques, strategies

Comes with a large set of optimization test problems

Object-orientation makes it easy for users to implement their
own modules

12 / 24

https://github.com/dme65/pySOT


Introduction
pySOT + POAP

Python notebooks
Summary

pySOT

Main components:

(1) Optimization problem
Number of dimensions
Bound constraints
Variable types
Addition inequality constraints
How to evaluate the objective function

(2) Experimental design generates the initial points

Latin hypercubes (LHD)
Symmetric Latin hypercubes (SLHD)
Full-factorial (FF)
Box-Behnken (BB)

13 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

pySOT

(3) Surrogate model approximates the objective function

Radial basis functions (RBFs)
Multivariate adaptive regression splines (MARS)
Kriging
Polynomial regression
Linear combinations of the above models where the weights
are determined using Dempster-Shafer theory

14 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

pySOT

(4) Adaptive sampling method decides where to evaluate
next based

Several candidate point based methods (DYCORS, SRBF,
DDS, etc.)
Minimizing the surrogate model using either a GA or a
multi-start gradient method
Minimizing the bumpiness if RBFs are used [Gutmann]
Possible to perturb the integer or continuous variables
separately
Any cycle of the above methods, e.g., (DYCORS, DYCORS,
GA, DYCORS, DYCORS, GA, ...)

15 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

pySOT

(5) Optimization strategy
A synchronous strategy for problems with only bound
constraints
A synchronous penalty method for problems with inequality
constraints
A synchronous projection based strategy when it’s easy to
project an infeasible point onto the feasible region

These three strategies have asynchronous versions, but they
are yet to be added to pySOT.

16 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

The pySOT GUI

Progress information Output from GUI

Sampling 
method

Information about 
the objective 
function

Objective function

Surrogate 
models

Adaptive sampling 
method(s)

Optimization 
problem

Information about 
the optimization 

problem

Surrogate 
model(s)

Information about 
the current run

Output from 
GUI

Figure: The pySOT GUI and its different components

17 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

Installing pySOT

Install Anaconda for Python 2.7
(https://www.continuum.io/downloads)

Install pySOT using the terminal command:
pip install pySOT

In order to use the GUI you need to install PySide:
pip install PySide

In order to use MARS you need to install py-earth:
pip install
https://github.com/jcrudy/py-earth/archive/master.zip

pySOT + documentation + example code is on GitHub
(https://github.com/dme65/pySOT)

18 / 24

https://www.continuum.io/downloads
https://github.com/dme65/pySOT


Introduction
pySOT + POAP

Python notebooks
Summary

Notebooks

We will now go through the Python notebooks

You can download the 7 notebooks + help files from
https://people.cam.cornell.edu/~dme65/talks.html

or https://wakari.io/dme65

The notebooks make it easy to split the code into pieces

It’s also possible to save figures and outputs

I will walk through the notebooks in detail

You can choose to experiment with the notebooks on your
own if you prefer!

19 / 24

https://people.cam.cornell.edu/~dme65/talks.html
https://wakari.io/dme65


Introduction
pySOT + POAP

Python notebooks
Summary

Notebooks

Instructions for participants using their own laptops:

1 Download the zipped folder from
https://people.cam.cornell.edu/~dme65/talks.html

2 Unzip the pySOT notebooks and cd your way into the folder

3 Open the first notebook using: jupyter notebook
Example1.ipynb

20 / 24

https://people.cam.cornell.edu/~dme65/talks.html


Introduction
pySOT + POAP

Python notebooks
Summary

Notebook content

Notebook 1: Introductory example, serial + threaded

Notebook 2: 1D sampling pattern

Notebook 3: How to make an optimization problem

Notebook 4: MATLAB objective function

Notebook 5: Non-bound constraints

Notebook 6: Equality constraints

Notebook 7: C++ objective function

21 / 24



Introduction
pySOT + POAP

Python notebooks
Summary

POAP

A framework for building and combining asynchronous
optimization strategies

Hosted on GitHub: https://github.com/dbindel/POAP

The three main components are a controller, a strategy, and a
set of workers

Support for objective functions written in many programming
languages

Handles worker and objective function crashes

The user supplies the optimization problem

22 / 24

https://github.com/dbindel/POAP


Introduction
pySOT + POAP

Python notebooks
Summary

pySOT

A collection surrogate optimization strategies that can be
used with POAP

Hosted on GitHub: https://github.com/dme65/pySOT

Comes with many different experimental designs, surrogate
models, adaptive sampling techniques, strategies, test
problems

Easy to add your own components

23 / 24

https://github.com/dme65/pySOT


Introduction
pySOT + POAP

Python notebooks
Summary

Thank you for your attention!

24 / 24


	Introduction
	pySOT + POAP
	Python notebooks
	Summary

	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PauseLeft: 
	0.PlayLeft: 
	0.PlayPauseLeft: 
	0.PauseRight: 
	0.PlayRight: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


