
Scaling Gaussian Process Regression with Derivatives
Kun Dong1 David Eriksson1 Eric Hans Lee2 David Bindel2 Andrew Gordon Wilson3

Applied Math1, CS2, ORIE3

Gaussian Processes (GPs)

I Define rich distributions over functions with applications in most predictive
task.

I f(x)∼ GP(µ(x),k (x,x ′)) with mean µ :Rd →R and covariance k :Rd ×Rd →R.
I Observe yi ∼ N(f(xi),σ

2
i)

∀X = (x1, . . . ,xn), xi ∈Rd:

fX ∼ N(µX ,KXX) where
fX ∈Rn; (fX)i = f(xi)
yX ∈Rn; (yX)i = yi
µX ∈Rn; (µX)i = µ(xi)
KXX ∈Rn×n; (KXX)ij = k (xi,xj)

Write KXX as K when unambiguous. Figure: GP posterior

GP Regression with Derivatives

I Model function values and derivatives by a multi-output GP:[
fX

∇fX

]
∼N(µ∇

X ,K
∇

XX), µ
∇(x) =

[
µ(x)

∇µ(x)

]
, k ∇(x,x ′) =

[
k (x,x ′) ∇x ′k (x,x ′)T

∇xk (x,x ′) ∇2
xx ′k (x,x ′)

]
.

I Results in a larger kernel matrix K ∇

XX ∈Rn(d+1)×n(d+1).
I GP with gradient information significantly improves the accuracy:

❇�✁✂✄☎ ❙✆ ✝✞ ✟✠✡☛☞✌✍✎ ✏✑ ✒✓✔✕ ✖✗✘✙✚✛✜✢✣

Figure: Branin function approximated by GPs with SE kernel.

Kernel Learning with Derivatives

I Train kernel hyperparameters θ by maximizing the log marginal likelihood:

L (y∇|θ) = Ly∇ +L|K∇|−
n(d +1)

2
log(2π),

where, if K̃ ∇ = K ∇+Σ, Σ diagonal noise, K̃ ∇c = (y∇−µ∇

X),

Ly∇ =−1
2
(y∇−µ

∇

X)
Tc,

∂Ly∇

∂θi
=

1
2

cT

(
∂ K̃ ∇

∂θi

)
c,

L|K∇| =−1
2
logdet K̃ ∇,

∂L|K∇|
∂θi

=−1
2
tr

(
K̃ ∇

∖
∂ K̃ ∇

∂θi

)
.

I Naive approach: Compute Cholesky factorization of K̃ ∇.
I Challenges:

. Direct methods lead to O(n3d3)O(n3d3)O(n3d3) training and O(nd)O(nd)O(nd) prediction.

. K ∇ is far more ill-conditioned than K .

Main Ideas

I Apply structured kernel interpolation to enable fast MVMs for K∇.

I Estimate L (y∇|θ)L (y∇|θ)L (y∇|θ) using iterative methods and stochastic estimators.

I Use a pivoted Cholesky preconditioner to accelerate convergence.

I Use active subspace learning to overcome curse of dimensionality.

SKI and SKIP: Structured Kernel Interpolation (with Product Kernels)

Figure: SKI (Wilson & Nickisch, ICML)

=
K(2)

XX

n⇥ n

K(1)
XX

n⇥ n

�()
n

v

()K(2)
XX

n⇥ nn⇥ n

vK(1)
XX

n⇥ n

⇡
M (1,2)

()T (1)

n⇥ r

r ⇥ r r ⇥ n

Q(1) Q(1)>

n⇥ r

r ⇥ r r ⇥ n

Q(2) T (2) Q(2)>

n⇥ n

v

⇡

Figure: SKIP (Gardner et al., AISTATS)

D-SKI: Structured Kernel Interpolation with Derivatives

I SKI: Local polynomial interpolation on an induced grid with sparse weights.
I Differentiate interpolative weights to get a fast MVM with K ∇.

k (x,x ′)≈ ∑
i

wi(x)k (xi,x ′)→ ∇k (x,x ′)≈ ∑
i

∇wi(x)k (xi,x ′).

K ∇ ≈ W∇KUU [W∇]T =

[
W

∂W

]
KUU

[
W

∂W

]T

.

I Use quintic interpolation of k (x,x ′) for accurate interpolation of ∇2
xx ′k (x,x ′).

I MVM complexity is O(nd6d +m logm) with m grid points.

D-SKIP: Structure Kernel Interpolation for Products with Derivatives

I SKIP: Apply D-SKI to each dimension for a product kernel:

K ∇ ≈ (W∇

1 K1[W∇

1]
T)� (W∇

2 K2[W∇

2]
T)� . . .� (W∇

d Kd[W∇

d]
T),

I Main idea: (A �B)v = diag(A diag(v)BT) costs O(nr2) flops if A , B are rank-r .
I Divide and conquer + Lanczos to combine dimensions until:

K ∇ ≈ (Q1T1QT
1)� (Q2T2QT

2).

I For an effective kernel rank of r at each step,
. Construction cost: O(d2(n+m logm+ r3n logd)).
. MVM cost: O(dr2n).

D-SKI and D-SKIP Accurately Approximate the True Spectrum

-10 -8 -6 -4

10
-6

10
-4

10
-2

10
0

True spectrum

SKI spectrum

10
-4

10
-2

10
0

True spectrum

SKIP spectrum

-10 -8 -6 -4

Figure: Accuracy on SE kernel (Left) D-SKI in 2 dimensions (Right) D-SKIP in 4 dimensions

Preconditioning

I (Partial) pivoted Cholesky factorization K ∇ ≈ FFT for preconditioning.
I Sherman-Morrison-Woodbury formula for (σ2I+FFT)−1 is unstable in practice.
I Use the stable formulation (σ2I+FFT)−1f = σ−2(f −Q1(QT

1 f)) where[
F
σ I

]
=

[
Q1
Q2

]
R.

I Crucial for fast convergence of iterative solvers on K ∇.

Dimensionality Reduction via Active Subspace Learning

I Many high-dimensional problems have low-dimensional structure.
I Gradients allow us to uncover low-dimensional structure.
I λi is the average change in f given a perturbation along qi:

C =
∫
Ω

∇f(x)∇f(x)Tdx = QΛQT .

I Active subspace: Leading d̃ eigenvectors describe most of the change in f .
I Fit GP with gradient information in the active subspace.

Recover Implicit Surface with D-SKI

I Noisy Stanford bunny: 25K points and noisy normals.
I Fit an implicit GP surface: f(xi) = 0, ∇f(xi) = ni

Figure: (Left) Original surface (Middle) Noisy surface (Right) D-SKI reconstruction from noisy surface

Bayesian Optimization with Derivatives and Active Subspace Learning

while Budget not exhausted do
Calculate active subspace projection P ∈Rd×d̃ using sampled gradients
Fit GP with gradient information defined by kernel k ∇(PTx,PTx ′)
Optimize acquisition function, un+1 = arg max A (u) with xn+1 = Pun+1
Sample point xn+1, value fn+1, and gradient ∇fn+1
Update data Di+1 = Di ∪{xn+1, fn+1,∇fn+1}

I We test on 5D Ackley embedded in [−10,15]50 and 5D Rastrigin in [−4,5]50.
I We apply D-SKI in a random 2D subspace of the estimated active subspace.

0 100 200 300 400 500

-20

-15

-10

-5 BO exact

BO D-SKI

BFGS

Random sampling

(a) BO on Ackley

0 100 200 300 400 500

-40

-20

0

20
BO exact

BO SKI

BFGS

Random sampling

(b) BO on Rastrigin

Discussion

I Gradient information is valuable for GP regression, but scalability is a problem.
I Our approach: Fast MVMs, iterative methods, and dimensionality reduction.
I We achieve large-scale Bayesian optimization with derivatives.
I Implementation available at:

https://github.com/ericlee0803/GP_Derivatives.

https://people.cam.cornell.edu/~kd383/ kd383@cornell.edu

https://github.com/ericlee0803/GP_Derivatives
https://people.cam.cornell.edu/~kd383/

