1. Let \(f(x, y, z) = x + yz \), and let \(C \) be the line segment from \(P = (0, 0, 0) \) to \(Q = (6, 2, 2) \).

 a) Calculate \(f(c(t)) \) and \(ds = \|c'(t)\| \, dt \) for the parametrization \(c(t) = (6t, 2t, 2t) \) for \(0 \leq t \leq 1 \).

 b) Evaluate \(\int_C f(x, y, z) \, ds \).

 [Notice that what you’re computing is the area under the curve \(f(c(t)) \|c'(t)\| \) for the interval \(0 \leq t \leq 1 \).]

 Answer: a) \(c'(t) = (6, 2, 2) \), \(\|c'(t)\| = 2\sqrt{11} \) and \(f(c(t)) = 6t + 4t^2 \), so b) \[
 \int_C f(x, y, z) \, ds = \int_0^1 f(c(t)) \|c'(t)\| \, dt \\
 = 2\sqrt{11} \int_0^1 (6t + 4t^2) \, dt \\
 = \sqrt{11} \left(6 + \frac{8}{3} \right).
 \]

2. Compute \(\int_C f \, ds \) where \(f(x, y) = y^3/x^7 \) and \(C \) is parametrized by \(y = x^4/4, 1 \leq x \leq 2 \).

 Answer: \(c(x) = (x, x^4/4), 1 \leq x \leq 2 \) is the familiar notation for the parametrization for \(C \). Then \(f(c(x)) = x^5/4^3 \), \(c'(x) = (1, x^3) \), and \(\|c'(x)\| = \sqrt{1 + x^6} \), so

 \[
 \int_C f \, ds = \frac{1}{4^3} \int_1^2 x^5\sqrt{1 + x^6} \, dx \\
 = \frac{1}{4^3} \int_2^{6_5} u^{1/2} \, du \\
 = \frac{1}{4^3} \frac{2}{6_3} \left[u^{3/2} \right]_2^{6_5} \\
 = \frac{1}{4^3} \frac{1}{9} (6_5^{3/2} - 2^{3/2}).
 \]

3. Suppose that \(C \) has length 5. What is the value of \(\int_C \mathbf{F} \cdot d\mathbf{s} \) if:

 a) \(\mathbf{F}(P) \) is normal to \(C \) at all points \(P \) on \(C \)? Draw a cartoon of the curve \(C \), a point \(P \) on \(C \), the vector \(d\mathbf{s} \) at \(P \), and the vector \(\mathbf{F}(P) \) to help you reason.

 b) \(\mathbf{F}(P) \) is a unit vector pointing in the negative direction along the curve? Draw a cartoon to help you reason.

 Answer: See 1 Nov solutions.

4. Let \(\mathbf{F}(x, y) = (y^2, x^2) \), and let \(C \) be the curve \(y = x^{-1} \) for \(1 \leq x \leq 2 \), oriented from left to right.
a) Calculate $\mathbf{F}(\mathbf{c}(t))$ and $d\mathbf{s} = \mathbf{c}'(t) \, dt$ for the parameterization of \mathcal{C} given by $\mathbf{c}(t) = (t, t^{-1})$.

b) Calculate the dot product $\mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) \, dt$ and evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$.

Answer:
a) $\mathbf{F}(\mathbf{c}(t)) = (t, t^2)$, $d\mathbf{s} = \mathbf{c}'(t) \, dt = (1, -t^{-2}) \, dt$, so b) $\mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) \, dt = (t^{-2} - 1) \, dt$ and $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{1}^{2} (t^{-2} - 1) \, dt = -1/2$.

5. Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ for $\mathbf{F}(x, y) = \langle e^{y-x}, e^{2x} \rangle$ and \mathcal{C} the piecewise linear path from $(1,1)$ to $(2,2)$ to $(0,2)$. [You should probably draw a picture of the path to avoid careless mistakes.]

Answer: See 1 Nov solutions.