Problem 1. Diagonalize the matrix \(M = \begin{bmatrix} 6 & -8 & -3 \\ 0 & 2 & 0 \\ 1 & -2 & 2 \end{bmatrix} \). (Recall that diagonalizing a matrix \(A \) means to find an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \).)

Solution.

The eigenvalues of \(M \) are 2, 3, 5. An eigenvector for 3 is \((1, 0, 1)^T\), an eigenvector for 2 is \((2, 1, 0)^T\), and an eigenvector for 5 is \((3, 0, 1)^T\). So, we can take \(D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix} \), \(P = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \).

Problem 2. Compute the products \(AB \) and \(BA \) where \(A \) is the matrix from problem 1 and \(B = \begin{bmatrix} 8 & -12 & -6 \\ 0 & 2 & 0 \\ 2 & -4 & 0 \end{bmatrix} \). Can you explain what you observe? (Hint: Diagonalize \(B \).)

Solution.

Notice that the eigenvectors we computed in the first problem are also eigenvectors for \(B \). Since \(B \) has three eigenvalues, \(B \) is diagonalizable and we can write \(B = PCP^{-1} \) for a diagonal matrix \(C \) whose diagonal entries are the eigenvalues of \(B \). Then using the fact that diagonal matrices commute, we have

\[
AB = PDP^{-1}PCP^{-1} = PDCP^{-1} = PCDP^{-1} = PCP^{-1}PDP^{-1} = BA.
\]

So, diagonalizable matrices with the same set of eigenvectors commute.

Problem 3. Solve the differential equations

\[
\frac{du}{dt} = \begin{bmatrix} 5 & -1 & 1 \\ 1 & 3 & -1 \\ 2 & -2 & 4 \end{bmatrix} u
\]

with initial conditions \(u(0) = (2, 2, 2)^T \).

First, we’ll write eigenpairs for the matrix: \((2, (0, 1, 1)^T)\), \((6, (1, 0, 1)^T)\), and \((4, (1, 1, 0)^T)\). Writing \(M = PDP^{-1} \), we have \(\frac{d}{dt}(P^{-1}u) = D(P^{-1}u) \). Solving the differential equations componentwise, we get \((P^{-1}u)_1 = C_1 \exp(2t)\), \((P^{-1}u)_2 = C_2 \exp(6t)\), and \((P^{-1}u)_3 = C_3 \exp(4t)\). Applying the initial condition (which means we set \(t \) equal to zero and set \(u(0) = \) initial condition), we get

\[
P^{-1}u(0) = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} \Rightarrow \begin{bmatrix} -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix}.
\]
Therefore,
\[
P^{-1}u = \begin{bmatrix} \exp(2t) \\ \exp(6t) \\ \exp(4t) \end{bmatrix} \Rightarrow u = \begin{bmatrix} \exp(4t) + \exp(6t) \\ \exp(2t) + \exp(4t) \\ \exp(2t) + \exp(6t) \end{bmatrix}.
\]

Problem 4. Solve the differential equation \(y'' + 5y' + 4y = 0 \) with initial conditions \(y(0) = y'(0) = 1 \). (Rewrite the differential equation as a system of two coupled linear differential equations.)

Solution.
Rewrite the differential equation in this form:
\[
\frac{d}{dt}u = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix} u
\]
where \(u = (y, y')^T \). An approach different from that taken in problem 3 is to 1) find the eigenvalues/eigenvectors of the matrix, 2) rewrite the initial condition as a linear combination of eigenvectors, and 3) write the solution in terms of eigenvalues and eigenvectors.

Eigenpairs for this matrix are \((-1, (1, -1)^T)\) and \((-4, (-1, 4)^T)\). We can write \(u(0) = (1, 1)^T = a(1, -1)^T + b(-1, 4)^T \), where \(a = 5/3 \) and \(b = 2/3 \). Then the solution is
\[
u = a \exp(-t)(1, -1)^T + b \exp(-4t)(-1, 4)^T,
\]
so that \(y = (5/3) \exp(-t) - (2/3) \exp(-4t) \).

Problem 5. Let \(A \) be an invertible matrix with eigenvalue/eigenvector pair \((\lambda, v) \). Show that \((1/\lambda, v) \) is an eigenvalue/eigenvector pair for \(A^{-1} \).

Solution.
This is shown by the following steps:
\[
Av = \lambda v \Rightarrow v = A^{-1}(\lambda v) = \lambda A^{-1}v \Rightarrow \lambda^{-1}v = A^{-1}v.
\]

Problem 6. Let \(A \) be a diagonalizable matrix. Show that there exists another matrix \(B \) such that \(A = B^2 \). (\(B \) is called a square root of \(A \)).

Solution.
Write \(A = PDP^{-1} \). Let \(D^{1/2} \) be a diagonal matrices whose entries are square roots of the entries of \(D \). Let \(B = PD^{1/2}P^{-1} \).

Problem 7. a) Let \(A \) be a symmetric matrix with distinct eigenvalues \(\lambda \) and \(\mu \). Show that if \(x \) and \(y \) are eigenvectors satisfying \(Ax = \lambda x \) and \(Ay = \mu y \), then \(x \) and \(y \) are orthogonal. (Hint: consider the expression \(\lambda x^T y \) and show that it is equal to \(\mu x^T y \).)

b) Now, assume that \(A \) is an \(n \times n \) symmetric matrix with \(n \) distinct eigenvalues. Show that the eigenvectors of \(A \) are a basis for \(\mathbb{R}^n \).

Solution.
We have \(\lambda x^T y = (\lambda x)^T y = (Ax)^T y = x^T A^T y = x^T Ay = x^T \mu y = \mu x^T y \). Since \(\lambda \neq \mu \), the only way this equation can hold is if \(x^T y = 0 \). Hence \(x \) and \(y \) are orthogonal.

Part a) showed that the eigenvectors of \(A \) are mutually orthogonal, and therefore are a linearly independent set of \(n \) vectors in \(n \)-dimensional space. So, the eigenvectors of \(A \) must be a basis for \(\mathbb{R}^n \).