Scalable kernel methods and their use in black-box optimization

David Eriksson

Center for Applied Mathematics Cornell University

dme65@cornell.edu

November 9, 2018

Main projects

0	Scaling Gaussian process regression	[Today]
	Collaborators: David Bindel, Kun Dong, Hannes Nic Andrew Wilson	kisch,
2	$\label{eq:scaling} Scaling \ Gaussian \ process \ regression \ with \ derivatives$	[Today]
	<i>Collaborators:</i> David Bindel, Kun Dong, Eric Lee, Andrew Wilson	
8	Energy bound optimization	[A-exam]
	Collaborators: David Bindel	
4	Asynchronous surrogate optimization	[A-exam]
	Collaborators: David Bindel, Christine Shoemaker	
6	Khatri-Rao systems of equations [Anot	her time]
	Collaborators: Alex Townsend, Charles Van Loan	

Outline

Kernel methods

- Scattered data interpolation
- Positive definite kernels
- Conditionally positive definite kernels
- Radial basis functions
- 2 Scalable Gaussian processes
 - Gaussian processes
 - Kernel Learning
 - Approximate kernel learning
 - Numerical experiments
- Scalable Gaussian processes with derivatives
 - Incorporating derivatives
 - Numerical experiments
 - Questions

 Kernel methods
 Scattered data interpolation

 Scalable Gaussian processes
 Positive definite kernels

 Scalable Gaussian processes with derivatives Questions
 Conditionally positive definite kernels

 Radial basis functions
 Radial basis functions

Section 1

Kernel methods

Scattered data interpolation Positive definite kernels Conditionally positive definite kernels Radial basis functions

Scattered data interpolation

• Given:

- Pairwise distinct points: $X = \{x_i\}_{i=1}^n \subset \Omega \subset \mathbb{R}^d$
- Function values: $f_X = [f(x_1), \dots, f(x_n)]^T$
- Goal: Find continuous function $s_{f,X}$ s.t.

$$s_{f,X}(x_i) = f(x_i), \qquad i = 1, \dots, n$$

• Can use linear combination of continuous basis functions

$$s_{f,X}(x) = \sum_{i=1}^{n} \lambda_i b_i(x)$$

- Need to solve $A_X \lambda = f_X$, where $(A_X)_{ij} = b_j(x_i)$
- Well-posed if A_X is non-singular. When is this the case?

Scattered data interpolation Positive definite kernels Conditionally positive definite kernels Radial basis functions

Basis functions

(d=1): Can choose basis functions independent of data

• Example: Polynomial interpolation with the monomial basis

$$\det A_X = \prod_{1 \le i < j \le n} (x_j - x_i) \neq 0$$

- Always non-singular if \boldsymbol{X} are pairwise distinct
- $(d \ge 2)$: Famous negative result:
 - Mairhuber-Curtis: In order for det A_X ≠ 0 for all pairwise distinct X ⊂ Ω, the basis functions must depend on X

 Kernel methods
 Scattered data interpolatic

 Scalable Gaussian processes
 Positive definite kernels

 Scalable Gaussian processes with derivatives
 Conditionally positive definite

 Questions
 Radial basis functions

Positive definite kernels

- Characterizing all data dependent basis functions challenging
- Common restriction: Require that A_X is always s.p.d.
- Achieved by using an s.p.d. kernel: $b_i(x) = k(x, x_i)$

Definition (Positive definite kernel)

A (continuous) symmetric function $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is called a positive definite kernel if for all X, λ s.t.

$$2 \quad \lambda \neq 0, \implies \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j k(x_i, x_j) > 0.$$

Scattered data interpolation Positive definite kernels Conditionally positive definite kernels Radial basis functions

Popular positive definite kernels

• White noise:
$$k(x,y) = \sigma^2 \delta_{xy}$$

• Gaussian (SE):
$$k(x,y) = s^2 \exp\left(-rac{\|x-y\|^2}{2\ell^2}
ight)$$

• Matérn 1/2:
$$k(x, y) = s^2 \exp\left(-\frac{\|x-y\|}{\ell}\right)$$

• Matérn 3/2:
$$k(x,y) = s^2 \left(1 + \frac{\sqrt{3}\|x-y\|}{\ell}\right) \exp\left(-\frac{\sqrt{3}\|x-y\|}{\ell}\right)$$

• Matérn 5/2:

$$k(x,y) = s^2 \left(1 + \frac{\sqrt{5} \|x-y\|}{\ell} + \frac{5 \|x-y\|^2}{3\ell^2} \right) \exp\left(-\frac{\sqrt{5} \|x-y\|}{\ell}\right)$$

• Rational quadratic:
$$k(x,y) = s^2 \left(1 + \frac{\|x-y\|^2}{2\alpha\ell^2}\right)$$

 Kernel methods
 Scattered data interpolation

 Scalable Gaussian processes
 Positive definite kernels

 Scalable Gaussian processes with derivatives
 Conditionally positive definite kernels

 Questions
 Radial basis functions

Polynomial precision

- Example: Gaussian kernel cannot reproduce f(x) = constant
- Desirable: *s*_{*f*,*X*} exact for low-degree polynomials
- Often referred to as polynomial precision
- Mairhuber-Curtis \implies Need additional assumptions on X

Definition

A set of points X are ν -unisolvent if the only polynomial of degree at most ν interpolating zero data on X is the zero polynomial.

Three collinear points in \mathbb{R}^2

The points (0,0), (1,1), (2,2) are not 1-unisolvent

Scattered data interpolation Positive definite kernels Conditionally positive definite kernels Radial basis functions

Kernel methods and polynomial precision

- Assume: The points X are ν -unisolvent
- $\{\pi_i\}_{i=1}^m$ basis for $p(x) \in \Pi^d_{\nu}$ (polynomials of degree $\leq \nu$)
- Look for

$$s_{f,X}(x) = \sum_{i=1}^{n} \lambda_i k(x, x_i) + \sum_{i=1}^{m} \mu_i \pi_i(x)$$

- We now have n equations and m + n unknowns
- Add the m discrete orthogonality conditions:

$$\sum_{i=1}^n \lambda_j \pi_i(x_i) = 0, \quad j = 1, \dots, m$$

• Allows us to use a larger family of kernels!

Scattered data interpolation Positive definite kernels Conditionally positive definite kernels Radial basis functions

Kernel methods and polynomial precision

• Letting
$$(K_{XX})_{ij} = k(x_i, x_j)$$
 and $(P_X)_{ij} = \pi_j(x_i)$:

$$\begin{bmatrix} K_{XX} & P_X \\ P_X^T & 0 \end{bmatrix} \begin{bmatrix} \lambda \\ \mu \end{bmatrix} = \begin{bmatrix} f_X \\ 0 \end{bmatrix}$$

• Need: $X (\nu - 1)$ -unisolvent, $p \in \Pi^d_{\nu - 1}$, k c.p.d of order ν

Definition (Conditionally positive definite kernel)

A (continuous) symmetric function $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is called a conditionally positive definite kernel of order ν if for all X, λ s.t.

① The points in X are pairwise distinct,

2
$$\lambda \neq 0$$
 and $\sum_{i=1}^{n} \lambda_i q(x_i) = 0, \quad \forall q \in \Pi_{\nu-1}^d$,

$$\implies \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j k(x_i, x_j) > 0.$$

 Kernel methods
 Scattered data interpolation

 Scalable Gaussian processes
 Positive definite kernels

 Scalable Gaussian processes with derivatives
 Conditionally positive definite kernels

 Questions
 Radial basis functions

Radial basis functions

- Important special case: $\varphi(r) = k(x, y)$ where $r = \|x y\|$
- Cubic ($\varphi(r) = r^3$), Thin-plate spline ($\varphi(r) = r^2 \log r$)
- Semi-norm: $|s_{f,X}|^2 = \langle s,s \rangle = \lambda^T \Phi_{XX} \lambda$
- Native space: $|f|_{\mathcal{N}_{\varphi}} = \sup_{X \subset \Omega, \, |X| < \infty} |s_{f,X}|$
- Generic error estimate:

$$|f(x) - s_{f,X}(x)| \le P_{\varphi,X}(x) \sqrt{|f|^2_{\mathcal{N}_{\varphi}} - |s_{f,X}|^2}$$

Power function:

$$[P_{\varphi,X}(x)]^2 = \varphi(0) - \begin{bmatrix} \Phi_{Xx} \\ P_x^T \end{bmatrix}^T \begin{bmatrix} \Phi_{XX} & P_X \\ P_X^T & 0 \end{bmatrix}^{-1} \begin{bmatrix} \Phi_{Xx} \\ P_x^T \end{bmatrix}$$

 $\bullet\,$ The power function is a Schur complement after adding x

Gaussian processes Kernel Learning Approximate kernel learning Numerical experiments

Section 2

Scalable Gaussian processes

Gaussian processes Kernel Learning Approximate kernel learning Numerical experiments

Gaussian processes interpolation

• Defines a distribution over functions:

$$f(x) \sim \mathcal{GP}(\mu(x), k(x, x'))$$

- \bullet Mean function: $\mu: \mathbb{R}^d \rightarrow \mathbb{R},$ often low-degree polynomial
- Covariance function: $cov(f(x_i), f(x_j)) = k(x_i, x_j) \text{ s.p.d kernel}$
- Posterior mean and variance at x:

$$\mathbb{E}[f(x)] = K_{xX} K_{XX}^{-1} (y_X - \mu_X),$$
$$\mathbb{V}[f(x)] = K_{xx} - K_{xX} K_{XX}^{-1} K_{Xx},$$

• Compared to RBFs, $\mathbb{V}[f(x)]$ tells us about the average case

Scalable Gaussian processes Scalable Gaussian processes with derivatives Gaussian processes

Draws from GP prior with zero mean

Gaussian processes

Kernel Learning Approximate kernel learning Numerical experiments

Draws from GP posterior

Gaussian processes

Kernel Learning Approximate kernel learning Numerical experiments

Posterior mean and variance

Gaussian processes Kernel Learning Approximate kernel learning Numerical experiments

Gaussian processes regression

- Assume we observe $f_X \sim y_X + \epsilon$, $\epsilon \in \mathcal{N}(0, \sigma^2 I)$
- Add white noise kernel:

$$\tilde{k}(x,y) = k(x,y) + \sigma^2 \delta_{xy}$$

- We often do this even in the case of no noise
- Weyl: $\varphi(r) \in C^{\nu} \implies |\lambda_n| = o\left(n^{-\nu 1/2}\right)$
- Example: $|\lambda_n|$ decays exponentially for Gaussian (SE) kernel
- Adding $\sigma^2 \delta_{xy}$ guarantees $|\lambda_n| \ge \sigma^2$
- Gershgorin:

$$\kappa(\Phi_{XX} + \sigma^2 I) \le \frac{n\,\varphi(0)}{\sigma^2}$$

• Example: $\kappa(\Phi_{XX} + \sigma^2 I) \le n\left(\frac{s}{\sigma}\right)^2$ for Gaussian (SE) kernel

Gaussian processes Kernel Learning Approximate kernel learning Numerical experiments

Kernel hyper-parameters

- How do we learn the optimal kernel hyperparameters θ ?
- Bayesian approach is expensive, often do MLE
- Log marginal likelihood:

$$\log p(\theta \mid y_X) = \mathcal{L}_y + \mathcal{L}_{|K|} - \frac{n}{2} \log 2\pi$$

Need to compute:

$$\mathcal{L}_{y} = -\frac{1}{2}(y_{X} - \mu_{X})^{T}c, \qquad \frac{\partial \mathcal{L}_{y}}{\partial \theta_{i}} = \frac{1}{2}c^{T}\left(\frac{\partial \tilde{K}_{XX}}{\partial \theta_{i}}\right)c$$
$$\mathcal{L}_{|K|} = -\frac{1}{2}\log \det \tilde{K}_{XX}, \qquad \frac{\partial \mathcal{L}_{|K|}}{\partial \theta_{i}} = -\frac{1}{2}\operatorname{tr}\left(\tilde{K}_{XX}^{-1}\frac{\partial K_{XX}}{\partial \theta_{i}}\right)$$
where $c = \tilde{K}_{XX}^{-1}(y_{X} - \mu_{X}).$

Gaussian processes Kernel Learning Approximate kernel learning Numerical experiments

Exact kernel learning

- Compute dense Cholesky factorization: $\mathcal{O}(n^3)$ flops
- Solves and logdet computations with \tilde{K}_{XX} are now trivial:

$$\tilde{K}_{XX} \setminus c = L^T \setminus (L \setminus c)$$

 $\log \det \tilde{K}_{XX} = 2 \sum_{i=1}^n \log L_{ii}$

• Works for small *n*, but dense LA is not scalable!

Kernel methods Gaussian processes Scalable Gaussian processes Scalable Gaussian processes Wernel Learning Questions Questions Numerical experiments

Iterative methods

- Assumption: We have access to a fast MVM with \tilde{K}_{XX}
- Use a Krylov method to solve linear systems with $ilde{K}_{XX}$

$$\mathcal{K}_k(A, b) = \operatorname{span}\{b, Ab, \dots, A^{k-1}b\}$$

- \tilde{K}_{XX} is s.p.d \implies use the conjugate gradient (CG) method
- Only interacts with \tilde{K}_{XX} via MVMs
- Converges in n iterations in exact arithmetic
- A few iterations are enough for many kernels
- Small ℓ : K_{XX} almost diagonal \implies fast convergence
- Large ℓ : Pivoted Cholesky preconditioner, $K_{XX} \approx P(LL^T)P^T$

Gaussian processes Kernel Learning **Approximate kernel learning** Numerical experiments

Stochastic trace estimation

- How do we approximate $\log \det \tilde{K}_{XX}$ using fast MVMs?
- Note that $\log \det \tilde{K}_{XX} = \operatorname{tr}(\log \tilde{K}_{XX})$
- Estimate trace of a matrix \implies Stochastic trace estimation
- If z has independent random entries, $\mathbb{E}[z_i] = 0$, $\mathbb{E}[z_i^2] = 1$:

$$\mathbb{E}[z^T A z] = \sum_{i=1}^n \sum_{j=1}^n a_{ij} \mathbb{E}[z_i z_j] = \operatorname{tr}(A)$$

- Common choices of probe vector z:
 - Hutchinson: $z_i = \pm 1$ with probability 0.5
 - Gaussian: $z_i \sim \mathcal{N}(0, 1)$
- This requires fast computation of $log(\tilde{K}_{XX})z$:
- ullet Function application with Hermitian matrix \implies Lanczos

Kernel methods Gaussian processes Scalable Gaussian processes Scalable Gaussian processes with derivatives Questions Numerical experiments

Lanczos

- Lanczos computes factorization: $\tilde{K}_{XX}Q = QT$
 - Q orthogonal, T tridiagonal
- Elegant three term recursion with one MVM per iteration
- Converges in $k \leq p$ steps if \tilde{K}_{XX} has p distinct eigenvalues
- Function application starting at z/||z||:

$$f(\tilde{K}_{XX})z = Qf(T)Q^Tz = ||z||Qf(T)e_1$$

• Truncate after $k \ll n$ steps:

$$f(\tilde{K}_{XX})z \approx ||z|| Q_k f(T_k) e_1$$

• N.B: CG is a special case of Lanczos

Gaussian processes Kernel Learning Approximate kernel learning Numerical experiments

Fast MVMs: SKI

- Structured kernel interpolation (SKI):
 - $K_{XX} \approx W^T K_{UU} W$
 - U is a structured grid with m points
 - K_{UU} is BTTB (with Kronecker structure for product kernel)
 - W sparse matrix with interpolation weights
- Can apply MVM with K_{XX} in $\mathcal{O}(m \log m)$ time using FFT
- Grid structure limited to \approx 5 dimensions

Gaussian processes Kernel Learning **Approximate kernel learning** Numerical experiments

SKI for Product kernels (SKIP)

- Main idea: $(A \odot B)x = \operatorname{diag}(A \operatorname{diag}(x) B^T)$
- Cost for an MVM: $\mathcal{O}(nr^2)$ flops if A, B have rank r
- Assume tensor product structure: $k(x, y) = \prod_{i=1}^{d} k_i(x_i, y_i)$
- Many popular kernels (e.g., SE) have tensor product structure
- Use SKI in each dimension:

$$K \approx (W_1 K_1 W_1^T) \odot \ldots \odot (W_d K_d W_d^T)$$

• Divide and conquer + truncated rank-r Lanczos factorizations:

$$K \approx (Q_1 T_1 Q_1^T) \odot (Q_2 T_2 Q_2^T)$$

- Constructing SKIP kernel: $\mathcal{O}(n + m \log m + r^3 n \log d)$ flops
- Often achieve high accuracy for $r \ll n$

Kernel methods	
Scalable Gaussian processes	
Scalable Gaussian processes with derivatives	Approximate kernel learning
Questions	Numerical experiments

Rainfall

Method	n	m	MSE	Time [min]
Lanczos	528k	3M	0.613	14.3
Scaled eigenvalues	528k	3M	0.621	15.9
Exact	12k	-	0.903	11.8

- $\bullet\,$ Data: Hourly precipitation data at 5500 weather stations
- Aggregate into daily precipitation
- Total data: 628k entries
- Train on 528k data points, test on remainder
- Use SKI with $100 \ {\rm points} \ {\rm per} \ {\rm spatial} \ {\rm dim}, \ 300 \ {\rm in} \ {\rm time}$
- Reference comparison: exact computation (12k entries)

Gaussian processes Kernel Learning Approximate kernel learning Numerical experiments

Hickory Data Set

- Our approach can be used for non-Gaussian likelihoods
- Example: Log-Gaussian Cox process
 - Count data for Hickory trees in Michigan
 - $\bullet~{\rm Area}~{\rm discretized}~{\rm using}~{\rm a}~60\times60~{\rm grid}$
 - Use the Poisson likelihood with the SE kernel
 - Laplace approximation for posterior

• The scaled eigenvalue method uses the Fiedler bound

-1 $\diamond - \diamond - \diamond - \diamond 2$ $\diamond - - - \diamond - \diamond - \diamond - - \diamond - 3$ $\diamond - - - - \diamond - 4$ -

Incorporating derivatives Numerical experiments

Section 3

Scalable Gaussian processes with derivatives

Incorporating derivatives Numerical experiments

Gaussian process with derivatives

- Assume we observe both f(x) and $\nabla f(x)$
- Let $\mathit{f}(\mathit{x}) \sim \mathcal{GP}(\mu(\mathit{x}), \mathit{k}(\mathit{x}, \mathit{x}'))$
- Differentiation is a linear operator:

$$\mu^{\nabla}(x) = \begin{bmatrix} \mu(x) \\ \nabla \mu(x) \end{bmatrix}, \quad k^{\nabla}(x, x') = \begin{bmatrix} k(x, x') & (\nabla_{x'}k(x, x'))^T \\ \nabla_x k(x, x') & \nabla^2 k(x, x') \end{bmatrix}$$

Multi-output GP:

$$\begin{bmatrix} f(x) \\ \nabla f(x) \end{bmatrix} \sim \mathcal{GP}\left(\mu^{\nabla}(x), k^{\nabla}(x, x')\right)$$

- \bullet Exact kernel learning and inference is now $\mathcal{O}(n^3d^3)$ flops
- \bullet Involves kernel matrix of size $n(d+1) \times n(d+1)$

Incorporating derivatives Numerical experiments

Example: Branin function

- Gradient information can make the GP model more accurate
- (Left) True function
- (Middle) GP without derivatives
- (Right) GP with derivatives

Incorporating derivatives Numerical experiments

Extending SKI and SKIP

- Differentiate the approximation scheme
- D-SKI: $k(x, x') \approx \sum_{i} w_i(x)k(u_i, x') \rightarrow \nabla k(x, x') \approx \sum_{i} \nabla w_i(x)k(u_i, x')$
- D-SKIP: Differentiate each Hadamard product

Figure: (Left) \log_{10} error in D-SKI approximation and comparison to the exact spectrum. (Right) \log_{10} error in D-SKIP approximation and comparison to the exact spectrum.

Incorporating derivatives Numerical experiments

Active subspaces

• Can estimate active subspace from gradients:

$$C = \int_{\Omega} \nabla f(x) \nabla f(x)^T \, dx \approx Q \Lambda Q^T$$

- λ_i measures the average change in f along q_i
- Optimal \tilde{d} -dimensional subspace P: First \tilde{d} columns of Q
- Active subspace approximation: $f(x) \approx f(PP^T x)$
- Can work with kernel $\tilde{k}(x, x') = k(P^T x, P^T x')$
- We estimate C using Monte Carlo integration:

$$C \approx \frac{1}{n} \sum_{i=1}^{n} \nabla f(x_i) \nabla f(x_i)^T$$

Incorporating derivatives Numerical experiments

Bayesian optimization with active subspace learning

- 1: Generate experimental design
- 2: Evaluate experimental design
- 3: while Budget not exhausted do
- 4: Calculate active subspace P using sampled gradients
- 5: Fit GP with derivatives using $k(P^Tx, P^Tx')$
- 6: Optimize $u_{n+1} = \arg \max \mathcal{A}(u)$ with $x_{n+1} = Pu_{n+1}$
- 7: Sample point x_{n+1} , value f_{n+1} , and gradient ∇f_{n+1}
- 8: Update data $\mathcal{D}_{i+1} = \mathcal{D}_i \cup \{x_{n+1}, f_{n+1}, \nabla f_{n+1}\}$
- 9: end

Incorporating derivatives Numerical experiments

Bayesian optimization with EI

- 5-dimensional Ackley randomly embedded in 50 dimensions
- Observe noisy values and noisy gradients
- Use active subspace learning from sampled gradients
- Use D-SKI in the active subspace for fast kernel learning
- Active subspace learning improves the performance of BO

Incorporating derivatives Numerical experiments

Stanford bunny

- Recovering the Stanford bunny from 25k noisy normals
- Spline kernel: $k(x, y) = s^2(||x y||^3 + a||x y||^2 + b)$
- Fit an implicit GP surface: $f(x_i) = 0$, $\nabla f(x_i) = n_i$

Section 4

Questions

Thank you for your attention!

Questions?

 $\equiv --1 \hspace{0.1in} \diamond - \diamond - \diamond - - \diamond \hspace{0.1in} 2 \hspace{0.1in} \diamond - - - \diamond - \diamond - \diamond - - - \diamond - 3 \hspace{0.1in} \diamond - - - - \diamond - 4 \hspace{0.1in} -$