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Main projects
1 Scaling Gaussian process regression [Today]

Collaborators: David Bindel, Kun Dong, Hannes Nickisch,
Andrew Wilson

2 Scaling Gaussian process regression with derivatives [Today]
Collaborators: David Bindel, Kun Dong, Eric Lee,

Andrew Wilson
3 Energy bound optimization [A-exam]

Collaborators: David Bindel
4 Asynchronous surrogate optimization [A-exam]

Collaborators: David Bindel, Christine Shoemaker
5 Khatri-Rao systems of equations [Another time]

Collaborators: Alex Townsend, Charles Van Loan
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Scattered data interpolation
Positive definite kernels
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2 Scalable Gaussian processes
Gaussian processes
Kernel Learning
Approximate kernel learning
Numerical experiments

3 Scalable Gaussian processes with derivatives
Incorporating derivatives
Numerical experiments

4 Questions
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Section 1

Kernel methods
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Scattered data interpolation
Given:

Pairwise distinct points: X = {xi}n
i=1 ⊂ Ω ⊂ Rd

Function values: fX = [f(x1), . . . , f(xn)]
T

Goal: Find continuous function sf,X s.t.

sf,X(xi) = f(xi), i = 1, . . . ,n

Can use linear combination of continuous basis functions

sf,X(x) =
n∑

i=1
λibi(x)

Need to solve AXλ = fX, where (AX)ij = bj(xi)

Well-posed if AX is non-singular. When is this the case?
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Basis functions
(d = 1): Can choose basis functions independent of data

Example: Polynomial interpolation with the monomial basis

det AX =
∏

1≤i<j≤n
(xj − xi) ̸= 0

Always non-singular if X are pairwise distinct
(d ≥ 2): Famous negative result:

Mairhuber-Curtis: In order for detAX ̸= 0 for all pairwise
distinct X ⊂ Ω, the basis functions must depend on X
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Positive definite kernels
Characterizing all data dependent basis functions challenging
Common restriction: Require that AX is always s.p.d.
Achieved by using an s.p.d. kernel: bi(x) = k(x, xi)

Definition (Positive definite kernel)
A (continuous) symmetric function k : Rd ×Rd → R is called a
positive definite kernel if for all X, λ s.t.

1 The points in X are pairwise distinct,
2 λ ̸= 0,

=⇒
n∑

i=1

n∑
j=1

λiλjk(xi, xj) > 0.
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Popular positive definite kernels
White noise: k(x, y) = σ2δxy

Gaussian (SE): k(x, y) = s2 exp
(
−∥x−y∥2

2ℓ2

)
Matérn 1/2: k(x, y) = s2 exp

(
−∥x−y∥

ℓ

)
Matérn 3/2: k(x, y) = s2

(
1 +

√
3∥x−y∥

ℓ

)
exp

(
−

√
3∥x−y∥

ℓ

)
Matérn 5/2:
k(x, y) = s2

(
1 +

√
5∥x−y∥

ℓ + 5∥x−y∥2

3ℓ2

)
exp

(
−

√
5∥x−y∥

ℓ

)
Rational quadratic: k(x, y) = s2

(
1 + ∥x−y∥2

2αℓ2

)−α
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Polynomial precision
Example: Gaussian kernel cannot reproduce f(x) = constant
Desirable: sf,X exact for low-degree polynomials
Often referred to as polynomial precision
Mairhuber-Curtis =⇒ Need additional assumptions on X

Definition
A set of points X are ν-unisolvent if the only polynomial of degree
at most ν interpolating zero data on X is the zero polynomial.

Three collinear points in R2

The points (0, 0), (1, 1), (2, 2) are not 1-unisolvent
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Kernel methods and polynomial precision
Assume: The points X are ν-unisolvent
{πi}m

i=1 basis for p(x) ∈ Πd
ν (polynomials of degree ≤ ν)

Look for

sf,X(x) =
n∑

i=1
λik(x, xi) +

m∑
i=1

µiπi(x)

We now have n equations and m + n unknowns
Add the m discrete orthogonality conditions:

n∑
i=1

λjπi(xi) = 0, j = 1, . . . ,m

Allows us to use a larger family of kernels!
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Kernel methods and polynomial precision
Letting (KXX)ij = k(xi, xj) and (PX)ij = πj(xi):[

KXX PX
PT

X 0

] [
λ
µ

]
=

[
fX
0

]
Need: X (ν − 1)-unisolvent, p ∈ Πd

ν−1, k c.p.d of order ν

Definition (Conditionally positive definite kernel)
A (continuous) symmetric function k : Rd ×Rd → R is called a
conditionally positive definite kernel of order ν if for all X, λ s.t.

1 The points in X are pairwise distinct,
2 λ ̸= 0 and

∑n
i=1 λiq(xi) = 0, ∀q ∈ Πd

ν−1,

=⇒
n∑

i=1

n∑
j=1

λiλjk(xi, xj) > 0.
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Radial basis functions
Important special case: φ(r) = k(x, y) where r = ∥x − y∥
Cubic (φ(r) = r3), Thin-plate spline (φ(r) = r2 log r)
Semi-norm: |sf,X|2 = ⟨s, s⟩ = λTΦXXλ

Native space: |f|Nφ = sup
X⊂Ω, |X|<∞

|sf,X|

Generic error estimate:

|f(x)− sf,X(x)| ≤ Pφ,X(x)
√

|f |2Nφ
− |sf,X|2

Power function:

[Pφ,X(x)]2 = φ(0)−
[
ΦXx
PT

x

]T [
ΦXX PX
PT

X 0

]−1 [
ΦXx
PT

x

]
.

The power function is a Schur complement after adding x
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Section 2

Scalable Gaussian processes
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Gaussian processes interpolation
Defines a distribution over functions:

f(x) ∼ GP(µ(x), k(x, x′))

Mean function: µ : Rd → R, often low-degree polynomial
Covariance function: cov(f(xi), f(xj)) = k(xi, xj) s.p.d kernel
Posterior mean and variance at x:

E[f(x)] = KxX K−1
XX (yX − µX),

V[f(x)] = Kxx − KxX K−1
XX KXx,

Compared to RBFs, V[f(x)] tells us about the average case
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Draws from GP prior with zero mean
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Draws from GP posterior
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Posterior mean and variance
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Gaussian processes regression
Assume we observe fX ∼ yX + ϵ, ϵ ∈ N (0, σ2I)
Add white noise kernel:

k̃(x, y) = k(x, y) + σ2δxy

We often do this even in the case of no noise
Weyl: φ(r) ∈ C ν =⇒ |λn| = o

(
n−ν−1/2)

Example: |λn| decays exponentially for Gaussian (SE) kernel
Adding σ2δxy guarantees |λn| ≥ σ2

Gershgorin:
κ(ΦXX + σ2I ) ≤ nφ(0)

σ2

Example: κ(ΦXX + σ2I ) ≤ n
( s
σ

)2 for Gaussian (SE) kernel
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Kernel hyper-parameters
How do we learn the optimal kernel hyperparameters θ?
Bayesian approach is expensive, often do MLE
Log marginal likelihood:

log p(θ | yX) = Ly + L|K| −
n
2 log 2π

Need to compute:

Ly = −1
2(yX − µX)

Tc, ∂ Ly
∂ θi

=
1
2cT

(
∂ K̃XX
∂ θi

)
c

L|K| = −1
2 log det K̃XX,

∂ L|K|

∂ θi
= −1

2 tr

(
K̃−1

XX
∂ KXX
∂ θi

)
where c = K̃−1

XX(yX − µX).
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Exact kernel learning

K̃XX = L LT

Compute dense Cholesky factorization: O(n3) flops
Solves and logdet computations with K̃XX are now trivial:

K̃XX\c = LT\(L\c)

log det K̃XX = 2
n∑

i=1
logLii

Works for small n, but dense LA is not scalable!
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Iterative methods
Assumption: We have access to a fast MVM with K̃XX

Use a Krylov method to solve linear systems with K̃XX

Kk(A, b) = span{b,Ab, . . . ,Ak−1b}

K̃XX is s.p.d =⇒ use the conjugate gradient (CG) method
Only interacts with K̃XX via MVMs
Converges in n iterations in exact arithmetic
A few iterations are enough for many kernels
Small ℓ: KXX almost diagonal =⇒ fast convergence
Large ℓ: Pivoted Cholesky preconditioner, KXX ≈ P(LLT)PT
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Stochastic trace estimation
How do we approximate log det K̃XX using fast MVMs?
Note that log det K̃XX = tr(log K̃XX)

Estimate trace of a matrix =⇒ Stochastic trace estimation
If z has independent random entries, E[zi] = 0, E[z2

i ] = 1:

E[zTAz] =
n∑

i=1

n∑
j=1

aij E[zizj] = tr(A)

Common choices of probe vector z:
Hutchinson: zi = ±1 with probability 0.5
Gaussian: zi ∼ N (0, 1)

This requires fast computation of log(K̃XX)z:
Function application with Hermitian matrix =⇒ Lanczos
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Lanczos
Lanczos computes factorization: K̃XXQ = QT

Q orthogonal, T tridiagonal
Elegant three term recursion with one MVM per iteration
Converges in k ≤ p steps if K̃XX has p distinct eigenvalues
Function application starting at z/∥z∥:

f(K̃XX)z = Q f(T)QTz = ∥z∥Q f(T)e1

Truncate after k ≪ n steps:

f(K̃XX)z ≈ ∥z∥Qk f(Tk)e1

N.B: CG is a special case of Lanczos
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Fast MVMs: SKI

Structured kernel interpolation (SKI):
KXX ≈ WTKUUW
U is a structured grid with m points
KUU is BTTB (with Kronecker structure for product kernel)
W sparse matrix with interpolation weights

Can apply MVM with KXX in O(m log m) time using FFT
Grid structure limited to ≈ 5 dimensions
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SKI for Product kernels (SKIP)
Main idea: (A⊙B)x = diag(A diag(x)BT)

Cost for an MVM: O(nr2) flops if A, B have rank r
Assume tensor product structure: k(x, y) =

∏d
i=1 ki(xi, yi)

Many popular kernels (e.g., SE) have tensor product structure
Use SKI in each dimension:

K ≈ (W1K1WT
1 )⊙ . . .⊙(WdKdWT

d )

Divide and conquer + truncated rank-r Lanczos factorizations:

K ≈ (Q1T1QT
1 )⊙(Q2T2QT

2 )

Constructing SKIP kernel: O(n + m logm + r3n log d) flops
Often achieve high accuracy for r ≪ n
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Rainfall
Method n m MSE Time [min]
Lanczos 528k 3M 0.613 14.3

Scaled eigenvalues 528k 3M 0.621 15.9
Exact 12k - 0.903 11.8

Data: Hourly precipitation data at 5500 weather stations
Aggregate into daily precipitation
Total data: 628k entries
Train on 528k data points, test on remainder
Use SKI with 100 points per spatial dim, 300 in time
Reference comparison: exact computation (12k entries)
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Hickory Data Set
Our approach can be used for non-Gaussian likelihoods
Example: Log-Gaussian Cox process

Count data for Hickory trees in Michigan
Area discretized using a 60 × 60 grid
Use the Poisson likelihood with the SE kernel
Laplace approximation for posterior

The scaled eigenvalue method uses the Fiedler bound

(a) Count data (b) Exact (c) Scaled eigs (d) Lanczos
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Section 3

Scalable Gaussian processes with derivatives
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Gaussian process with derivatives
Assume we observe both f(x) and ∇f(x)
Let f(x) ∼ GP(µ(x), k(x, x′))
Differentiation is a linear operator:

µ∇(x) =
[
µ(x)
∇µ(x)

]
, k∇(x, x′) =

[
k(x, x′) (∇x′k(x, x′))T

∇xk(x, x′) ∇2k(x, x′)

]
Multi-output GP:[

f(x)
∇f(x)

]
∼ GP

(
µ∇(x), k∇(x, x′)

)
Exact kernel learning and inference is now O(n3d3) flops
Involves kernel matrix of size n(d + 1)× n(d + 1)
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Example: Branin function
Gradient information can make the GP model more accurate
(Left) True function
(Middle) GP without derivatives
(Right) GP with derivatives

Branin SE no gradient SE with gradients
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Extending SKI and SKIP
Differentiate the approximation scheme
D-SKI: k(x, x′) ≈

∑
i wi(x)k(ui, x′) → ∇k(x, x′) ≈

∑
i ∇wi(x)k(ui, x′)

D-SKIP: Differentiate each Hadamard product

-10 -8 -6 -4

50 100 150 200 250 300

10-6

10-4

10-2

100

True spectrum
SKI spectrum

200 400 600 800 1000

10-4

10-2

100

True spectrum
SKIP spectrum

-10 -8 -6 -4

Figure: (Left) log10 error in D-SKI approximation and comparison to the
exact spectrum. (Right) log10 error in D-SKIP approximation and
comparison to the exact spectrum.
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Active subspaces
Can estimate active subspace from gradients:

C =

∫
Ω
∇f(x)∇f(x)T dx ≈ QΛQT

λi measures the average change in f along qi

Optimal d̃-dimensional subspace P: First d̃ columns of Q
Active subspace approximation: f(x) ≈ f(PPTx)
Can work with kernel k̃(x, x′) = k(PTx,PTx′)
We estimate C using Monte Carlo integration:

C ≈ 1
n

n∑
i=1

∇f(xi)∇f(xi)
T
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Bayesian optimization with active subspace learning
1: Generate experimental design
2: Evaluate experimental design
3: while Budget not exhausted do
4: Calculate active subspace P using sampled gradients
5: Fit GP with derivatives using k(PTx,PTx′)
6: Optimize un+1 = arg max A(u) with xn+1 = Pun+1
7: Sample point xn+1, value fn+1, and gradient ∇fn+1
8: Update data Di+1 = Di ∪ {xn+1, fn+1,∇fn+1}
9: end
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Bayesian optimization with EI
5-dimensional Ackley randomly embedded in 50 dimensions
Observe noisy values and noisy gradients
Use active subspace learning from sampled gradients
Use D-SKI in the active subspace for fast kernel learning
Active subspace learning improves the performance of BO

0 100 200 300 400 500

-20

-15

-10

-5 BO exact

BO D-SKI

BFGS

Random sampling
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Stanford bunny
Recovering the Stanford bunny from 25k noisy normals
Spline kernel: k(x, y) = s2(∥x − y∥3 + a∥x − y∥2 + b)
Fit an implicit GP surface: f(xi) = 0, ∇f(xi) = ni
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Questions
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Thank you for your attention!

Questions?
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