Scalable kernel methods and their use in black-box optimization

David Eriksson

Center for Applied Mathematics
Cornell University
dme65@cornell.edu

November 9, 2018

Main projects

(1) Scaling Gaussian process regression
[Today]
Collaborators: David Bindel, Kun Dong, Hannes Nickisch, Andrew Wilson
(2) Scaling Gaussian process regression with derivatives
[Today]
Collaborators: David Bindel, Kun Dong, Eric Lee, Andrew Wilson
(3) Energy bound optimization
[A-exam]
Collaborators: David Bindel
(9) Asynchronous surrogate optimization
[A-exam]
Collaborators: David Bindel, Christine Shoemaker
(3) Khatri-Rao systems of equations
[Another time]
Collaborators: Alex Townsend, Charles Van Loan

Outline

(1) Kernel methods

- Scattered data interpolation
- Positive definite kernels
- Conditionally positive definite kernels
- Radial basis functions
(2) Scalable Gaussian processes
- Gaussian processes
- Kernel Learning
- Approximate kernel learning
- Numerical experiments
(3) Scalable Gaussian processes with derivatives
- Incorporating derivatives
- Numerical experiments
(4) Questions

Section 1

Kernel methods

Scattered data interpolation

- Given:
- Pairwise distinct points: $X=\left\{x_{i}\right\}_{i=1}^{n} \subset \Omega \subset \mathbb{R}^{d}$
- Function values: $f_{X}=\left[f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right]^{T}$
- Goal: Find continuous function $s_{f, X}$ s.t.

$$
s_{f, X}\left(x_{i}\right)=f\left(x_{i}\right), \quad i=1, \ldots, n
$$

- Can use linear combination of continuous basis functions

$$
s_{f, X}(x)=\sum_{i=1}^{n} \lambda_{i} b_{i}(x)
$$

- Need to solve $A_{X} \lambda=f_{X}$, where $\left(A_{X}\right)_{i j}=b_{j}\left(x_{i}\right)$
- Well-posed if A_{X} is non-singular. When is this the case?

Basis functions

($d=1$): Can choose basis functions independent of data

- Example: Polynomial interpolation with the monomial basis

$$
\operatorname{det} A_{X}=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) \neq 0
$$

- Always non-singular if X are pairwise distinct
$(d \geq 2)$: Famous negative result:
- Mairhuber-Curtis: In order for $\operatorname{det} A_{X} \neq 0$ for all pairwise distinct $X \subset \Omega$, the basis functions must depend on X

Positive definite kernels

- Characterizing all data dependent basis functions challenging
- Common restriction: Require that A_{X} is always s.p.d.
- Achieved by using an s.p.d. kernel: $b_{i}(x)=k\left(x, x_{i}\right)$

Definition (Positive definite kernel)

A (continuous) symmetric function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a positive definite kernel if for all X, λ s.t.
(1) The points in X are pairwise distinct,
(2) $\lambda \neq 0$,
$\Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} k\left(x_{i}, x_{j}\right)>0$.
$\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-$

Popular positive definite kernels

- White noise: $k(x, y)=\sigma^{2} \delta_{x y}$
- Gaussian (SE): $k(x, y)=s^{2} \exp \left(-\frac{\|x-y\|^{2}}{2 \ell^{2}}\right)$
- Matérn $1 / 2: k(x, y)=s^{2} \exp \left(-\frac{\|x-y\|}{\ell}\right)$
- Matérn 3/2: $k(x, y)=s^{2}\left(1+\frac{\sqrt{3}\|x-y\|}{\ell}\right) \exp \left(-\frac{\sqrt{3}\|x-y\|}{\ell}\right)$
- Matérn 5/2:

$$
k(x, y)=s^{2}\left(1+\frac{\sqrt{5}\|x-y\|}{\ell}+\frac{5\|x-y\|^{2}}{3 \ell^{2}}\right) \exp \left(-\frac{\sqrt{5}\|x-y\|}{\ell}\right)
$$

- Rational quadratic: $k(x, y)=s^{2}\left(1+\frac{\|x-y\|^{2}}{2 \alpha \ell^{2}}\right)^{-\alpha}$

Polynomial precision

- Example: Gaussian kernel cannot reproduce $f(x)=$ constant
- Desirable: $s_{f, X}$ exact for low-degree polynomials
- Often referred to as polynomial precision
- Mairhuber-Curtis \Longrightarrow Need additional assumptions on X

Definition

A set of points X are ν-unisolvent if the only polynomial of degree at most ν interpolating zero data on X is the zero polynomial.

Three collinear points in \mathbb{R}^{2}
The points $(0,0),(1,1),(2,2)$ are not 1 -unisolvent

Kernel methods and polynomial precision

- Assume: The points X are ν-unisolvent
- $\left\{\pi_{i}\right\}_{i=1}^{m}$ basis for $p(x) \in \Pi_{\nu}^{d}$ (polynomials of degree $\leq \nu$)
- Look for

$$
s_{f, X}(x)=\sum_{i=1}^{n} \lambda_{i} k\left(x, x_{i}\right)+\sum_{i=1}^{m} \mu_{i} \pi_{i}(x)
$$

- We now have n equations and $m+n$ unknowns
- Add the m discrete orthogonality conditions:

$$
\sum_{i=1}^{n} \lambda_{j} \pi_{i}\left(x_{i}\right)=0, \quad j=1, \ldots, m
$$

- Allows us to use a larger family of kernels!

Kernel methods and polynomial precision

- Letting $\left(K_{X X}\right)_{i j}=k\left(x_{i}, x_{j}\right)$ and $\left(P_{X}\right)_{i j}=\pi_{j}\left(x_{i}\right)$:

$$
\left[\begin{array}{cc}
K_{X X} & P_{X} \\
P_{X}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\mu
\end{array}\right]=\left[\begin{array}{c}
f_{X} \\
0
\end{array}\right]
$$

- Need: $X(\nu-1)$-unisolvent, $p \in \Pi_{\nu-1}^{d}$, k c.p.d of order ν

Definition (Conditionally positive definite kernel)

A (continuous) symmetric function $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is called a conditionally positive definite kernel of order ν if for all X, λ s.t.
(1) The points in X are pairwise distinct,
(2) $\lambda \neq 0$ and $\sum_{i=1}^{n} \lambda_{i} q\left(x_{i}\right)=0, \quad \forall q \in \Pi_{\nu-1}^{d}$,
$\Longrightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} k\left(x_{i}, x_{j}\right)>0$.

Radial basis functions

- Important special case: $\varphi(r)=k(x, y)$ where $r=\|x-y\|$
- Cubic $\left(\varphi(r)=r^{3}\right)$, Thin-plate spline $\left(\varphi(r)=r^{2} \log r\right)$
- Semi-norm: $\left|s_{f, X}\right|^{2}=\langle s, s\rangle=\lambda^{T} \Phi_{X X} \lambda$
- Native space: $|f|_{\mathcal{N}_{\varphi}}=\sup _{X \subset \Omega,|X|<\infty}\left|s_{f, X}\right|$
- Generic error estimate:

$$
\left|f(x)-s_{f, X}(x)\right| \leq P_{\varphi, X}(x) \sqrt{|f|_{\mathcal{N}_{\varphi}}^{2}-\left|s_{f, X}\right|^{2}}
$$

- Power function:

$$
\left[P_{\varphi, X}(x)\right]^{2}=\varphi(0)-\left[\begin{array}{c}
\Phi_{X x} \\
P_{x}^{T}
\end{array}\right]^{T}\left[\begin{array}{cc}
\Phi_{X X} & P_{X} \\
P_{X}^{T} & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
\Phi_{X x} \\
P_{x}^{T}
\end{array}\right]
$$

- The power function is a Schur complement after adding x

Section 2

Scalable Gaussian processes

Gaussian processes interpolation

- Defines a distribution over functions:

$$
f(x) \sim \mathcal{G} \mathcal{P}\left(\mu(x), k\left(x, x^{\prime}\right)\right)
$$

- Mean function: $\mu: \mathbb{R}^{d} \rightarrow \mathbb{R}$, often low-degree polynomial
- Covariance function: $\operatorname{cov}\left(f\left(x_{i}\right), f\left(x_{j}\right)\right)=k\left(x_{i}, x_{j}\right)$ s.p.d kernel
- Posterior mean and variance at x :

$$
\begin{aligned}
\mathbb{E}[f(x)] & =K_{x X} K_{X X}^{-1}\left(y_{X}-\mu_{X}\right), \\
\mathbb{V}[f(x)] & =K_{x x}-K_{x X} K_{X X}^{-1} K_{X x},
\end{aligned}
$$

- Compared to RBFs, $\mathbb{V}[f(x)]$ tells us about the average case

Kernel methods
Scalable Gaussian processes Scalable Gaussian processes with derivatives Questions

Gaussian processes
Kernel Learning
Approximate kernel learning
Numerical experiments

Draws from GP prior with zero mean

$\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-$

Draws from GP posterior

$$
\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-
$$

Posterior mean and variance

[^0]
Gaussian processes regression

- Assume we observe $f_{X} \sim y_{X}+\epsilon, \epsilon \in \mathcal{N}\left(0, \sigma^{2} I\right)$
- Add white noise kernel:

$$
\tilde{k}(x, y)=k(x, y)+\sigma^{2} \delta_{x y}
$$

- We often do this even in the case of no noise
- Weyl: $\varphi(r) \in C^{\nu} \Longrightarrow\left|\lambda_{n}\right|=o\left(n^{-\nu-1 / 2}\right)$
- Example: $\left|\lambda_{n}\right|$ decays exponentially for Gaussian (SE) kernel
- Adding $\sigma^{2} \delta_{x y}$ guarantees $\left|\lambda_{n}\right| \geq \sigma^{2}$
- Gershgorin:

$$
\kappa\left(\Phi_{X X}+\sigma^{2} I\right) \leq \frac{n \varphi(0)}{\sigma^{2}}
$$

- Example: $\kappa\left(\Phi_{X X}+\sigma^{2} I\right) \leq n\left(\frac{s}{\sigma}\right)^{2}$ for Gaussian (SE) kernel

Kernel hyper-parameters

- How do we learn the optimal kernel hyperparameters θ ?
- Bayesian approach is expensive, often do MLE
- Log marginal likelihood:

$$
\log p\left(\theta \mid y_{X}\right)=\mathcal{L}_{y}+\mathcal{L}_{|K|}-\frac{n}{2} \log 2 \pi
$$

- Need to compute:

$$
\begin{array}{rlrl}
\mathcal{L}_{y} & =-\frac{1}{2}\left(y_{X}-\mu_{X}\right)^{T} c, & \frac{\partial \mathcal{L}_{y}}{\partial \theta_{i}} & =\frac{1}{2} c^{T}\left(\frac{\partial \tilde{K}_{X X}}{\partial \theta_{i}}\right) c \\
\mathcal{L}_{|K|} & =-\frac{1}{2} \log \operatorname{det} \tilde{K}_{X X}, & \frac{\partial \mathcal{L}_{|K|}}{\partial \theta_{i}} & =-\frac{1}{2} \operatorname{tr}\left(\tilde{K}_{X X}^{-1} \frac{\partial K_{X X}}{\partial \theta_{i}}\right) \\
\text { where } c & =\tilde{K}_{X X}^{-1}\left(y_{X}-\mu_{X}\right) .
\end{array}
$$

Exact kernel learning

- Compute dense Cholesky factorization: $\mathcal{O}\left(n^{3}\right)$ flops
- Solves and logdet computations with $\tilde{K}_{X X}$ are now trivial:

$$
\begin{aligned}
\tilde{K}_{X X} \backslash c & =L^{T} \backslash(L \backslash c) \\
\log \operatorname{det} \tilde{K}_{X X} & =2 \sum_{i=1}^{n} \log L_{i i}
\end{aligned}
$$

- Works for small n, but dense LA is not scalable!
$\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-$

Iterative methods

- Assumption: We have access to a fast MVM with $\tilde{K}_{X X}$
- Use a Krylov method to solve linear systems with $\tilde{K}_{X X}$

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\}
$$

- $\tilde{K}_{X X}$ is s.p.d \Longrightarrow use the conjugate gradient (CG) method
- Only interacts with $\tilde{K}_{X X}$ via MVMs
- Converges in n iterations in exact arithmetic
- A few iterations are enough for many kernels
- Small $\ell: K_{X X}$ almost diagonal \Longrightarrow fast convergence
- Large ℓ : Pivoted Cholesky preconditioner, $K_{X X} \approx P\left(L L^{T}\right) P^{T}$

Stochastic trace estimation

- How do we approximate $\log \operatorname{det} \tilde{K}_{X X}$ using fast MVMs?
- Note that $\log \operatorname{det} \tilde{K}_{X X}=\operatorname{tr}\left(\log \tilde{K}_{X X}\right)$
- Estimate trace of a matrix \Longrightarrow Stochastic trace estimation
- If z has independent random entries, $\mathbb{E}\left[z_{i}\right]=0, \mathbb{E}\left[z_{i}^{2}\right]=1$:

$$
\mathbb{E}\left[z^{T} A z\right]=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \mathbb{E}\left[z_{i} z_{j}\right]=\operatorname{tr}(A)
$$

- Common choices of probe vector z :
- Hutchinson: $z_{i}= \pm 1$ with probability 0.5
- Gaussian: $z_{i} \sim \mathcal{N}(0,1)$
- This requires fast computation of $\log \left(\tilde{K}_{X X}\right) z$:
- Function application with Hermitian matrix \Longrightarrow Lanczos

Lanczos

- Lanczos computes factorization: $\tilde{K}_{X X} Q=Q T$
- Q orthogonal, T tridiagonal
- Elegant three term recursion with one MVM per iteration
- Converges in $k \leq p$ steps if $\tilde{K}_{X X}$ has p distinct eigenvalues
- Function application starting at $z /\|z\|$:

$$
f\left(\tilde{K}_{X X}\right) z=Q f(T) Q^{T} z=\|z\| Q f(T) e_{1}
$$

- Truncate after $k \ll n$ steps:

$$
f\left(\tilde{K}_{X X}\right) z \approx\|z\| Q_{k} f\left(T_{k}\right) e_{1}
$$

- N.B: CG is a special case of Lanczos

Fast MVMs: SKI

- Structured kernel interpolation (SKI):
- $K_{X X} \approx W^{T} K_{U U} W$
- U is a structured grid with m points
- $K_{U U}$ is BTTB (with Kronecker structure for product kernel)
- W sparse matrix with interpolation weights
- Can apply MVM with $K_{X X}$ in $\mathcal{O}(m \log m)$ time using FFT
- Grid structure limited to ≈ 5 dimensions

SKI for Product kernels (SKIP)

- Main idea: $(A \odot B) x=\operatorname{diag}\left(A \operatorname{diag}(x) B^{T}\right)$
- Cost for an MVM: $\mathcal{O}\left(n r^{2}\right)$ flops if A, B have rank r
- Assume tensor product structure: $k(x, y)=\prod_{i=1}^{d} k_{i}\left(x_{i}, y_{i}\right)$
- Many popular kernels (e.g., SE) have tensor product structure
- Use SKI in each dimension:

$$
K \approx\left(W_{1} K_{1} W_{1}^{T}\right) \odot \ldots \odot\left(W_{d} K_{d} W_{d}^{T}\right)
$$

- Divide and conquer + truncated rank- r Lanczos factorizations:

$$
K \approx\left(Q_{1} T_{1} Q_{1}^{T}\right) \odot\left(Q_{2} T_{2} Q_{2}^{T}\right)
$$

- Constructing SKIP kernel: $\mathcal{O}\left(n+m \log m+r^{3} n \log d\right)$ flops
- Often achieve high accuracy for $r \ll n$

Rainfall

Method	n	m	MSE	Time $[\mathrm{min}]$
Lanczos	528 k	3 M	0.613	14.3
Scaled eigenvalues	528 k	3 M	0.621	15.9
Exact	12 k	-	0.903	11.8

- Data: Hourly precipitation data at 5500 weather stations
- Aggregate into daily precipitation
- Total data: $628 k$ entries
- Train on $528 k$ data points, test on remainder
- Use SKI with 100 points per spatial dim, 300 in time
- Reference comparison: exact computation ($12 k$ entries)

Hickory Data Set

- Our approach can be used for non-Gaussian likelihoods
- Example: Log-Gaussian Cox process
- Count data for Hickory trees in Michigan
- Area discretized using a 60×60 grid
- Use the Poisson likelihood with the SE kernel
- Laplace approximation for posterior
- The scaled eigenvalue method uses the Fiedler bound

(a) Count data

(b) Exact

(c) Scaled eigs

(d) Lanczos

Section 3

Scalable Gaussian processes with derivatives

Gaussian process with derivatives

- Assume we observe both $f(x)$ and $\nabla f(x)$
- Let $f(x) \sim \mathcal{G P}\left(\mu(x), k\left(x, x^{\prime}\right)\right)$
- Differentiation is a linear operator:

$$
\mu^{\nabla}(x)=\left[\begin{array}{c}
\mu(x) \\
\nabla \mu(x)
\end{array}\right], \quad k^{\nabla}\left(x, x^{\prime}\right)=\left[\begin{array}{cc}
k\left(x, x^{\prime}\right) & \left(\nabla_{x^{\prime}} k\left(x, x^{\prime}\right)\right)^{T} \\
\nabla_{x} k\left(x, x^{\prime}\right) & \nabla^{2} k\left(x, x^{\prime}\right)
\end{array}\right]
$$

- Multi-output GP:

$$
\left[\begin{array}{c}
f(x) \\
\nabla f(x)
\end{array}\right] \sim \mathcal{G P}\left(\mu^{\nabla}(x), k^{\nabla}\left(x, x^{\prime}\right)\right)
$$

- Exact kernel learning and inference is now $\mathcal{O}\left(n^{3} d^{3}\right)$ flops
- Involves kernel matrix of size $n(d+1) \times n(d+1)$

Example: Branin function

- Gradient information can make the GP model more accurate
- (Left) True function
- (Middle) GP without derivatives
- (Right) GP with derivatives

$\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-$

Extending SKI and SKIP

- Differentiate the approximation scheme
- D-SKI: $k\left(x, x^{\prime}\right) \approx \sum_{i} w_{i}(x) k\left(u_{i}, x^{\prime}\right) \rightarrow \nabla k\left(x, x^{\prime}\right) \approx \sum_{i} \nabla w_{i}(x) k\left(u_{i}, x^{\prime}\right)$
- D-SKIP: Differentiate each Hadamard product

Figure: (Left) $\log _{10}$ error in D-SKI approximation and comparison to the exact spectrum. (Right) $\log _{10}$ error in D-SKIP approximation and comparison to the exact spectrum.

Active subspaces

- Can estimate active subspace from gradients:

$$
C=\int_{\Omega} \nabla f(x) \nabla f(x)^{T} d x \approx Q \Lambda Q^{T}
$$

- λ_{i} measures the average change in f along q_{i}
- Optimal \tilde{d}-dimensional subspace P : First \tilde{d} columns of Q
- Active subspace approximation: $f(x) \approx f\left(P P^{T} x\right)$
- Can work with kernel $\tilde{k}\left(x, x^{\prime}\right)=k\left(P^{T} x, P^{T} x^{\prime}\right)$
- We estimate C using Monte Carlo integration:

$$
C \approx \frac{1}{n} \sum_{i=1}^{n} \nabla f\left(x_{i}\right) \nabla f\left(x_{i}\right)^{T}
$$

Bayesian optimization with active subspace learning

1: Generate experimental design
2: Evaluate experimental design
3: while Budget not exhausted do
4: \quad Calculate active subspace P using sampled gradients
5: \quad Fit GP with derivatives using $k\left(P^{T} x, P^{T} x^{\prime}\right)$
6: \quad Optimize $u_{n+1}=\arg \max \mathcal{A}(u)$ with $x_{n+1}=P u_{n+1}$
7: \quad Sample point x_{n+1}, value f_{n+1}, and gradient ∇f_{n+1}
8: \quad Update data $\mathcal{D}_{i+1}=\mathcal{D}_{i} \cup\left\{x_{n+1}, f_{n+1}, \nabla f_{n+1}\right\}$
9: end

Bayesian optimization with El

- 5-dimensional Ackley randomly embedded in 50 dimensions
- Observe noisy values and noisy gradients
- Use active subspace learning from sampled gradients
- Use D-SKI in the active subspace for fast kernel learning
- Active subspace learning improves the performance of BO

$\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-$

Stanford bunny

- Recovering the Stanford bunny from 25k noisy normals
- Spline kernel: $k(x, y)=s^{2}\left(\|x-y\|^{3}+a\|x-y\|^{2}+b\right)$
- Fit an implicit GP surface: $f\left(x_{i}\right)=0, \nabla f\left(x_{i}\right)=n_{i}$

$\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-$

Section 4

Questions

Thank you for your attention!

Questions?

[^0]: $\equiv--1 \diamond-\diamond-\diamond--\diamond 2 \diamond----\diamond-\diamond----\diamond-3 \diamond----\diamond-4-$

