Gaussian Processes (GPs)

- task.

 $f_X \sim N(\mu_X, K_{XX})$ where $f_X \in \mathbb{R}^n$; $(f_X)_i = f(x_i)$ $y_X \in \mathbb{R}^n$; $(\mathbf{y}_X)_i = \mathbf{y}_i$ $\mu_X \in \mathbb{R}^n$; $(\mu_X)_i = \mu(x_i)$ $K_{XX} \in \mathbb{R}^{n imes n}$;

Write K_{XX} as K when unambiguous.

GP Regression with Derivatives

Model function values and derivatives by a multi-output GP:

$$\begin{bmatrix} f_X \\ \nabla f_X \end{bmatrix} \sim \mathcal{N}(\mu_X^{\nabla}, \mathcal{K}_{XX}^{\nabla}), \quad \mu^{\nabla}(x) = \begin{bmatrix} \mu(x) \\ \nabla \mu(x) \end{bmatrix}, \quad k^{\nabla}(x, x') = \begin{bmatrix} k(x, x') \\ \nabla_x k(x, x') \end{bmatrix}$$

- ► Results in a larger kernel matrix $K_{XX}^{\nabla} \in \mathbb{R}^{n(d+1) \times n(d+1)}$.

Kernel Learning with Derivatives

$$\mathscr{L}(\mathbf{y}^{\mathbf{v}}|\boldsymbol{\theta}) = \mathscr{L}_{\mathbf{y}^{\nabla}} + \mathscr{L}_{|\mathbf{K}^{\nabla}|} - \frac{\mathbf{H}(\mathbf{u}^{\mathbf{v}}+\mathbf{v})}{2}$$

$$\mathscr{L}_{y\nabla} = -\frac{1}{2} (y^{\nabla} - \mu_X^{\nabla})^T c, \qquad \qquad \frac{\partial \mathscr{L}_{y\nabla}}{\partial \theta_i} = \frac{1}{2} c^T \left(\frac{\partial \widetilde{K}^{\nabla}}{\partial \theta_i} \right)$$
$$\mathscr{L}_{|K\nabla|} = -\frac{1}{2} \log \det \widetilde{K}^{\nabla}, \qquad \qquad \frac{\partial \mathscr{L}_{|K\nabla|}}{\partial \theta_i} = -\frac{1}{2} \operatorname{tr} \left(\widetilde{K}^{\nabla} \right)$$

- ► Naive approach: Compute Cholesky factorization of K^{∇} .
- Challenges:

Main Ideas

Scaling Gaussian Process Regression with Derivatives Kun Dong¹ David Eriksson¹ Eric Hans Lee² David Bindel² Andrew Gordon Wilson³

Applied Math¹, CS², ORIE³

$$K_{UU} \begin{bmatrix} W \\ \partial W \end{bmatrix}$$

Dimensionality Reduction via Active Subspace Learning

- Gradients allow us to uncover low-dimensional structure.

$$C = \int$$

- ► Fit GP with gradient information in the active subspace.

Recover Implicit Surface with D-SKI

- Noisy Stanford bunny: 25K points and noisy normals.
- Fit an implicit GP surface: $f(x_i) = 0$, $\nabla f(x_i) = n_i$

Figure: (Left) Original surface (Middle) Noisy surface (Right) D-SKI reconstruction from noisy surface

Bayesian Optimization with Derivatives and Active Subspace Learning

- while Budget not exhausted do Sample point x_{n+1} , value f_{n+1} , and gradient ∇f_{n+1} Update data $\mathscr{D}_{i+1} = \mathscr{D}_i \cup \{x_{n+1}, f_{n+1}, \nabla f_{n+1}\}$

Discussion

- ► We achieve large-scale Bayesian optimization with derivatives.
- Implementation available at:

https://github.com/ericlee0803/GP_Derivatives.

Cornell University

Many high-dimensional problems have low-dimensional structure. \triangleright λ_i is the average change in f given a perturbation along q_i :

 $\int_{\Omega} \nabla f(x) \nabla f(x)^{\mathsf{T}} dx = Q \wedge Q^{\mathsf{T}}.$

 \blacktriangleright Active subspace: Leading \tilde{d} eigenvectors describe most of the change in f.

Calculate active subspace projection $P \in \mathbb{R}^{d \times d}$ using sampled gradients Fit GP with gradient information defined by kernel $k^{\nabla}(P^T x, P^T x')$ Optimize acquisition function, $u_{n+1} = \arg \max \mathscr{A}(u)$ with $x_{n+1} = Pu_{n+1}$

 \blacktriangleright We test on 5D Ackley embedded in $[-10, 15]^{50}$ and 5D Rastrigin in $[-4, 5]^{50}$. ► We apply D-SKI in a random 2D subspace of the estimated active subspace.

Gradient information is valuable for GP regression, but scalability is a problem. Our approach: Fast MVMs, iterative methods, and dimensionality reduction.