
TENSOR COMPUTATIONS WITH
DIMENSIONALITY MANIPULATIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Tianyi Shi

May 2022

© 2022 Tianyi Shi

ALL RIGHTS RESERVED

TENSOR COMPUTATIONS WITH DIMENSIONALITY MANIPULATIONS

Tianyi Shi, Ph.D.

Cornell University 2022

Methodologies that ensure the compressibility of tensors are introduced.

Bounds on the storage costs with respect to various tensor formats are derived.

A new algorithm combining data-sparse tensor formats and factored alternating

direction implicit method is designed to solve Sylvester tensor equations, and

incorporated in a fast spectral Poisson equation solver on cubes with optimal

complexity.

New parallelizable algorithms for computing the tensor-train decomposi-

tion of tensors in original format, streaming data, Tucker format, and that sat-

isfy algebraic relations, are proposed. Based on the input format, the algorithms

involve deterministic or probabilistic aspects, and all have guarantees of accu-

racy. Scaling analysis and numerical experiments are provided to demonstrate

computational and storage efficiency.

An ultraspherical spectral method is developed for fractional partial differ-

ential equations via the Caffarelli–Silvestre extension on disk and rectangular

domains. A parallel domain decomposition solver is designed for multi-core

performance of non-smooth functions. The discretized equation is solved via

direct tensor equation solvers, and numerical performance is shown with a frac-

tional PDE constrained optimization problem.

Linear systems in electron correlation calculation from computational chem-

istry are converted into tensor equations to reduce computing and storage costs.

Several algorithms are developed to exploit the sparsity and data-sparsity of

chemical structures. Numerical results indicate that tensor equation solvers are

competitive over traditional linear system solvers with both canonical and lo-

calized orbital bases formulations.

The quantized tensor-train format of tensors is introduced to approximate

analytic functions via Chebyshev polynomial expansions. Analysis of different

types of singularities is carried out, leading to theoretical guarantees of coeffi-

cient storage compressibility.

BIOGRAPHICAL SKETCH

Tianyi Shi was introduced to computational mathematics and optimization by

Wotao Yin at the University of California, Los Angeles. He began his PhD in

Applied Mathematics at Cornell University in August of 2017 under the super-

vision of Alex Townsend and became deeply attracted by numerical multilinear

algebra and scientific computing. He will be a postdoctoral fellow at Lawrence

Berkeley National Laboratory advised by Sherry Li, starting in July 2022.

iii

Dedicated to Xinru.

iv

ACKNOWLEDGEMENTS

My graduate life at Cornell started with an unsuccessful trip to Ithaca for cam-

pus visit. My flight only allowed half of the travelers on board because of a

malfunction, so I flew to Syracuse, and got dropped off at midnight by two

friendly locals on their way home to Binghamton. Fortunately, the campus visit

was worth all these detours, as I became deeply attracted by Cornell, by CAM,

and by the research ideas of Alex Townsend, whom I decided to become a stu-

dent of after his talk to prospective students and a personal chat with him. Alex

is a great applied mathematician and advisor. He has broadened my horizon in

many fields of computational mathematics, and he has shaped my perspective

in understanding problems as a numerical analyst. He sets high standards for

his students, but he provides help and advice in mathematical reasoning, cod-

ing, and scientific writing along the way. He is enthusiastic and has a lot of in-

teresting ideas, so personal meetings, group meetings, and reading groups are

always productive and I can learn many established and innovative perspec-

tives. He believes applied mathematics is a highly collaborative subject, and

encourages his students to work with researchers in other fields and in other

institutions.

I am fortunate enough to work with and receive advice from other distin-

guished researchers. I am grateful to Harbir Antil, who supported me as an

intern at George Mason University in the summer of 2019, and encouraged my

interests in fractional PDEs and PDE-constrained optimization. I am also grate-

ful to Sherry Li, who supported me as a research intern at Lawrence Berkeley

National Laboratory in the summer of 2021, introduced me to an interesting

interdisciplinary research project, funded my last year as a graduate student,

and helped me secure a postdoctoral fellow position at LBL. I have benefited

v

from the guidance of many others, including David Bindel, Zichao (Wendy) Di,

Martin Head-Gordon, Drew Kouri, Yang Liu, and Madeleine Udell.

I thank my colleagues and friends, Abdulrahman Aldossary, Nicolas Boullé,

Dan Fortunato, Erika Fowler-Decatur, Marc Aurèle Gilles, Diana Halikias, An-

drew Horning, Shiqi Ma, Dongping Qi, Lily Reeves, Thomas Reeves, Max Ruth,

Runxi Shen, Zhenling Wang, Heather Wilber, Annan Yu, Mengxia Zhang, Xin-

ran Zhu, and Jennifer Zvonek, who have not only provided constant scientific

inspirations, but also made my journey outside of academics incredibly fun with

board games, barbeques, hotpots, and bouldering. I thank my parents for con-

tinuously support me through my ups and downs in a foreign country. Adopt-

ing my cat, Witch, has been one of my best choices over the last few years. She

has grown with me, moved with me, and accompanied me during my happi-

ness and sadness. Finally, I want to express my love and gratitude to my partner

Xinru. A long-distance relationship between Cornell and Stanford is filled with

text messages, video calls, and monthly flights, but each reunion is fun and re-

warding. During the pandemic, she moved to Ithaca and worked remotely. We

had so many memorable moments together cooking, exercising, visiting attrac-

tions, and exploring restaurants. We support each other on life-changing events

and decisions, and I look forward to our future journey together.

vi

CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Contents . vii

1 Introduction 1
1.1 Why are tensors important? . 3
1.2 Data sparse tensor formats . 6

1.2.1 Tensor-train format . 8
1.2.2 Quantized tensor-train format 10
1.2.3 Orthogonal Tucker format 11
1.2.4 Canonical Polyadic format 13
1.2.5 Computing with different tensor formats 14

1.3 Why is dimensionality increase important? 15
1.4 Sylvester equations and displacement structure 16

1.4.1 Direct solvers . 17
1.4.2 The ADI method . 18
1.4.3 The fADI method . 20

2 On the compressibility of tensors 22
2.1 Tensors constructed via sampling algebraically structured functions 24

2.1.1 Polynomials and algebraic structure 25
2.1.2 Other special cases of algebraic structure 27

2.2 Tensors derived by sampling smooth functions 29
2.2.1 Fourier-like function . 30
2.2.2 A sum of Gaussian bumps 32

2.3 Tensors with displacement structure 34
2.3.1 Zolotarev numbers . 34
2.3.2 The compressibility of tensors with displacement struc-

ture in the tensor-train format 37
2.3.3 The compressibility of tensors with displacement struc-

ture in the Tucker format 40
2.4 Worked examples of tensors with displacement structure 43

2.4.1 The 3D Hilbert tensor . 43
2.4.2 Tensor solution of a discretized Poisson equation 44
2.4.3 Solving for tensors in compressed formats 48
2.4.4 Poisson equation solver . 51

3 Parallel Algorithms for computing the tensor-train decomposition 53
3.1 Parallel TT approximations from other tensor formats 55

3.1.1 Parallel TT decomposition with SVD 56
3.1.2 Parallel TT Sketching . 61

vii

3.1.3 Parallel TT and orthogonal Tucker conversion 66
3.2 Complexity Analysis and Numerical Examples 69

3.2.1 Computational Details . 70
3.2.2 Parallel Tensor Sketching 71
3.2.3 Memory Complexity . 78
3.2.4 Time Complexity . 83
3.2.5 Communication Cost . 86

3.3 Solve Sylvester tensor equations in TT format 88

4 Spectral, Tensor and Domain Decomposition Methods for Fractional
PDEs 94
4.1 Introduction . 94

4.1.1 Preliminary results . 98
4.1.2 Ultraspherical Polynomial Basis and Spectral Methods . . 100

4.2 Spectral Discretization for Fractional PDEs on a Disk 101
4.2.1 Polynomial Approximation of z1/s 103
4.2.2 Piecewise Polynomial Approximation of z1/s 107

4.3 Spectral Discretization for Fractional PDEs on a Rectangle 112
4.3.1 Direct Solver . 113
4.3.2 Domain Decomposition Solver 117

4.4 Numerical Example and Application to Optimal Control Problems 121
4.4.1 Fractional PDE on the Cube 121
4.4.2 Optimal Control Problem 122

4.5 Conclusions . 125

5 Electron correlation energy computation with Sylvester equations 127
5.1 Introduction . 127

5.1.1 Mathematical formulation of correlation energy 130
5.1.2 Different orbital bases . 132

5.2 Sylvester equation representation 134
5.2.1 Canonical representation 136
5.2.2 Localized representation . 137

5.3 Low rank method for canonical representation 139
5.4 Sparsity enforcement method for localized representation 143

5.4.1 Removing columns and rows in Kronecker products . . . 144
5.4.2 Closed-form expressions of Kronecker product matrices

with columns removed . 147
5.4.3 Orthogonal orbital basis . 148
5.4.4 Nonorthogonal orbital basis 150

5.5 Conclusion and future directions 152

6 Chebyshev coefficient approximations with quantized tensor-train for-
mat 153
6.1 Chebyshev polynomial approximation of functions 154

viii

6.2 Analytic functions with poles . 156
6.2.1 Functions with finite simple poles 156
6.2.2 Functions with infinitely many simple poles 157
6.2.3 Functions with repeated poles 159

6.3 Functions regular except at ±1 and with branch points on the real
axis . 160

6.4 Entire functions . 162
6.5 Conclusion and future directions 164

7 Conclusions 166

Bibliography 169

ix

CHAPTER 1

INTRODUCTION

Methods that use dimensionality manipulations aim to convert a d-dimensional

problem into another one with dimension d′ ̸= d for efficiency and well-

posedness. In particular, a method is called to utilize dimensionality reduction

if d′ < d, and dimensionality increase if d′ > d. This thesis explores using dimen-

sionality manipulations to obtain data-sparse tensor formats, solve high dimen-

sional tensor equations, and apply them in developing methods to compute

and explain applications in physical and chemical simulations. In particular,

dimensionality reduction is used to exploit low rank structures to alleviate the

curse of dimensionality, and dimensionality increase gives rise to better-defined

problems and more efficient algorithms.

In Chapter 2, we present three methodologies that ensure the compress-

ibility of tensors. These methodologies include the algebraic structures and

smoothness properties of the generating functions, and displacement structure

that the tensors satisfy. For each methodology, we derive bounds on storage

costs in various low rank tensor formats that partially explain the abundance

of compressible tensors in applied mathematics. Theories related to tensor dis-

placement structure also allow us to develop an efficient Sylvester tensor equa-

tion solver, which is essential in designing spectral partial differential equation

(PDE) solvers that have optimal complexity.

In Chapter 3, to incorporate high-performance computing into dimension-

ality reduction, we propose four parallelizable algorithms that compute the

tensor-train (TT) format from various tensor inputs: (1) Parallel-TTSVD for tra-

ditional format, (2) PSTT and its variants for streaming data, (3) Tucker2TT

1

for Tucker format, and (4) TT-fADI for solutions of Sylvester tensor equations.

These algorithms have theoretical guarantees of accuracy, and scaling analysis

and numerical results indicate computational and storage efficiency.

In Chapter 4, we present a spectral method based on an ultraspherical poly-

nomial discretization to solve fractional PDEs on rectangular and disk domains

via the Caffarelli–Silvestre extension. We rewrite the original problems into dif-

ferent equations on hexahedrons and cylinders to deal with nonlocality, and

solve the resulting discretized system using tensor equation solvers. We also

design a parallelizable domain decomposition algorithm for highly non-smooth

functions. We demonstrate the numerical performance of this spectral method

by applying it to an optimization problem with fractional PDE constraints.

In Chapter 5, we compute the electron correlation energy in quantum chem-

istry via several innovative ways involving tensor equation solvers. Depending

on chemical formulations, we convert the original matrix linear system to dif-

ferent tensor equations, so that the sparsity and data-sparsity can be used for

efficiency. We derive the running time complexity for each algorithm, and nu-

merical results show that these methods are faster than traditional linear system

solvers for realistic test cases from chemical experiments.

In Chapter 6, we introduce the quantized tensor-train (QTT) tensor format

to approximate analytic functions with Chebyshev polynomial expansions. For

different types of singularity points, we provide theoretical guarantees of com-

pressibility based on Chebyshev coefficient evaluations. The bounds lead to

accurate coefficient tensor representations, which are cheaper in storage costs

over the traditional routine that stores coefficients in a vector.

2

1.1 Why are tensors important?

A wide variety of applications lead to problems involving data or solutions that

can be represented by tensors, which are higher-dimensional generalizations of

matrices. One of the simplest ways of obtaining a tensor is to reorganize ele-

ments in a matrix without changing the column-major ordering. We show in

this thesis that certain tensors formulated in this way can capture additional

underlying structures. In addition, we emphasize tensors generated by dis-

cretizations of continuous problems. For example, we can sample a 3D function

f(x, y, z) on grid points (x1, . . . , xN), (y1, . . . , yN), and (z1, . . . , zN), to obtain a

tensor F ∈ CN×N×N defined element-wise by

Fi,j,k = f(xi, yj, zk), 1 ≤ i, j, k ≤ N.

Consider a PDE Lu = f on a bounded domain Ω ⊂ Rd for d ≥ 3 with Lipschitz

smooth boundary as another example. One can then choose a desired ansatz,

such as finite difference, finite element, or spectral scheme to discretize the PDE

to a tensor equation

h(U) = F ,

where the tensor U is the solution to the discretized PDE, and h is used to rep-

resent operations described in the continuous operator L.

Researchers in a broader community use tensors in their respective fields

and applications. Tensors appear in molecular dynamics and related physical

sciences fields to store locations and velocities in a 3D space. Tensors are also

used for more complicated data representations. For example, videos can be

stored as 3D tensors where time is treated as the third dimension. In addi-

tion, tensors are useful in social sciences when they are introduced to graph

3

theory and network science as hypergraphs [76], which can store edges be-

tween two groups of nodes, and thus can be used to analyze interactions be-

tween two groups of people. Apart from these applications, tensors emerge in

signal processing [52, 54, 72, 154], computer vision [100, 187, 215, 216, 219, 220],

neuroscience [1, 25, 56, 150, 152], data mining and analysis [2, 44, 138, 139, 203],

approximation theory [121], continuum mechanics [71], and differential equa-

tions [120, 127]. For a more inclusive list of application fields, we refer the read-

ers to survey papers such as [123].

Despite the close connections between matrices and tensors, computations

with tensors can be more challenging than those with matrices. A typical exam-

ple is multiple ways of tensor decomposition to be introduced in Section 1.2.

For readers’ convenience, we present some tensor notations we shall follow

throughout this thesis. We also define several tensor operations that are not

common in linear algebra, but are used in multilinear algebra.

In this thesis, we use upper class letters to represent matrices and calli-

graphic capital letters to represent tensors. We commonly use MATLAB-style

notation “:” for indices, i.e., a : b represents the index set {a, a + 1, . . . , b}, and a

single “:” stands for all the indices in that dimension. For example, A(:, 3 : 4) or

A:,3:4 represents the submatrix of A that contains its third and fourth columns,

and Y(:, j, :) represents the matrix slice of the tensor Y by fixing the second in-

dex to be j. We also use Y(:) to stack all the entries of Y into a single vector

using column-major ordering. We use the MATLAB command “reshape” to

reorganize elements of a tensor. If Y ∈ Cn1×n2×n3 , then reshape(Y , n1n2, n3) re-

turns a matrix of size n1n2 × n3 formed by stacking entries according to their

multi-index. Therefore, Y(:) and reshape(Y , n1n2n3, 1) are equivalent. Similarly,

4

if Z ∈ Cn1n2×n3 , then reshape(Z, n1, n2, n3) returns a tensor of size n1 × n2 × n3.

Now, consider a tensor X ∈ Cn1×···×nd , then we have the following definitions.

Frobenius norm. The Frobenius norm of a tensor is defined similarly as the

Frobenius norm of a matrix, as the square root of the sum of all its elements, i.e.,

∥X∥2F =

n1∑
i1=1

· · ·
nd∑
id=1

|Xi1,...,id |2. (1.1)

Double bracket. In the tensor literature, the double bracket denotes a mapping

from the parametric space to the space of tensors. Specifically, it can be consid-

ered as a weighted sums of rank-1 tensors, i.e.,

JG;A(1), . . . , A(d)K =
r1∑
i1=1

· · ·
rd∑
id=1

Gi1,...,idA
(1)
i1

◦ · · · ◦ A(d)
id
, A(k) ∈ Cnk×rk , (1.2)

where G ∈ Cr1×···×rd is often referred to as the core tensor and v1 ◦ · · · ◦ vd is the

d-way outer-product of vectors [123].

Fibers and slices We can obtain a vector from X if we fix all but one indices.

This vector is a mode-j fiber of X if the unfixed index is at the jth dimension. For

example, X (:, i2, . . . , id) denotes a mode-1 fiber. In particular, mode-1 and mode-

2 fibers can be considered as higher-dimensional analogues of matrix columns

and rows respectively. Similarly, we can obtain a matrix from X if we fix all but

two indices. Specifically for 3D tensors, the sliced matrices can be referred to as

horizontal slices, lateral slices, or frontal slices if the fixed index is at the first,

second, or third dimension respectively.

Flattening by reshaping. One can reorganize the entries of a tensor into a ma-

trix without changing the column-major ordering, and this idea is fundamental

to the TT decomposition. The kth unfolding of X is represented as

Xk = reshape

(
X ,

k∏
s=1

ns,
d∏

s=k+1

ns

)
.

5

Flattening via matricization. Another way to flatten a tensor is to arrange the

mode-j fibers to be the columns of a matrix [124], and this operation is central

for the orthogonal Tucker decomposition. We denote the kth matricization of

X by X(k) ∈ Cnk×
∏

j ̸=k nj . Since mode-1 fibers can be considered as columns of

a tensor, we have X(1) = X1. In this thesis, for a tensor X , matricizations are

constructed so that there exists another tensor Yj satisfying [53]

Y j
(1) = X(j), . . . , Y

j
(d−j+1) = X(d), Y

j
(d−j+2) = X(1), . . . , Y

j
(d) = X(j−1). (1.3)

The k-mode product. The k-mode product of X with a matrix A ∈ Cm×nk is

denoted by X ×k A, and defined elementwise as

(X ×k A)i1,...,ik−1,j,ik+1,...,id =

nk∑
ik=1

Xi1,...,idAj,ik , 1 ≤ j ≤ m. (1.4)

This is equivalent to computing AX(k) and reorganizing back to a tensor.

1.2 Data sparse tensor formats

For a tensor X ∈ Cn1×···×nd , the storage cost for all the entries takes
∏d

j=1 nj

space, which grows exponentially with respect to dimension and size. Even in

the case that n1 = · · · = nd = 2, storing all the entries can be formidable for mod-

erate size d. This phenomenon is referred to as “the curse of dimensionality”,

and it poses a significant challenge for researchers to handle high-dimensional

tensors. Therefore, it is often essential to represent or approximate tensors using

sparse data formats, such as low rank tensor decompositions [85, 123].

The situation for low rank tensor formats is very different from that for ma-

trices. For a matrix X ∈ Cm×n, its economized singular value decomposition

(SVD) is given by X = UΣV ∗, where U ∈ Cm×p and V ∈ Cn×p have orthonormal

6

columns, ∗ denotes the complex conjugate of a matrix, Σ ∈ Rp×p is a diagonal

matrix containing all the singular values σ1(X) ≥ σ2(X) ≥ · · · ≥ σp(X) ≥ 0,

and p = min(m,n). Since the SVD offers a unique way to represent each matrix

X as a linear combination of vector outer products, and the vectors come from

unitary matrices, one of the most essential features of the SVD is that it allows

one to derive the best rank ≤ k approximation Xk of X with truncation:

Theorem 1.2.1 (Eckart–Young–Mirsky Theorem). Let X ∈ Cm×n with SVD X =

UΣV ∗, and Yk ∈ Cm×n with rank(Yk) = k for 1 ≤ k ≤ min(m,n), then

(i) σk+1(X) = ||X− Xk||2 ≤ ||X− Yk||2,

(ii)

√√√√min(m,n)∑
j=k+1

σ2
j (X) = ||X− Xk||F ≤ ||X− Yk||F,

where Xk = U(:, 1 : k)Σ(1 : k, 1 : k)V (:, 1 : k)∗.

Proof. See [81, Sec. 2.5.3].

In practice, one sets up a tolerance 0 < ϵ < 1 and intends to find an approx-

imation X̃ of X such that ||X − X̃||2 ≤ ϵ||X||2 or ||X − X̃||F ≤ ϵ||X||F with

rank(X̃) as small as possible. Similarly, throughout this thesis, for a tensor X ,

we look for an approximation X̃ that has low tensor ranks and satisfies

||X − X̃ ||F ≤ ϵ||X ||F . (1.5)

If X can be well-approximated by X̃ , then dramatic storage and computational

benefits can be achieved by replacing X by X̃ [85, 92].

Understanding low rank tensor formats is much more complicated since

there does not exist a tensor SVD. In other words, for any d-dimensional ten-

sor X , if X is represented as a linear combination of rank-1 tensors, i.e., outer

7

products of d vectors, then the generating vectors of each dimension cannot be

orthogonal to each other. Analogously, if the factor matrices of a factorization of

X have orthonormal columns, then the connecting tensor that mimics the singu-

lar value diagonal matrix cannot be diagonal and can only be dense. Therefore,

in the tensor community, there are multiple data sparse tensor formats actively

used by researchers. It is often an ad hoc process to choose particular low rank

formats for different applications. In the rest of this section, we introduce four

data-sparse tensor formats of analytical and practical importance.

1.2.1 Tensor-train format

The TT format, or also known as the matrix product state (MPS) [169], represents

each tensor entry as the product of a sequence of matrices, and is used in molec-

ular simulations [184], high-order correlation functions [125], and partial differ-

ential equation (PDE) constrained optimization [26, 60]. A tensor X ∈ Cn1×···×nd

has TT cores Gk ∈ Csk−1×nk×sk for 1 ≤ k ≤ d, if the cores satisfy

Xi1,...,id = G1(:, i1, :)G2(:, i2, :) · · · Gd(:, id, :), 1 ≤ ik ≤ nk.

Since the product of the matrices must be a scalar, we have s0 = sd = 1. We

call sss = (s0, . . . , sd) the size of the TT cores, and it is an entry-by-entry bound on

the TT rank rrr = (r0, . . . , rd). In this way, a TT representation with TT core size sss

requires pTT ≤
∑d

k=1 sk−1sknk degrees of freedom for storage, which is linear in

mode size nnn = (n1, . . . , nd) and order d. Figure. 1.1 illustrates a TT format with

TT core size sss.

The TTSVD algorithm (see Algorithm 1) computes a TT format by sequen-

tially constructing the TT cores via reshaping and SVD [164]. In this way, we

8

Xi1,...,id =
G1(i1, :)

1×s1

G2(:, i2, :)

s1×s2

· · · Gd−1(:, id−1, :)

sd−2×sd−1

G
d (:,i

d)

sd−1×1

Figure 1.1: The TT format with TT core size sss = (s0, . . . , sd) where s0 = sd = 1.
Each entry of a tensor is represented by the product of d matrices, where the kth
matrix in the “train” is selected based on the value of ik.

can use ranks of the tensor unfoldings to bound entries of the TT rank [164],

and we typically set the TT core size to be smaller than the ranks of the unfold-

ing matrices. That is,

rk ≤ sk ≤ rank(Xk), 1 ≤ k ≤ d− 1. (1.6)

Therefore, if the ranks of all the matrices Xk for 1 ≤ k ≤ d − 1 are small, then

the TT format of X is data-sparse. In particular, if the SVDs in TTSVD are trun-

cated to have an accuracy of ϵ/
√
d− 1 in the Frobenius norm, then we obtain an

approximation X̃ that satisfies (1.5) in the TT format.

Algorithm 1 TTSVD: Compute the TT format of a tensor X .

Input: Tensor X ∈ Cn1×···×nd , and a desired accuracy 0 < ϵ < 1
Output: The TT cores G1, . . . ,Gd of an approximation X̃

1: Set s0 = sd = 1.
2: Set C = X1.
3: for 1 ≤ j ≤ d− 1 do
4: Compute SVD of C = UΣV ∗ with accuracy ϵ/

√
d− 1 and find rank sj .

5: Set Gj = reshape(U, sj−1, nj, sj).
6: Set C = reshape(ΣV ∗, sjnj+1,

∏d
k=j+2 nk).

7: Set Gd = reshape(C, sd−1, nd, sd).

Fundamental tensor operations can be performed easily and efficiently on

tensors in TT format. For example, the TT cores of the tensor Y = X ×jA are the

same as those of X except for the jth TT corer updated to Gj×2A [133]. Besides,

9

with the TT-rounding algorithm [164], which obtains a better TT format with a

smaller storage cost given a rough TT approximation, one can carry out tensor

addition, Frobenius norm computation, and conversion between different low

rank formats [164].

1.2.2 Quantized tensor-train format

The QTT format is an extension of the TT format to low dimensional data [118,

163]. It is used vastly in solving PDEs such as integral equations [48,49,115], and

design fast numerical linear algebra routines [59, 114]. For a vector v ∈ C
∏d

j=1 nj ,

its QTT format is the TT format of a reshaped tensor V = reshape(v, n1, . . . , nd).

The TT rank of V is then referred to as the QTT rank of v. In many scenarios, n1 =

· · · = nd = 2 or 3, and classical examples include a discretization of the exponen-

tial function on a uniform grid, which has QTT rank 1 [118]. Broadly speaking,

we consider the QTT format to be any matrix or tensor that contains the same

elements as the original vector, as long as this transformation gives rise to low

QTT rank. For example, the matrix V = reshape(v,
∏⌊d/2⌋

j=1 nj,
∏d

j=⌊d/2⌋+1 nj) is

another QTT format of v.

There are two ways to obtain the QTT format of a matrix A. In one way,

all elements of A are reorganized into a high dimensional tensor, and TT de-

composition algorithms are carried out on this single tensor. Alternatively, one

can compute the QTT format of each column of A, and the TT cores for each re-

shaped column are treated and stored separately. In practice, one can choose the

best representation technique based on the exact dataset or application problem.

10

Xn1

n2

n3

= U1

Et1

t2
t3

U2

U3

Figure 1.2: The orthogonal Tucker format with size of the factor matrices ttt =
(t1, t2, t3). The factor matrices U1, U2, and U3 have orthonormal columns.

1.2.3 Orthogonal Tucker format

The orthogonal Tucker format is another well-known tensor format and is

widely used in signal processing [54, 154], image processing [155, 215, 216, 218,

220], and data mining [181, 182, 202–204]. It represents a tensor X ∈ Cn1×···×nd

with a core tensor E ∈ Ct1×···×td and a set of factor matrices U1, . . . , Ud with or-

thonormal columns [53, 123]:

X = JE ;U1, . . . , UdK = E ×1 U1 ×2 · · · ×d Ud, Uk ∈ Rnk×tk . (1.7)

In this case, we call ttt = (t1, . . . , td) the size of the factor matrices of X and it

provides an entry-by-entry bound on the multilinear rank ℓℓℓ = (ℓ1, . . . , ℓd). Such

a decomposition contains pML ≤
∑d

k=1 nktk+
∏d

k=1 tk degrees of freedom, which

is linear in size nnn = (n1, . . . , nd), and still exponential in dimension d and thus

can be infeasible for large d. Nevertheless, the Tucker format is very useful

when each entry tj is significantly smaller than the corresponding mode size nj .

Figure. 1.2 illustrates an orthogonal Tucker format of a 3D tensor with size of

the factor matrices ttt.

The higher-order SVD, or HOSVD (see Algorithm 2), can be used to compute

11

the orthogonal Tucker format of a given tensor [53]. By using the fact that tensor

matricization ranks are bounds of the corresponding multilinear ranks

ℓk ≤ rank(X(k)), 1 ≤ k ≤ d. (1.8)

This algorithm utilizes an orthonormal basis of each tensor matricization as the

corresponding factor matrix and computes the core tensor with these matrices.

Therefore, finding the factor matrices in parallel is easy, as the matricizations

are independent and can be handled simultaneously. In terms of accuracy, if

the factor matrices are calculated via SVDs with ϵ/
√
d accuracy in the Frobenius

norm and 0 < ϵ < 1, then we obtain an approximation X̃ that satisfies 1.5 in the

orthogonal Tucker format.

Algorithm 2 HOSVD: Compute the orthogonal Tucker format of a tensor X .

Input: Tensor X ∈ Cn1×···×nd , and a desired accuracy 0 < ϵ < 1
Output: Tucker core E and factor matrices U1, . . . , Ud of an approximation X̃

1: for 1 ≤ j ≤ d do
2: Compute SVD of X(j) = UjΣjV

∗
j with accuracy ϵ/

√
d and find rank tj .

3: Compute E = X ×1 U
∗
1 · · · ×d U

∗
d .

Recompressions of sub-optimal Tucker or orthogonal Tucker formats are

easy to compute, since one only needs to take SVD of the factor matrices, uses

the orthonormal matrix that approximates the column space as new factor ma-

trices, and merges the rest of the information into the core tensor via tensor-

matrix products. For example, if Y = X ×j A, and X = JE ;U1, . . . , UdK, then

Y = JE ;U1, . . . , Uj−1, AUj, Uj+1, . . . , UdK and recompression shall be performed

on AUj . Other operations made possible by Tucker recompressions include the

Hadamard product between two tensors [126].

12

1.2.4 Canonical Polyadic format

The canonical polyadic (CP) decomposition expresses a tensor as a sum of rank-

1 tensors. A tensor X ∈ Cn1×···×nd is of rank at most r, if there are matrices

A(1), . . . , A(d) and a diagonal tensor D that

X = JD;A(1), . . . , A(d)K, A(k) ∈ Cnk×r, D ∈ Cr×···×r, (1.9)

where the only nonzero entries of D are Di,...,i for 1 ≤ i ≤ r. If D is omitted in this

bracket notation, then by convention all the nonzero entries of D are 1. This ten-

sor decomposition can be stored using pCP ≤ r + r
∑d

k=1 nk degrees of freedom,

but the decomposition is NP-hard to compute for worst case examples [99]. The

CP decomposition in (1.9) is similar to the orthogonal Tucker decomposition

with two important differences: (1) The matrices A(1), . . . , A(d) in (1.9) do not

need to have orthogonal columns and (2) The core tensor D must be diagonal.

This means that (1.9) is equivalent to expressing a tensor as a sum of rank-1 ten-

sors. However, due to the lack of orthonormality, we are not able to perform

truncation to R terms and claim that this is the best rank-R approximation. Fig-

ure. 1.3 illustrates a CP format of a 3D tensor with rank at most R. In practice,

the alternating least squares (ALS) algorithm [39, 97] is the workhorse to com-

pute a CP decomposition. It allows for a desired rank R, optimizes the choice

of each factor matrix while keeping others fixed, and repeats this iteration until

convergence. The ALS algorithm is simple to understand and implement, but

convergence can be slow, and there are no guarantees for convergence.

To obtain an upper bound on the rank of a tensor in CP format, we can take

any decomposition of the form in (1.9) with a potentially large r, and see if its

factor matrices A(1), . . . , A(d) are themselves low rank. For example, we find

13

X
=

y1

z1

w1

+ . . . +

yR

zR

wR

Figure 1.3: The CP format with rank at most R. The tensor X can be expressed
as a sum of at most R rank-1 tensors.

that [129, Lem. 1]:1

rank(X) ≤ min
1≤j≤d

1

rj

d∏
i=1

ri, (1.10)

where ri = rank(A(i)) for 1 ≤ i ≤ d. The bound in (1.10) is useful because it

allows one to derive upper bounds on the rank of a tensor via bounds on the

rank of factor matrices.

1.2.5 Computing with different tensor formats

Over the past two decades, researchers have developed multiple software pack-

ages to use low rank tensor formats in various software computing environ-

ments. For example, there are a handful of mature software packages in MAT-

LAB and frequently used by researchers. Efficient computations with general

and sparse tensors, and factored tensors in CP and Tucker formats are imple-

mented in the Tensor Toolbox [14, 122]. The TT Toolbox [161] has fast im-

plementations of TTSVD, TT-rounding, and tensor arithmetics in the TT for-

mat. It also includes an adaptive cross approximation (ACA) algorithm [183],

which is a data-driven TT decomposition algorithm that uses a selection of

1Lemma 1 of [129] shows that the dimension of the vector space that spans the slices in the
νth index is equal to the rank of X . The inequality in (1.10) follows from the extra assumption
that the slices are themselves low rank tensors.

14

the tensor entries as input. There are also Tensorlab [217] for structured data

fusion, SPLATT [197] for high-performance sparse tensor factorization, and

htucker [128] for hierarchical Tucker formats [84].

1.3 Why is dimensionality increase important?

The goal of compressing tensors with low rank formats is to reduce the degrees

of freedom used for storage and computations, and in turn alleviate the “curse

of dimensionality”. However, in some scenarios, dimensionality increase pro-

vides an alternate perspective for simplifying a problem statement, leading to

better-defined problem variants and more efficient algorithms.

A typical example is described in [147], where extra dimensions are intro-

duced to remove degeneracies caused by arbitrary inputs in many geometric

algorithms such as linear programming (LP-type) problems. The authors show

that in order to remove degeneracies in a d-dimensional LP-type problem, one

needs to increase the dimension to at least d(1 + ϵ) where ϵ > 0 is an arbitrary

constant. Another example is to discover governing equations of nonlinear dy-

namical systems from data with Sparse Identification (SINDy) [36]. The original

problem dimension is determined by the domain of the dynamical system, but

users search through the space of functions, which is infinitely dimensional,

for a handful of optimal governing functions. In this thesis, we focus on solv-

ing fractional PDEs using dimensionality increase (see Chapter 4), where an

extended dimension is used to rewrite the nonlocal fractional operator into a

local one [37]. As a result, our numerical solvers deal with geometries that are

one dimension higher than the original formulation.

15

In some scenarios, dimensionality increase is a prerequisite for dimension-

ality reduction. The QTT tensor format (see Section 1.2.2) converts data from

low dimensions into high-dimensional tensors, so that significant compressibil-

ity can be achieved on sampling special functions such as exponential functions

and some trigonometric functions [118]. Additionally, Sylvester equations (see

Section 1.4) can be considered as a conversion from linear systems using dimen-

sionality increase. With this transformation, we only need to solve equations

of much smaller scales. Sylvester equation solvers that aim to compute low

rank factors of the solution are then dimensionality reduction techniques. With

such combination of dimesionality manipulations, we can efficiently solve cer-

tain structured linear systems using available computing resources.

1.4 Sylvester equations and displacement structure

A Sylvester matrix equation for an unknown matrix X has the form

AX −XBT = F, A ∈ Cm×m, B ∈ Cn×n, F ∈ Cm×n. (1.11)

This type of equation appear often in PDE discretizations with any Laplace-type

operators [74, 193, 210, 230], and in stability analysis of dynamical systems [10,

90, 168]. In this thesis, we assume A and B in (1.11) are normal matrices, then

X has a unique solution if the spectra of A and B are disjoint [195]. This can be

derived by rewriting (1.11) into a linear system

(In ⊗ A−B ⊗ Im)x = f, (1.12)

where x = X(:), f = F (:), In and Im are identity matrices with size n and m

respectively, and ⊗ denotes the Kronecker product of two matrices. Then dis-

joint spectra of A and B implies the matrix L = In ⊗ A − B ⊗ Im does not have

16

eigenvalue 0. In the special case that A = B and F is symmetric, this equation

is widely known as a Lyapunov equation. Additionally, a matrix X is said to

have a displacement structure if it satisfies a Sylvester equation (1.11), and the

rank of F is called the displacement rank of X . Many important matrix families

in computational mathematics, including Toeplitz, Hankel, Vandermonde, and

Cauchy matrices, satisfy displacement structures, with low displacement rank.

In [24], the authors use this structure to explain why certain matrices (including

Löwner, Pick, Cauchy, real Vandermonde, and real positive definite Hankel),

are often of low numerical rank.

A Sylvester tensor equation for a tensor X ∈ Cn1×···×nd has the form

X ×1 A1 + · · ·+ X ×d Ad = F , F ∈ Cn1×···×nd , Aj ∈ Cnj×nj , 1 ≤ j ≤ d, (1.13)

and X admits a unique solution if the Minkowski sum of the spectra of Aj for

all j does not contain 0. Similarly, if a tensor X satisfies (1.13), then it is said to

have a displacement structure.

We now describe various types of methods for Sylvester matrix equa-

tions (1.11), and we develop and use high-dimensional analogues of these

solvers for Sylvester tensor equations in Chapters 2, 3, 4, and 5.

1.4.1 Direct solvers

The most naive way of solving (1.11) is to construct the matrix L = In ⊗ A −

B ⊗ Im, and solve (1.12). Another direct solver is feasible if computing eigen-

decompositions of A and B are stable. We can then use their eigenvalues and

eigenvectors to convert the equation into a diagonal system, and find the so-

17

lution easily via direct scaling (see Algorithm 3). This algorithm is useful in

scenarios that A and B are symmetric.

Algorithm 3 Eig-Sylv: Compute the solution of (1.11) with eigendecomposition.

Input: Matrices A,B, and F in (1.11)
Output: A matrix X satisfying AX −XBT = F

1: Compute eigendecompositions A = VADAV
−1
A and B = VBDBV

−1
B .

2: Set G = V −1
A FV −T

B .
3: Compute Yi,j = Gi,j/((DA)i,i − (DB)j,j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
4: Set X = VAY V

T
B .

Another efficient and stable direct method is the Bartels–Stewart algo-

rithm [20], which uses the Schur factorizations of A and B, and computes each

entry of X by solving triangular linear systems. Another benefit of this method

is that it can be extended to solve generalized Sylvester matrix equations of the

form

AXB − CXD = F, A,C ∈ Cm×m, B,D ∈ Cn×n, F ∈ Cm×n. (1.14)

In this setting, real QZ decomposition of the pairs (A,C) and (B,D) are com-

puted, and the solution X can be found column by column via triangular solves

(see Algorithm 4). For some special generalized Sylvester tensor equations, a

generalization of this method becomes the only feasible solver.

1.4.2 The ADI method

In PDE discretizations [74,193, 210,230] and stability analysis of dynamical sys-

tems [10, 90, 168], the matrices A and B in (1.11) are often constructed to be

sparse and/or structured, such as banded and banded plus low-rank. In these

scenarios, we want solvers that utilize these structures. These include rational

18

Algorithm 4 Bartels–Stewart: Compute the solution of (1.14).

Input: Matrices A,B,C,D, and F in (1.14)
Output: A matrix X satisfying AXB − CXD = F

1: Compute real QZ decomposition A = QT
1 TAZ

T
1 and C = QT

1 TCZ
T
1 .

2: Compute real QZ decomposition B = QT
2 TBZ

T
2 and D = QT

2 TDZ
T
2 .

3: Set G = Q1FZ2.
4: Set j = n.
5: while j > 0 do
6: Set Hj = G:,j − TA

∑n
k=j+1(TB)j,kY:,k + TC

∑n
k=j+1(TD)j,kY:,k.

7: if (TD)j,j−1 = 0 then
8: Solve ((TB)j,jTA − (TD)j,jTC)Y:,j = Hj .
9: Set j = j − 1.

10: else
11: Set Hj−1 = G:,j−1 − TA

∑n
k=j+1(TB)j−1,kY:,k + TC

∑n
k=j+1(TD)j−1,kY:,k.

12: Set L =

[
(TB)j,jTA − (TD)j,jTC −(TD)j,j−1TC

(TB)j−1,jTA − (TD)j−1,jTC (TB)j−1,j−1TA − (TD)j−1,j−1TC

]
.

13: Solve L

[
Y:,j

Y:,j−1

]
=

[
Hj

Hj−1

]
.

14: Set j = j − 2.
15: Set X = Z1Y Q2.

Krylov subspace solvers [64, 194, 195], the alternating direction implicit (ADI)

method [27, 136, 168, 179], and many others [28, 167]. In this thesis, we focus

on the ADI method, which is an iterative algorithm based on rational function

approximation.

The ADI algorithm consists of solving sequences of shifted linear systems

with respect to A and B, and we describe the full procedure in Algorithm 5.

The shifts used in the iterations are known in many situations [74, 211]. For

example, one set of shift parameters ppp and qqq can be chosen as the zeros and

poles of a rational function r ∈ Rk,k, that can achieve a quasi-optimal Zolotarev

number [234] (see Sec. 2.3.1)

Zk(Λ(A),Λ(B)) := inf
r∈Rk,k

supz∈Λ(A) |r(z)|
infz∈Λ(B) |r(z)|

, k ≥ 0,

19

Algorithm 5 ADI: Given a Sylvester matrix equation (1.11), compute an approx-
imate solution.
Input: Matrices A,B, and F in (1.11), and a desired accuracy 0 < ϵ < 1
Output: An approximate solution X̃ to AX −XBT = F

1: Select 2ℓ shift parameters p1, . . . , pℓ, and q1, . . . , qℓ using A and B.
2: Set X1 = 0.
3: for 1 ≤ j ≤ ℓ do
4: Solve (A− qjIm)Xj+1/2 = Xj(B − qjIn)

T + F .
5: Solve Xj+1(B − pjIn)

T = (A− pjIm)Xj+1/2 − F .
6: Set X̃ = Xℓ+1.

where Λ(A) and Λ(B) are the spectra of A and B, and Rk,k is the set of rational

functions of the form s(x)/t(x) with polynomials s and t of degree at most k.

This choice is closely related to the fact that Zolotarev numbers can be used to

bound approximations of X that satisfies (1.11) [24, 193]; namely,

∥X −Xk∥2 ≤ Zk(Λ(A),Λ(B))∥X∥2, (1.15)

and

∥X −Xk∥F ≤ Zk(Λ(A),Λ(B))∥X∥F , (1.16)

where Xk is the best rank-k approximation of X .

1.4.3 The fADI method

Apart from structured A and B, the matrix F has low rank factorization F =

UV ∗ with U ∈ Cm×r and V ∈ Cn×r in many cases. Therefore, we want a solver

that also obtains an approximation of X in low rank format. By expressing

Xj+1 in ADI iterations with Xj = ZjDjY
∗
j , we obtain the factored ADI (fADI)

algorithm, which is described in details in Algorithm 6. The main takeaway

from the fADI method is that it solves for bases of the column space and row

20

Algorithm 6 fADI: Given a Sylvester matrix equation (1.11), compute an ap-
proximate solution in low rank form.

Input: Matrices A,B in (1.11) U, V such that F = UV ∗, and a desired accuracy
0 < ϵ < 1

Output: Factor matrices Z,D, and Y of the approximate solution X̃ = ZDY ∗ to
AX −XBT = UV ∗

1: Select 2ℓ shift parameters p1, . . . , pℓ, and q1, . . . , qℓ using A and B.
2: Solve (A− q1Im)Z1 = U . Let Z = Z1.
3: Solve (B − p1In)Y1 = V . Let Y = Y1.
4: Let D = (q1 − p1)Ir.
5: for 1 ≤ j ≤ ℓ− 1 do
6: Set Gj = (qj+1 − pj)Zj , and Hj = (pj+1 − qj)Yj .
7: Solve (A− qj+1Im)Zj+1 = Gj . Set Zj+1 = Zj+1 + Zj and Z =

[
Z Zj+1

]
.

8: Solve (B − pj+1In)Yj+1 = Hj . Set Yj+1 = Yj+1 + Yj and Y =
[
Y Yj+1

]
.

9: Set D =

[
D

(qj+1 − pj+1)Ir

]
.

space of X independently. Therefore, in certain applications, one can only solve

for a basis for column/row space and save half of the computing powers.

When Algorithm 6 terminates, the factor matrices Z,D, and Y are gener-

ally not optimal in size since they are constructed by stacking solution matrices

from all iterations. There are mainly two ways to obtain ideal factors: (1) Re-

compressing after each iteration so that one never works with large matrices,

and (2) Recompressing the final Z,D, and Y after all iterations finish, so an SVD

is computed only once. In practice, one can use the problem size as a criterion

for a heuristic selection process. When A and B are of moderate size, we can af-

ford multiple SVDs so we can use (1). Comparatively whenA andB are large in

size, a single SVD is preferred to avoid high computation costs in each iteration.

One can also choose a recompression scheme in between (1) and (2) to optimize

size of SVD and number of SVD computed.

21

CHAPTER 2

ON THE COMPRESSIBILITY OF TENSORS

We say that a tensor is compressible if it can be approximated by a low rank

tensor, in the sense of (1.5) that can be represented in a relative small number

of degrees of freedom. In this chapter1, we derive bounds on these numerical

storage costs (see Sec. 1.2) for certain families of tensors in three tensor decom-

positions: (a) Tensor-train decomposition (see Sec. 1.2.1), (b) Orthogonal Tucker

decomposition (see Sec. 1.2.3), and (c) Canonical Polyadic (CP) decomposition

(see Sec. 1.2.4). In doing so, we partially justify the use of low rank tensor de-

compositions. Analogous theoretical results have already been derived that ex-

plicitly bound the numerical rank of matrices [24, 146, 175, 211].

We explore three methodologies to bound the compressibility of a tensor:

• Algebraic structures: If a tensor is constructed by sampling a multivariable

function that can be expressed as a sum of products of single-variable func-

tions, then that tensor is often compressible. Occasionally, one may have to

perform algebraic manipulations to a function to explicitly reveal its desired

structure, for example, by using trigonometric identities (see Sec. 2.1).

• Smoothness: If a tensor can be constructed by sampling a smooth function

on a tensor-product grid, then that tensor is often compressible. This obser-

vation can be made rigorous by using the fact that smooth functions can be

well-approximated by polynomials in a compact domain [212, Theorem 8.2]

and [92, Lem. 14.5].

• Displacement structure: If a tensor X satisfies a multidimensional Sylvester

1This chapter is based on a paper with Alex Townsend [193]. I derived the theorems and
algorithms, and was the lead author of the manuscript.

22

Table 2.1: Summary of the bounds of storage costs in tensor-train format of
n × n × n tensors explored in this manuscript. The numbers s1, s2, and s3 are
given in their corresponding sections.

Tensor TT Storage bound Method Ref.

Sampled eiMπxyz O(M) Smoothness Sec. 2.2.1
Sampled sum of Gaussian bumps Implicit Smoothness Sec. 2.2.2

3D Hilbert tensor n(s21 + 2s1) Displacement Sec. 2.4.1
Poisson FD soln n(s22 + 2s2) Displacement Sec. 2.4.2

Poisson spectral soln n(s23 + 2s3) Displacement Sec. 2.4.2

equation of the form (1.13), then this—under additional assumptions—can

ensure that the tensor X is well-approximated by a low rank tensor. Multidi-

mensional Sylvester equations such as (1.13) appear when discretizing certain

partial differential equations with finite differences [134] and are satisfied by

several classes of structured tensors [88]. For example, we show that the solu-

tion tensor X ∈ Cn×n×n to −∇2u = 1 on [−1, 1]3 with zero Dirichlet conditions

can be represented up to a relative accuracy of 0 < ϵ < 1 in the Frobenius

norm with just O(n(log n)2(log(1/ϵ))2) degrees of freedom in tensor-train for-

mat, despite the solution having weak corner singularities.

The first two methodologies are considered in [92, 108, 117] and analogous

results for matrices are available in the literature [175, 209]. The third method-

ology is used in various aspects of numerical linear algebra. For example, one

can explicitly bound the singular values of matrices with displacement struc-

ture [24,211], which can make matrix-vector multiplication [93] and the solution

of linear systems [83, 157] more computationally efficient. The third methodol-

ogy is also related to the technique of bounding singular values using expo-

nential sums [35, 116]. However, we are not aware of any existing literature

that compress tensors with displacement structure. In this manuscript, we for-

23

mally provide bounds on the compressibility of such tensors and illustrate the

methodologies with worked examples. Table. 2.1 summarizes our bounds on

the storage cost of several special tensors.

After some experience, one can successfully identify which methodology is

likely to result in the best theoretical bounds on the compressibility of a ten-

sor. We emphasize that these three methodologies provide upper bounds us-

ing numerical tensor ranks, and do not provide a complete characterization

on the compressibility of tensors. Another approach that partially explains the

abundance of tensors with small storage is artificial coordinate alignment [213],

though we do not know how to use this observation to derive explicit bounds

on tensor ranks.

In Sec. 2.1 we study the ranks of tensors that are constructed by sampling

multivariate functions that have some algebraic structure. Then, in Sec. 2.2, we

consider the storage cost of tensors constructed by sampling smooth multivari-

ate functions. Finally, in Sec. 2.3 we consider tensors that satisfy a multidimen-

sional Sylvester equation, including a fast tensor Sylvester equation solver that

exploits the compressibility of these tensors in Sec. 2.4.3.

2.1 Tensors constructed via sampling algebraically structured

functions

In practice, one often encounter tensors that are sampled from multivariate

functions. For example, one can take a continuous function of three variables,

24

f(x, y, z), and sample f on a tensor grid to obtain a tensor:

Xijk = f(xi, yj, zk), 1 ≤ i, j, k ≤ n,

where {x1, . . . , xn}, {y1, . . . , yn}, and {z1, . . . , zn} are sets of points.

2.1.1 Polynomials and algebraic structure

One common scenario where it is easy to spot compressible tensors is when the

tensor is sampled from a polynomial. To be specific, if a tensor X is derived

by sampling a multivariate polynomial p(x1, . . . , xd) of degree at most Nj − 1

in the variable xj from a tensor-product grid, then one finds that X is highly

compressible.

Lemma 2.1.1. Let p(x1, . . . , xd) be a polynomial of degree at mostNj−1 in the variable

xj for 1 ≤ j ≤ d, and let X ∈ Cn1×···×nd be the tensor constructed by sampling p, i.e.,

Xi1,...,id = p(x
(1)
i1
, . . . , x

(d)
id
), 1 ≤ ij ≤ nj, 1 ≤ j ≤ d,

where x(1), . . . , x(d) are sets of n1, . . . , nd nodes, respectively. Then,

• pTT(X) ≤
∑d

k=1 tk−1tknk, where tk = min{
∏k

j=1Nj,
∏d

j=k+1Nj},

• pML(X) ≤
∑d

k=1 nkNk +
∏d

k=1Nk, and

• pCP(X) ≤ r + r
∑d

k=1 nk, where r = min1≤k≤d
1
Nk

∏d
j=1Nj .

Here, the tensor-train decomposition is constructed in the order of x1, . . . , xd.

Proof. According to the degree assumptions on p, we can write p as

p(x1, . . . , xd) =

N1−1∑
q1=0

· · ·
Nk−1∑
qk=0

aq1,...,qk(xk+1, . . . , xd)x
q1
1 · · ·xqkk , 1 ≤ k ≤ d,

25

where aq1,...,qk(xk+1, . . . , xd) is a polynomial in the variables xk+1, . . . , xd and for

k + 1 ≤ j ≤ d, xj has degree at most Nj − 1. After sampling, this means that

rank(Xk) ≤ min{
∏k

j=1Nj,
∏d

j=k+1Nj} and the bound on pTT(X) follows.

Another way to write p is

p(x1, . . . , xd) =

Nk−1∑
j=0

bj(x1, . . . , xk−1, xk+1, . . . , xd)x
j
k, 1 ≤ k ≤ d,

where bj is a polynomial in x1, . . . , xk−1, xk+1, . . . , xd of degree at most Nj − 1 in

xj . After sampling, this shows that rank(X(k)) ≤ Nk and the bound on pML(X)

follows.

Finally, separating out xd, we can also write p as

p(x1, . . . , xd) =

N1−1∑
q1=0

· · ·
Nd−1−1∑
qd−1=0

cq1,...,qd−1
(xd)x

q1
1 · · ·xqd−1

d−1 , (2.1)

where each term in (2.1) is a rank 1 tensor after sampling. We can do this to

each variable and thus rank(X) ≤ min1≤k≤d
1
Nk

∏d
j=1Nj . The bound on pCP(X)

follows.

A special case of Lemma 2.1.1 is when the polynomial p has maximal degree

of at most N − 1 so that N1 = · · · = Nd = N .2 We find that

• pTT(X) ≤
∑d

k=1N
2tk−1nk, where tk = min{k, d− k},

• pML(X) ≤ N
∑d

k=1 nk +Nd, and

• pCP(X) ≤ Nd−1
∑d

k=1 nk +Nd−1.

The important observation is that tensors constructed by sampling polynomi-

als on a grid are highly compressible. To be specific, the storage costs of these
2We say that a polynomial pN (x1, . . . , xd) has maximal degree ≤ N if pN is a polynomial of

degree at most N in all the variables xi.

26

tensors, when stored in tensor-train, Tucker, or CP format, do not grow expo-

nentially with the dimension d but linearly. In addition, in scenarios that the ten-

sors are constructed via oversampling the polynomial, which means grid sizes

nj’s are much larger than polynomial degrees Nj’s, we can use much smaller

degrees of freedom to represent this oversampled tensor. If one is familiar with

tensor ranks, then one may notice that terms related toNj’s are upper bounds of

tensor-train, multilinear, and CP ranks. These turn out to be pretty tight bounds

in practice.

There is generally not a prevalent format, in the sense that its storage cost is

smaller than those of the other two. Depending on the grid sizes and polyno-

mial degrees, all formats can have the smallest storage cost. Therefore, it is case

specific to choose the optimal format for a given tensor.

2.1.2 Other special cases of algebraic structure

Similar to multivariate polynomials, it is easy to spot—after some experience—

the mathematical tensor ranks of tensors constructed by sampling functions

that have explicit algebraic structure since each variable in the function can be

thought as a fiber of the tensor. The easiest ones to spot are those tensors de-

rived from functions that are the sums of products of single-variable functions,

such as

f(x, y, z) = 1 + tan(x)y + y2z3, g(x, y, z, w) = cos(x) sin(y) + e10ze100w.

If F and G are tensors constructed by sampling f and g on a n × n × n and

n×n×n×n tensor-product grid, respectively, then the storage costs in different

27

formats are bounded by

pTT(F) ≤ 8n, pML(F) ≤ 7n+ 12, pCP(F) ≤ 9n+ 3,

pTT(G) ≤ 12n, pML(G) ≤ 8n+ 16, pCP(G) ≤ 8n+ 2,

where the tensor-train decompositions are performed in the order x, y, z, w.

Other examples are functions that can be expressed with exponentials and pow-

ers, and similar examples have also been considered [118, 160].

Some special functions require reorganizations to reveal their algebraic

structures. If the function is expressed with trigonometric functions, then the

sampled tensor can often be low rank due to trigonometric identities. For ex-

ample, consider the function f(x, y, z) = cos(x + y + z) that is a special case of

the examples in [30, 166]. Since it can be written as

f(x, y, z) = (cos(x)cos(y)−sin(x)sin(y))cos(z)−(sin(x)cos(y)+cos(x)sin(y))sin(z),

any tensor F constructed by sampling f on a n × n × n tensor-product grid

satisfies

pTT(F) ≤ 8n, pML(F) ≤ 6n+ 8, pCP(F) ≤ 12n+ 4.

In addition, [151] provides further insights on reorganizing special functions

of sum of variables to reveal its algebraic structure. These examples can often

be combined to build more complicated functions that result in compressible

tensors. This is an ad hoc process and requires human ingenuity to express the

sampled function in a revealing form. Again, tensors constructed by sampling

such algebraically structured functions on a sufficiently large tensor-product

grid can be represented using a small number of degrees of freedom.

28

2.2 Tensors derived by sampling smooth functions

Although most functions do not have the algebraic structure specified in

Sec. 2.1, tensors that are constructed by sampling smooth functions are often

well approximated by compressible tensors. In light of Lemma 2.1.1, our idea

to understand the compressibility of a tensor derived from sampling a func-

tion is first to approximate that function by a multivariate polynomial, which

is already a routine procedure for computing with low rank approximations to

multivariate functions [98].

Without loss of generality, suppose that X is formed by sampling a smooth

function f on a tensor-product grid in [−1, 1]d, i.e.,

Xi1,...,id = f(x
(1)
i1
, . . . , x

(d)
id
), 1 ≤ ik ≤ nk, 1 ≤ k ≤ d, (2.2)

where x(1), . . . , x(d) are sets of n1, . . . , nd nodes in [−1, 1]. Our idea is to find a

multivariate polynomial p of degree ≤ Nj − 1 in the variable xj that approxi-

mates f in [−1, 1]d and then set Yi1,...,id = p(x
(1)
i1
, . . . , x

(d)
id
). By Lemma 2.1.1, Y can

be represented with a small number of degrees of freedom and Y is an approxi-

mation to X . In particular, we have

∥X − Y∥F ≤

(
d∏
i=1

ni

)1
2

∥X − Y∥max ≤

(
d∏
i=1

ni

)1
2

∥f − pN∥∞, (2.3)

where ∥ · ∥∞ denotes the supremum norm on [−1, 1]d and ∥ · ∥max is the absolute

maximum entry norm. Therefore, if p is a good approximation to f , then Y is

a good approximation to X too. Although the error bound is good for small d,

this approximation still suffers from the curse of dimensionality for large d.

One can now propose any linear or nonlinear approximation scheme to find

a polynomial approximation p of f on [−1, 1]d. Clearly, excellent bounds on

29

∥X − Y∥F are obtained by finding a p so that

∥f − p∥∞ ≈ inf
q∈PN1,...,Nd

∥f − q∥∞,

where PN1,...,Nd
is the space of d-variate polynomials of maximal degree ≤ Ni−1

in xi for 1 ≤ i ≤ d. This best multivariable polynomial problem is often, but not

always, tricky to solve directly. In those cases, near-optimal polynomial approx-

imations are used instead. One common choice is to use p as the multivariate

Chebyshev projection of f . That is,

pchebN1,...,Nd
(x1, . . . , xd) =

N1−1∑
i1=0

′ · · ·
Nd−1∑
id=0

′
ci1,...,idTi1(x1) · · ·Tid(xd),

ci1,...,id =

(
2

π

)d∫ 1

−1

· · ·
∫ 1

−1

f(x1, . . . , xd)Ti1(x1) · · ·Tid(xd)√
1− x21 · · ·

√
1− x2d

dx1 · · · dxd,

where the primes indicate that the first term in the sum is halved and Tk(x) is

the Chebyshev polynomial of degree k. Importantly, pchebN1,...,Nd
is a near-best poly-

nomial approximation to f [212], and the error ∥f − pchebN1,...,Nd
∥∞ can be bounded.

Thus, this choice of p leads to bounds on the compressibility of X .

Next, we give two examples that illustrate how to understand the compress-

ibility of tensors constructed by sampling smooth functions. We consider two

functions: (1) A Fourier-like function, where we use best polynomial approxi-

mation, and (2) A sum of Gaussian bumps, where we use Chebyshev approxi-

mation.

2.2.1 Fourier-like function

Consider a tensor X ∈ Cn×n×n constructed by sampling the following Fourier-

like function on a tensor-product grid [209]:

f(x, y, z) = eiMπxyz, x, y, z ∈ [−1, 1],

30

where M ≥ 1 is a real parameter. While representing X exactly requires n3 de-

grees of freedom, it can be approximated by tensors that require fewer degrees

of freedom (in the tensor-train and Tucker formats). To see this, let pbestk−1 and qbestk−1

be the best minimax polynomial approximations of degree ≤ k − 1 to cos(Mπt)

and sin(Mπt) on [−1, 1], respectively, and define hk−1 = pbestk−1 + iqbestk−1. Note that

hk−1(xyz) has maximal degree at most k − 1 so that

inf
wk−1∈Pk−1

sup
x,y,z∈[−1,1]

∣∣eiMπxyz − wk−1(x, y, z)
∣∣ ≤ sup

x,y,z∈[−1,1]

∣∣eiMπxyz − hk−1(xyz)
∣∣

= sup
t∈[−1,1]

∣∣eiMπt − hk−1(t)
∣∣ ,

where Pk−1 is the space of trivariate polynomials of maximal degree ≤ k−1 and

the equality follows since t = xyz ∈ [−1, 1] if x, y, z ∈ [−1, 1]. Furthermore, we

have eiMπt = cos(Mπt) + i sin(Mπt) and so

sup
t∈[−1,1]

∣∣eiMπt − hk−1(t)
∣∣ ≤ sup

t∈[−1,1]

∣∣cos(Mπt)− pbestk−1(t)
∣∣+ sup

t∈[−1,1]

∣∣sin(Mπt)− qbestk−1(t)
∣∣ .

By the equioscillation theorem [172, Theorem 7.4], pbestk−1 = 0 for k − 1 ≤ 2⌊M⌋ −

1 since cos(Mπt) equioscillates 2⌊M⌋ + 1 times in [−1, 1]. Similarly, sin(Mπt)

equioscillates 2⌊M⌋ times in [−1, 1] and hence, qbestk−1 = 0 for k − 1 ≤ 2⌊M⌋ − 2.

However, for k > 2⌊M⌋, supt∈[−1,1]

∣∣eiMπt − hk−1(t)
∣∣ decays super-geometrically

to zero as k → ∞. This also indicates that the error between the tensors sampled

from eiMπxyz and hk−1(x, y, z) rapidly goes to 0 as k → ∞. Hence, the numerical

maximal degree, Nϵ, of eiMπxyz satisfies Nϵ/2M → c for some constant c ≥ 1 as

M → ∞. Lemma 2.1.1 shows that an approximant to X only requires O(M)

degrees of freedom. In particular, if s1 is the second element of the tensor-train

rank of an approximant tensor to the one sampled by eiMπxyz, then s1/(2M) → 1

as M → ∞.

Fig. 2.1 (left) plots the ratio of the second element of the tensor-train rank,

31

M

ra
ti

o

s1/(2M)

TT-rank

A
cc

ur
ac

y

γ
=
1000

γ
=

100

γ
=

10

Figure 2.1: Left: The ratio of the second element of the tensor-train rank, s1,
of the tensors of size n × n × n with n = 600 constructed by sampling the
Fourier-like function eiMxyz with 15 ≤ M ≤ 150. The accuracy used to cal-
culate the tensor-train ranks is 10−10. Right: The second element, s1, of the
tensor-train rank (blue, red, and yellow dots) calculated with the TTSVD and
the theoretical bounds (black lines) of X ∈ C400×400×400 constructed by sam-
pling

∑300
j=1 e

−γ((x−xj)2+(y−yj)2+(z−zj)2) on an equispaced tensor-product grid for
γ = 10, 100, 1000, where (xj, yj, zj) are arbitrary centers in [−1, 1]3.

s1, of a tensor sampled from the Fourier-like function and 2M . We observe that

s1/(2M) → 1 as M → ∞.

2.2.2 A sum of Gaussian bumps

Consider a tensor X ∈ Cn×n×n constructed by sampling a sum of M Gaussian

bumps, centered at arbitrary locations (x1, y1, z1), . . . , (xM , yM , zM) in [−1, 1]3,

i.e.,

f(x, y, z) =
M∑
j=1

e−γ((x−xj)
2+(y−yj)2+(z−zj)2), γ > 0. (2.4)

Each Gaussian bump is a separable function of three variables so, mathemati-

cally, the tensor ranks of X depend linearly on M . However, since the sum is

a smooth function, the ranks are related to the polynomial degree required to

approximate f(x, y, z) in [−1, 1]3 to an accuracy of 0 < ϵ < 1. Hence, the tensor

32

ranks of X depend on γ and have very mild growth in M in the storage costs.

Exponential sums have been used to approximate f in [34, Chpt. 6], but here

we instead approximate it with a Chebyshev series. Due to the symmetry in x,

y, and z as well as separability of each term in (2.4), we find that the Chebyshev

approximation to f(x, y, z) can be bounded by

sup
x,y,z∈[−1,1]

∣∣∣∣∣f(x, y, z)−
M∑
j=1

pjℓ(x)q
j
ℓ(y)r

j
ℓ(z)

∣∣∣∣∣ ≤ 3M sup
x∈[−1,1]

∣∣∣e−γx2 − hℓ(x)
∣∣∣ ,

where pjℓ , q
j
ℓ , r

j
ℓ , and hℓ are Chebyshev approximations of degree ≤ ℓ to e−γ(x−xj)2 ,

e−γ(y−yj)
2 , e−γ(z−zj)2 , and e−γx

2 , respectively. An explicit Chebyshev expansion

for e−γx2 is known and given by [140, p. 32]

e−γx
2

=
∞∑
j=0

′
(−1)je−γ/2Ij(γ/2)T2j(x),

where the prime on the summation indicates that the first term is halved, and

Ij(z) is the modified Bessel function of the first kind with parameter j [158,

(10.25.2)]. This means that one can show that [77, Lem. 5]:3

hℓ(x) =
ℓ∑

j=0

′
(−1)je−γ/2Ij(γ/2)T2j(x), sup

x∈[−1,1]

∣∣∣e−γx2 − hℓ(x)
∣∣∣ ≤ 2e−γ/4I⌊ℓ/2⌋+1(γ/4).

By Lemma 2.1.1 and (2.3), we can understand the compressibility of X . In

particular, we can find an approximant tensor whose tensor-train ranks are

bounded by the smallest integer ℓ such that 6Mn3/2e−γ/4I⌊ℓ/2⌋+1(γ/4) ≤ ϵ. We

find it straightforward to visualize compressibility via elements of the tensor

ranks and their bounds, due to the way storage costs are calculated. Fig. 2.1

(right) shows the second element of the tensor-train rank, s1 of the approximant

3Unfortunately, there is a typo in [77, Lem. 5] and Iℓ+1(γ/4) should be replaced by
I⌊ℓ/2⌋+1(γ/4).

33

tensor, along with the bound that we derived. The bounds are relatively tight

when ϵ is small.

2.3 Tensors with displacement structure

We say that X ∈ Cn1×···×nd has an (A(1), . . . , A(d))-displacement structure of

F ∈ Cn1×···×nd if X satisfies the multidimensional Sylvester equation (1.13). In

this section, we show that when A(1), . . . , A(d) are normal matrices with “sep-

arated” spectra and F is a low rank tensor, then X is compressible. Several

classes of structured tensors (e.g., the Hilbert tensor) and the solution tensors

of certain discretized partial differential equations (e.g., the discretized solution

to Poisson’s equation) have a displacement structure, which leads to an under-

standing of their compressibility.

2.3.1 Zolotarev numbers

The bounds that we derive on compressibility of tensors involve so-called

Zolotarev numbers [5, 82, 234]. A Zolotarev number is a positive number

between 0 and 1 defined via an infimum problem involving rational func-

tions [234]. Namely,

Zk(Φ,Ψ) := inf
r∈Rk,k

supz∈Φ |r(z)|
infz∈Ψ |r(z)|

, k ≥ 0, (2.5)

where Φ and Ψ are disjoint complex sets and Rk,k is the set of irreducible rational

functions of the form p(x)/q(x) with polynomials p and q of degree at most k.

If Φ and Ψ are well-separated, then one finds that Zk(Φ,Ψ) decays rapidly with

34

k. This is because one can construct a low degree rational function that is small

on Φ and large on Ψ. If Φ and Ψ are close to each other, then typically Zk(Φ,Ψ)

decreases much more slowly with k.

Zolotarev numbers can be used to bound the singular values of matrices

with displacement structure [24, Theorem 2.1]. In particular, if X ∈ Cm×n with

m ≥ n satisfies the displacement structure (1.11) with displacement rank ν,

where A ∈ Cm×m and B ∈ Cn×n are normal matrices with spectra Λ(A) ⊆ Φ

and Λ(B) ⊆ Ψ, i.e.,

AX −XB =MN∗, M ∈ Cm×ν , N ∈ Cn×ν , (2.6)

then the singular values of X satisfy [24, Theorem 2.1]

σj+νk(X) ≤ Zk(Φ,Ψ)σj(X), 1 ≤ j + νk ≤ n. (2.7)

Roughly speaking, if Λ(A) and Λ(B) are well-separated and ν is small, then the

singular values σj(X) decrease rapidly to 0.

When working with tensors, we translate the inequalities in (2.7) into Frobe-

nius norm error bounds so that matrix results can then be utilized.

Lemma 2.3.1. If X ∈ Cm×n is a matrix satisfying (2.6) and Xνk is the best rank νk

approximation to X , then

∥X −Xνk∥F ≤ Zk(Φ,Ψ)∥X∥F ,

where ∥ · ∥F denotes the matrix Frobenius norm.

Proof. To simplify notation let Zk = Zk(Φ,Ψ), r = νk, σj = σj(X) for 1 ≤ j ≤ n,

and σj = 0 for j > n. If k = 0, then r = 0 and Zk = 1, so Xr = 0 and the

35

statement follows automatically. Now consider k > 0, note that for any s ≥ 1

we have
(s+1)r∑
j=sr+1

σ2
j =

r∑
j=1

σ2
j+sr ≤ Z2

k

r∑
j=1

σ2
j+(s−1)r ≤ · · · ≤ Z2s

k

r∑
j=1

σ2
j ,

where the inequalities come from the repeated application of the bound in (2.7).

Therefore, we can bound ∥X − Xr∥2F by partitioning the singular values into

groups of r. That is,

∥X −Xr∥2F =
n∑

j=r+1

σ2
i ≤

∞∑
s=1

(s+1)r∑
j=sr+1

σ2
i ≤

∞∑
s=1

Z2s
k

r∑
j=1

σ2
j =

Z2
k

1− Z2
k

r∑
j=1

σ2
j ,

where the last equality is obtained by summing up the geometric series. Since

∥X∥2F =
∑n

j=1 σ
2
j , we find that(

1 +
Z2
k

1− Z2
k

)
∥X −Xr∥2F ≤ Z2

k

1− Z2
k

∥X∥2F .

The result follows by rearranging.

For 0 < ϵ < 1, the numerical rank of X measured in the Frobenius norm is

the smallest integer, rϵ, such that

inf
rank(X̃)≤rϵ

∥X − X̃∥F ≤ ϵ ∥X∥F .

We denote this integer by rankϵ(X). From Lemma 2.3.1, we find that for matrices

that satisfy (2.6) with low displacement rank, we have

rankϵ(X) ≤ νk, (2.8)

where k is the smallest integer so that Zk(Φ,Ψ) ≤ ϵ. Therefore, Zolotarev num-

bers are very useful when trying to bound the numerical rank of matrices with

displacement structure. For example, for an n × n Pick matrix Pn constructed

with real numbers from an inverval [a, b] with 0 < a < b < ∞, one can find that

rankϵ(Pn) ≤ 2
⌈
log(4b/a) log(4/ϵ)/π2

⌉
[24].

36

2.3.2 The compressibility of tensors with displacement struc-

ture in the tensor-train format

Zolotarev numbers can also be used to understand the compressibility of ten-

sors satisfying (1.13). From the bounds in (1.6), one finds that the numerical

ranks of each unfolding provides an upper bound on all entries of the tensor-

train ranks of approximant tensors. More precisely, if X ∈ Cn1×···×nd is a tensor

and 0 < ϵ < 1, then there exists a tensor X̃ such that [164, Theorem 2.2]

||X − X̃ ||F ≤ ϵ||X ||F , rankTT(X̃) = (1, rankδ(X1), . . . , rankδ(Xd−1), 1), (2.9)

where δ = ϵ/
√
d− 1 and Xk is the kth unfolding of X . In order to easily relate

tensor-train ranks with multilinear ranks in the next subsection, we choose to

use δ = ϵ/
√
d.

If X satisfies (1.13), then by rearranging (1.13) one can show that each unfold-

ing matrix,Xj , has a displacement structure. This is preciselyBjXj−XjC
T
j = Fj ,

where Fj is the jth unfolding of F and

Bj = I ⊗ · · · ⊗ I ⊗ A(1) + · · ·+ A(j) ⊗ I ⊗ · · · ⊗ I,

Cj = −(I ⊗ · · · ⊗ I ⊗ A(j+1) + · · ·+ A(d) ⊗ I ⊗ · · · ⊗ I).

From properties of the Kronecker product [185, Thm 2.5], we know that Bj and

Cj are normal matrices with Λ(Bj) = Λ(A(1)) + · · · + Λ(A(j)) ⊆ Φj and Λ(Cj) =

−(Λ(A(j+1)) + · · · + Λ(A(d))) ⊆ Ψj .4 From (2.3.1) we see that for any integer kj

such that Zkj(Φj,Ψj) ≤ δ, then

rankδ(Xj) ≤ kjνj, νj = rank(Fj), 1 ≤ j ≤ d− 1.

4By Λ(A) + Λ(B) we mean the Minkowski sum, formed by adding each element in Λ(A) to
each element in Λ(B), i.e.,

Λ(A) + Λ(B) = {a+ b | a ∈ Λ(A), b ∈ Λ(B)}.

37

Re

Im

Φ1

×
×

×
×

×

Λ
(
A(2)

)××

×
×
×

−Ψ2

××

×

×
×

Ψ1

−Φ2

Figure 2.2: Minkowski sum separated matrices A(1), A(2), and A(3) where the
colored crosses denote the spectrum of A(1), A(2), and A(3), respectively. Here,
Λ(A(1)) ⊆ Φ1, Λ(A(3)) ⊆ −Ψ2, Λ(A(1)) + Λ(A(2)) ⊆ Φ2, and Λ(A(2)) + Λ(A(3)) ⊆
−Ψ1. By definition, we must have that Φ1 is disjoint from Ψ1 (red regions), and
that Φ2 is disjoint from Ψ2 (blue regions).

Therefore, a necessary condition to bound the numerical tensor-train ranks of X

using this approach is that the spectra of A(1), . . . , A(d) are Minkowski sum sepa-

rated.

Definition 2.3.1. We say that normal matrices A(1), . . . , A(d) are Minkowski sum sep-

arated if there are disjoint sets Φj and Ψj so that

Λ(A(1))+ · · ·+Λ(A(j)) ⊆ Φj, −(Λ(A(j+1))+ · · ·+Λ(A(d))) ⊆ Ψj, 1 ≤ j ≤ d−1,

where the set additions are Minkowski sums and Λ(A(j)) denotes the spectrum of A(j).

Figure 2.2 illustrates three Minkowski sum separated matrices A(1), A(2), and

A(3) along with possible choices for the sets Φj and Ψj for j = 1, 2. We summa-

rize our findings as a theorem.

Theorem 2.3.2. Suppose X ∈ Cn1×···×nd satisfies (1.13), where A(1), . . . , A(d) are

Minkowski sum separated with disjoint sets Φj and Ψj for 1 ≤ j ≤ d − 1. Then,

for a fixed 0 < ϵ < 1, we have

pTT
ϵ (X) ≤

d∑
j=1

(kd−1νd−1)(kdνd)nd, νj = rank(Fj), 1 ≤ j ≤ d− 1,

38

where Fj is the jth unfolding of F and kj is an integer so that Zkj(Φj,Ψj) ≤ ϵ/
√
d.

For special choices of Φj and Ψj , explicit bounds on Zkj(Φj,Ψj) are known

and therefore the bounds in Theorem 2.3.2 are also explicit. Here we mention

two special cases:

Intervals

If Λ(A(j)) ⊆ [a, b] for 0 < a < b < ∞, then one can take Φj = [ja, jb] and

Ψj = [−(d− j)b,−(d− j)a] in Theorem 2.3.2. From [24, Cor. 4.2], we find that

Zkj(Φj,Ψj) ≤ 4

[
exp

(
π2

2 log (16γj)

)]−2k

, γj =
(da+ j(b− a))(db− j(b− a))

abd2
.

In particular, the following bound holds:

pTT
ϵ (X) ≤

d∑
j=1

(kd−1νd−1)(kdνd)nd, kj =

⌈
log(16γj) log(4

√
d/ϵ)

π2

⌉
, (2.10)

where νj = rank(Fj).

Disks

If Λ(A(j)) ⊆ {z ∈ C : |z − z0| ≤ η} for 0 < η < z0 and z0, η ∈ R, then one finds

that Λ(A(1)) + · · · + Λ(A(j)) ⊆ {z ∈ C : |z − jz0| ≤ jη} and −(Λ(A(j+1)) + · · · +

Λ(A(d))) ⊆ {z ∈ C : |z + (d− j)z0| ≤ (d− j)η}. From [200, p. 123], we find that

Zkj(Φj,Ψj) = ρ
−kj
j , ρj =

2j(d− j)η2

d2z20 − ((d− j)2 + j2)η2 −
√
ξj
,

where ξj = (d2z20 − ((d− j)2 + j2)η2)
2 − 4j2(d− j)2η4. In particular,

pTT
ϵ (X) ≤

d∑
j=1

(kd−1νd−1)(kdνd)nd, kj =
⌈
log(

√
d/ϵ)/ log(ρj)

⌉
, (2.11)

39

where νj = rank(Fj).

In Sec. 2.4, we use (2.10) to bound the numerical storage cost in tensor-train

format of the Hilbert tensor and the solution tensor of a discretized Poisson

equation.

2.3.3 The compressibility of tensors with displacement struc-

ture in the Tucker format

From HOSVD, we know that for a tensor X ∈ Cn1×···×nd and accuracy level

0 < ϵ < 1, then there exists a tensor X̃ such that [53]:

||X − X̃ ||F ≤ ϵ||X ||F , rankML(X̃) = (rankδ(X(1)), . . . , rankδ(X(d))),

where δ = ϵ/
√
d and X(j) is the jth matricization of X .

Since the first unfolding of X coincides with the first matricization of X , the

bound on the second element of the tensor-train rank is also a bound on the

first element of the multilinear rank of X . One can use a similar idea to bound

all entries of the multilinear ranks by considering the various matricizations.

However, one finds that the spectra of A(1), . . . , A(d) need to be separated in a

slightly different sense.

Definition 2.3.2. We say that normal matrices A1, . . . , Ad are Minkowski singly sep-

arated if there are disjoint sets Φj and Ψj so that

Λ(Aj) ⊆ Φj, −

(
d∑

k=1,k ̸=j

Λ(Ak)

)
⊆ Ψj, 1 ≤ j ≤ d,

where the set additions are Minkowski sums and Λ(Aj) denotes the spectrum of Aj .

40

Re

Im

Φ1

×
×

×
×

×

Φ2××

×
×
×

Φ3

××

×

×
×

Ψ1

Ψ3

Ψ2

Figure 2.3: Minkowski singly separated matrices A(1), A(2), and A(3) where the
colored crosses denote the spectrum of A(1), A(2), and A(3), respectively. Here,
Λ(A(1)) ⊆ Φ1, Λ(A(2)) ⊆ Φ2, Λ(A(3)) ⊆ Φ3, −(Λ(A(1))+Λ(A(2))) ⊆ Ψ3, −(Λ(A(1))+
Λ(A(3))) ⊆ Ψ2, and −(Λ(A(2)) + Λ(A(3))) ⊆ Ψ1. By definition, we have that Φ1

is disjoint from Ψ1 (red regions), that Φ2 is disjoint from Ψ2 (gray regions), and
that Φ3 is disjoint from Ψ3 (blue regions).

Figure 2.3 illustrates the spectra of Minkowski singly separated matrices

A(1), A(2), and A(3) along with their enclosed sets and Minkowski sums of the

sets. Under this separation condition, we have the following theorem:

Theorem 2.3.3. Suppose X ∈ Cn1×···×nd satisfies (1.13), where A(1), . . . , A(d) are

Minkowski singly separated with disjoint sets Φj and Ψj for 1 ≤ j ≤ d. Then, for

a fixed 0 < ϵ < 1, we have

pML
ϵ (X) ≤

d∑
j=1

njkjµj +
d∏
j=1

kjµj, rankML(F) = (µ1, . . . , µd),

where kj is an integer so that Zkj(Φj,Ψj) ≤ ϵ/
√
d.

Proof. One can bound all the entries of the multilinear rank vector of X by the

second entry of the tensor-train rank vector of the tensors Y1, . . . ,Yd (see (1.3)).

Due to the way Yj is constructed, it can be shown that Yj satisfies

Yj ×1 A
(j) + · · ·+ Yj ×d−j+1 A

(d) + Yj ×d−j+2 A
(1) + · · ·+ Yj ×d A

(j−1) = Hj,

41

where Hj
(1) = F(j), . . . , H

j
(d−j+1) = F(d), H

j
(d−j+2) = F(1), . . . , H

j
(d) = F(j−1) and

Hj is constructed from F in the same way that Yj is constructed from X . The

result follows from Theorem 2.3.2 as the jth element of the multilinear rank of

X is bounded above by the bound of the second entry of the tensor-train rank

of Yj .

As before, explicit bounds on the compressibility in Tucker format can be

obtained from Theorem 2.3.3 by special choices of Φj and Ψj such as when they

are intervals or disks.

Intervals

If Λ(A(j)) ⊆ [a, b] for 0 < a < b < ∞, then one can take Φj = [a, b] and Ψj =

[−(d− 1)b,−(d− 1)a]. Therefore, we find that [24, Cor. 4.2]

pML
ϵ (X) ≤ k

d∑
j=1

njµj + kd
d∏
j=1

µj, k =

⌈
log(16γ) log(4

√
d/ϵ)

π2

⌉
,

where γ = (da+ (b− a))(db− (b− a))/(abd2) and rankML(F) = (µ1, . . . , µd).

Disks

If Λ(A(j)) ⊆ {z ∈ C : |z − z0| ≤ η} for 0 < η < z0 and z0, η ∈ R, then one can

take Φj = {z ∈ C : |z − z0| ≤ η} and Ψj = {z ∈ C : |z + (d− 1)z0| ≤ (d− 1)η}.

From [200, p. 123], we find that

pML
ϵ (X) ≤ k

d∑
j=1

njµj + kd
d∏
j=1

µj, k =
⌈
log(

√
d/ϵ)/ log(ρ)

⌉
,

where ρ = (2(d − 1)η2)/(d2z20 − ((d − 1)2 + 1)η2 −
√
ξ), ξ = (d2z20 − ((d − 1)2 +

1)η2)2 − 4(d− 1)2η4, and rankML(F) = (µ1, . . . , µd).

42

2.4 Worked examples of tensors with displacement structure

Here, we give two examples that illustrate how to use the displacement struc-

ture of a tensor to understand its compressibility. Since the bounds in tensor-

train format and Tucker format are related through ranks, we only show results

for the tensor-train format. As in the previous examples, we use the second ele-

ment of the tensor-train rank and its bound to visualize the compressibility. We

consider two tensors: (1) The 3D Hilbert tensor and (2) The solution tensor of a

Poisson equation.

2.4.1 The 3D Hilbert tensor

Consider the Hilbert tensor H ∈ Cn×n×n defined by

Hijk =
1

i+ j + k − 2
, 1 ≤ i, j, k ≤ n.

This tensor is analogous to the notoriously ill-conditioned Hilbert matrix [65,

106]. It is easy to verify that the tensor possesses the following displacement

structure:

H×1 D +H×2 D +H×3 D = S,

where S is the tensor of all ones and D is a diagonal matrix with Dii = i − 2
3
.

Thus, rank(S) = 1 and the ranks of the unfoldings of S are all 1.

Since the spectrum of D is contained in [1
3
, 3n−2

3
], (2.10) tells us that for any

0 < ϵ < 1 we have

pTT
ϵ (H) ≤ n(s21 + 2s1), s1 =

⌈
1

π2
log

(
16n(2n− 1)

3n− 2

)
log

(
4
√
3

ϵ

)⌉
. (2.12)

43

Accuracy

C
om

pr
es

si
on

ra
te

TTSVD

Bound

TT-rank

A
cc

ur
ac

y

n
=
500

n
=
100

n
=
10

Figure 2.4: The compressibility of the 3D Hilbert tensor in tensor-train format.
Left: The ratio between the storage cost for representing a 100×100×100 Hilbert
tensor in a tensor-train format calculated using TTSVD algorithm and 1003 (blue
dots), along with our theoretical bound on the compression rate (black line).
Right: The second element of the tensor-train rank, s1, (dots) and the theoretical
bound (black lines) for n = 10, 100, and 500.

That is, s1 = O(log n log(1/ϵ)) and means that the n × n × n Hilbert ten-

sor can be stored, up to an accuracy of ϵ in the Frobenius norm, in just

O(n(log n)2(log(1/ϵ))2) degrees of freedom. Figure 2.4 (left) shows the com-

pressibility of H with n = 100 by computing the ratio of the storage costs using

tensor-train format and explicit storage. Our theoretical results bound the sav-

ings well. Figure 2.4 (right) shows the compressibility of H by plotting s1 and

its bound in (2.12) for different values of n. The actual tensor-train ranks of H

are computed with TTSVD [164].

2.4.2 Tensor solution of a discretized Poisson equation

Tensor decompositions can be incorporated into efficient solvers of partial dif-

ferential equations [15, 31, 113, 119, 165, 205]. Displacement structure arises for

the solution tensor when one discretizes a Laplace operator, or any Laplace-like

operator. Here, consider the 3D Poisson equation on [−1, 1]3 with zero Dirichlet

44

conditions, i.e.,

− (uxx + uyy + uzz) = f on Ω = [−1, 1]3, u|∂Ω = 0. (2.13)

If one writes down a second-order finite difference discretization of (2.13) on

an n× n× n equispaced grid, then one obtains the following multidimensional

Sylvester equation

X ×1 K + X ×2 K + X ×3 K = F , K = − 1

h2

2 −1

−1
.
. −1

−1 2

,

where h = 2/n and Fijk = f(ih − 1, jh − 1, kh − 1) for 1 ≤ i, j, k ≤ n − 1.

The solution tensor X is unknown and for large n, one assumes that Xijk ≈

u(ih−1, jh−1, kh−1) for 1 ≤ i, j, k ≤ n−1 is a reasonably good approximation.

The eigenvalues of K are given by 4/h2 sin2(πk/(2n)) for 1 ≤ k ≤ n with h =

2/n [134, (2.23)]. Since (2/π)x ≤ sinx ≤ 1 for x ∈ [0, π/2] and h = 2/n, the

eigenvalues of K are contained in the interval [1, n2].

We are interested in understanding the compressibility of X in tensor-train

format when f = 1. Since Λ(K) ⊆ [1, n2] and rankTT(F) = (1, 1, 1, 1), (2.10) gives

pTT
ϵ (X) ≤ n(s21 + 2s1), s1 =

⌈
1

π2
log

(
16(n2 + 2)(2n2 + 1)

9n2

)
log

(
4
√
3

ϵ

)⌉
.

(2.14)

Figure 2.5 (left) shows the second element of the tensor-train rank, s1, and

the bound of the approximate solution tensor to the Poisson equation via finite

difference discretization.

One wonders if there is also a fast Poisson solver for spectral discretizations.

This turns out to be feasible with a carefully constructed ultraspherical spectral

45

TT-rank

A
cc

ur
ac

y

n
=
10

n
=
100

n
=
500

TT-rank

A
cc

ur
ac

y

n
=
10

n
=
100

n
=
500

Figure 2.5: Left: The second element of the tensor-train rank, s1, (blue, red, and
yellow dots) of the finite difference solution to −(uxx+ uyy + uzz) = 1 on [−1, 1]3

with zero Dirichlet conditions, and the theoretical bound in (2.14) (black lines).
Right: The second element of the tensor-train rank, s1, (blue, red, yellow dots)
of the ultraspherical spectral solution to −(uxx + uyy + uzz) = 1 on [−1, 1]3 with
zero Dirichlet conditions, and the theoretical bound in (2.16) (black lines).

discretization. The Poisson equation can be discretized to a tensor equation

as [74]:

X ×1 A
−1 + X ×2 A

−1 + X ×3 A
−1 = G, (2.15)

where

u(x, y, z) = (1− x2)(1− y2)(1− z2)
n∑
p=0

n∑
q=0

n∑
r=0

XpqrC̃
(3/2)
p (x)C̃(3/2)

q (y)C̃(3/2)
r (z),

f(x, y, z) =
n∑
p=0

n∑
q=0

n∑
r=0

FpqrC̃
(3/2)
p (x)C̃(3/2)

q (y)C̃(3/2)
r (z),

C̃
(3/2)
k is the degree k orthonormalized ultraspherical polynomial with param-

eter 3
2

[158, Table 18.3.1], G = F ×1 M
−1 ×2 M

−1 ×3 M
−1, A = D−1M , D is a

diagonal matrix, M and A are both symmetric pentadiagonal matrices, and the

spectrum of A satisfies Λ(A) ∈ [−1, −1/(30n4)]. If f = 1, (2.10) gives

pTT
ϵ (X) ≤ n(s21 + 2s1), s1 =

⌈
1

π2
log

(
16(30n4 + 2)(60n4 + 1)

270n4

)
log

(
4
√
3

ϵ

)⌉
.

(2.16)

46

Figure 2.5 (right) shows the second element of the tensor-train rank, s1, and

the bound of the approximate solution tensor to the Poisson equation via ultra-

spherical spectral discretization. This spectral discretization indicates that the

n × n × n tensor discretization of the solution can be approximated with only

O(dn(log n)2(log(1/ϵ))2) degrees of freedom. This is a significant reduction in

the cost of storing the solution, with a relatively straightforward decomposi-

tion. Comparatively, one can achieve O(d log n log(1/ϵ)) with quantics tensor

formats [110,118], but their structures are more complicated and are not as sim-

ple to use as the tensor-train format.

Some special functions can be well-approximated by exponential sums of

the form

Sk(x) =
k∑
j=1

αje
−tjx, αj, tj ∈ R,

and these approximant can be used to represent the solution to PDEs with

Laplace-like operators [83, 116]. In [116], the author uses exponential sums to

show that the solution tensor to several 3D elliptic PDEs can be approximated

with O(dn(log n)2(log(1/ϵ))2) degrees of freedom. In this scenario, the Laplacian

inverse operator can be approximated with a low CP rank tensor. In general,

both exponential sum approximation and Zolotarev numbers can be used to

bound the kth singular value of matrices with displacement structure and cap-

ture the geometric decay, but the Zolotarev bound tends to be cleaner and does

not involve an algebraic factor related to k [211, (34),(35)].

47

2.4.3 Solving for tensors in compressed formats

Since the proof of Theorem 2.3.2 and Theorem 2.3.3 are constructive, we can use

their implicit algorithms to solve 3D Sylvester tensor equations of the form:

X ×1 A
(1) + X ×2 A

(2) + X ×3 A
(3) = F , (2.17)

where A(1) ∈ Cn1×n1 , A(2) ∈ Cn2×n2 , A(3) ∈ Cn3×n3 , and F ∈ Cn1×n2×n3 . We can

compute approximate solutions to (2.17) efficiently in tensor-train or Tucker for-

mat when F is a low rank tensor and the spectra of A(1), A(2), and A(3) are well-

separated. In particular, if A(1), A(2), and A(3) are Minkowski sum separated,

and the unfoldings F1 and F2 of F have low rank decompositions F1 = W1Z
∗
1 ,

and F2 = W2Z
∗
2 with rank r1 and r2, respectively, then we can solve for X in

tensor-train format.

The tensor-train factors of X obtained by the TTSVD algorithm are orthog-

onal matrices for the column and row spaces of unfoldings of X . For example,

the first tensor-train factor U1 of X can be found as a matrix with orthonormal

columns spanning the column space of the first unfolding X1. Since X satis-

fies (2.17), we find that X1 satisfies the Sylvester equation

A(1)X1 +X1(I ⊗ A(2) + A(3) ⊗ I)T = W1Z
∗
1 . (2.18)

We can use the factored alternating direction implicit (fADI) method to

solve (2.18) for a matrix V1 such that X1 = V1D1Y
∗
1 [27]. One can then use the

QR decomposition of V1, i.e., V1 = U1R1, to calculate the first tensor-train core

U1.

Second and third tensor-train factors can be computed by finding matrices

with orthonormal columns for the column and row spaces associated to C2,

48

where C2 = reshape(R1D1Y
∗
1 , r1n2, n3). It can be shown that C2 satisfies the

Sylvester equation

(I ⊗ (U∗
1A

(1)U1) + A(2) ⊗ I)C2 + C2(A
(3))T = (I ⊗ U∗

1)W2Z
∗
2 .

One can, again, use fADI to solve for a low rank decomposition of C2, i.e., C2 =

V2D2Y
∗
2 . This low rank decomposition can be compressed by performing a QR

factorization of V2 and Y2 and then doing a SVD to obtain C2 ≈ U2ΣT
∗
2 , where

U2 and T2 are matrices with r2 orthonormal columns and Σ is a diagonal matrix.

In this way, the second tensor-train factor is U2 = reshape(U2, [r1, n2, r2]) and

the third factor U3 = ΣT ∗
2 . Although the fADI method requires the solution of

shifted linear systems with I ⊗ (U∗
1A

(1)U1) + A(2) ⊗ I , the Kronecker product

structure allows one to reshape these linear systems into Sylvester equations,

which can themselves be solved with the alternating direction implicit (ADI)

method [27]. Specifically, to solve the linear system:

(I ⊗ (U∗
1A

(1)U1) + A(2) ⊗ I − αI)y = b,

where α is a constant denoting the shift, we can rewrite it into a matrix equation:

(U∗
1A

(1)U1 −
α

2
I)Y + Y (A(2) − α

2
I) = B, (2.19)

where Y = reshape(y, [r1, n2]), and B = reshape(b, [r1, n2]). This Sylvester matrix

equation is solvable as U1 is orthogonal, and A(1) and A(2) have distinct spec-

trum. We can use the ADI method to solve the matrix equation efficiently. This

means that one can completely avoid solving a huge linear system. As a result,

if n1 = n2 = n3 = n, 0 < ϵ < 1 is desired accuracy, and solving shifted lin-

ear systems of A(1), A(2), and A(3) takes T complexity, then solving (2.19) takes

O(T log n log(1/ϵ)), and thus the Sylvester matrix equation solver has a complex-

ity of O((s1 + s2)T log n log(1/ϵ) + s2T (log n)
2(log(1/ϵ))2). When s1, s2, and T are

49

small, we have an efficient solver. In summary, the ADI-based tensor Sylvester

equation solver is described in Algorithm 7.

Algorithm 7 A 3D Sylvester equation (2.17) solver that solves the solution in TT
form.

1: Use fADI to solve for the column space Z1 ofX1 that satisfiesA(1)X1+X1(I⊗
A(2) + A(3) ⊗ I)T = F1 =M1N

∗
1 .

2: Perform a QR decomposition, Z1 = U1R1, and let U1 = U1(:, 1 : s1) if R1(s1+
1, s1 + 1) is small enough.

3: Use fADI to solve forC2 = Z2D2Y
∗
2 whereC2 satisfies (I⊗(U∗

1A
(1)U1)+A

(2)⊗
I)C2 + C2(A

(3))T = (I ⊗ U∗
1)F2 = (I ⊗ U∗

1)M2N
∗
2 .

4: Find a low rank decomposition of C2 ≈ U2ΣT
∗
2 using Z2, D2 and Y2, and

denote the rank by s2.
5: Let U2 = reshape(U2, [s1, n2, s2]).
6: Let U3 = ΣT ∗

2 .
7: The solution X is in the tensor-train form with cores U1, U2, and U3.

Similarly, if all matricizations of F are low rank, and A(1), A(2), and A(3) are

Minkowski singly separated, then we can solve for the solution in orthogonal

Tucker format via HOSVD [53]. Each factor matrix of X is a matrix with or-

thonormal columns that span the column space of the matricization of X , which

satisfies the Sylvester equation:

A(j)X(j) +X(j)(I ⊗ A(i) + A(k) ⊗ I)T = F(j),

where

i =

1, j = 3,

j + 1, j = 1, 2,

k =

3, j = 1,

j − 1, j = 2, 3.

If solving shifted linear systems with A(1), A(2), and A(3) is fast, then we can use

fADI to solve for the orthogonal column space of X(j), and use a direct method,

such as a 3D Bartels–Stewart algorithm to solve for the core tensor [20].

50

2.4.4 Poisson equation solver

Consider the example of Poisson equation in Section 2.4.2 with ultraspher-

ical discretization (2.15). Since A is a penta-diagonal matrix, we can solve

shifted linear systems with A−1 in O(n) time using Thomas algorithm. In addi-

tion, (2.16) indicates that s1 and s2 are of order O(log n log(1/ϵ)). Therefore, we

can obtain a fast Poisson equation solver that computes the solution in tensor-

train or orthogonal Tucker format. In tensor-train format, the complexity is

O(n(log n)3(log(1/ϵ))3), where 0 < ϵ < 1 is the accuracy.

Figure 2.6 shows the running time of different discretized Poisson solvers.

The dashed line represents the direct solver that converts (2.16) into a huge

linear system via Kronecker product. The dash-dot line represents the

eigendecomposition-based solver described in Algorithm 3. The solid line rep-

resents our fADI-based tensor-train solver. We can see as n gets large, our algo-

rithm is the winner.5

Similarly, we can bound the solution of (2.15) in Tucker format with

O((log n)3(log(1/ϵ))3 + n(log n)2(log(1/ϵ))2) degrees of freedom and obtain the

solution efficiently using fADI and ADI with the Tucker solver described in the

previous section. If one is interested in the solution in CP format, then the ex-

ponential sum method in [116] (also, see Section 2.4.2), can solve (2.15) via low

rank truncation.

5The fADI solver is implemented in C++, while the direct and the eigensolvers are imple-
mented in MATLAB. However, both backslash linear system solver and eigendecomposition
are carried out in LAPACK, so our comparison of the three solvers is still fair. All timings are
performed in MATLAB R2019a on the super computer of Cornell’s Math department, with 20
physical GPUs, 250GB of RAM, and 1TB of hard-drive memory.

51

Size, n

Ti
m

e
(s

ec
)

D
ire

ct

Ei
ge

n
fA

DI

Figure 2.6: The execution time of a direct solver (dashed line), eigensolver (dash-
dot line), and our fADI solver (solid line) of the spectrally discretized Poisson
equation −(uxx + uyy + uzz) = 1 on [−1, 1]3 with zero Dirichlet conditions with
discretization size n with 4 ≤ n ≤ 1500.

52

CHAPTER 3

PARALLEL ALGORITHMS FOR COMPUTING THE TENSOR-TRAIN

DECOMPOSITION

In this chapter1, we connect dimensionality reduction techniques with high-

performance computing by developing algorithms to compute the TT format

of a tensor in parallel. To date, researchers have designed parallel tensor al-

gorithms to exploit modern computing architectures and handle larger ten-

sors emerging in applications. There are parallel algorithms for computing

CP [135, 197], Tucker, and hierarchical Tucker decomposition [11, 16, 86, 109].

Subsequent operations can also be done in parallel in various tensor formats,

especially tensor contractions [198], and operations in TT format [50]. However,

despite some current work based on hierarchical tree structure [89], regularized

least squares problem satisfied by each core [43], and multiple SVDs on tensor

slices [221], parallel TT decomposition has received less attention, perhaps, due

to the sequential nature of TTSVD (see Algorithm 1).

In this chapter, we show that the column spaces of tensor unfoldings (see

section 1.1) are connected by the TT cores (see section 1.2.1). This result can

also be derived from [50, Eqn.(2.3)] with a few extra steps. Using our more ex-

plicit formulation, we develop new parallel algorithms that are scalable, stable,

and accurate to compute TT formats of tensors. In particular, we distribute ten-

sor information across several processors and ask each of them to contribute to

computing the TT cores. We design parallel algorithms for various tensor input

types:

1This chapter is based on a paper with Maximilian Ruth and Alex Townsend [192]. I derived
the theorems and designed the algorithms, and was the lead author of the manuscript.

53

• Parallel-TTSVD: Previous TT decomposition methods such as TTSVD [164]

and TT-cross approximation [162] are sequential algorithms that require the

entire tensor as input. In each iteration, both algorithms find one TT core by

decomposing a specific matrix and use this core to determine the matrix in the

next iteration. Based on the fact that there is a connection between the column

space of various reshapes of a tensor (see section 1.1), we design an algorithm

to compute the TT cores simultaneously by computing an orthonormal basis

for the column space of each tensor unfolding via SVD.

• Parallel Streaming TT Sketching (PSTT): Since SVD in Parallel-TTSVD can

be computationally expensive, we can use randomized linear algebra to find

orthonormal bases that approximate the column space of tensor unfoldings.

This algorithm is inspired by matrix sketching [96], Tucker sketching [206],

randomized algorithms for CP and Tucker format [141], TT sketching in a

sequential manner [41], and TT rounding with randomized algorithms [51].

Sketching algorithms are ideal for streaming data, where it is infeasible to

store the tensor in cache. We show a two-sided version, PSTT2, has a stor-

age cost as low as O(n⌊d/2⌋). Moreover, PSTT2-onepass, a one-pass variant

of PSTT2, uses only a single evaluation of each tensor entry, and is the most

efficient in numerical experiments.

• TT2Tucker and Tucker2TT: An orthonormal basis of the column space of the

second unfolding of each TT core allows us to get a Tucker format of the given

tensor fast. This method can be treated as a simplified version of the extended

TT format in [58, Sec. 4.1] and also used in [23]. However, we derive it from

an explicit relation between tensor matricizations and TT cores of the same

tensor. Conversely, given a tensor in Tucker format, we can obtain its TT

cores through the Tucker factor matrices and the TT cores of its Tucker core.

54

• TT-fADI: Tensors also arise as the solutions of Sylvester tensor equa-

tions (1.13). If F is provided in its TT format, and A(1), . . . , A(d) have fast

shifted linear system solvers and desired spectral properties, then we can find

X in TT format via the factored alternating direction implicit (fADI) method

that solves Sylvester matrix equations [27].

• Implementations in message passing interface (MPI): We implement our

algorithms in a distributed memory framework using OpenMPI in C. Each

process is responsible for streaming part of the tensor and storing part of the

intermediate calculations. We use well-established linear algebra packages to

optimize our codes, including matrix multiplications in BLAS3, and QR and

SVD in LAPACKE.

The chapter is organized as follows. In section 3.1, we consider computing

the TT decomposition of a given tensor in parallel, where we have access to any

entry. Then, we provide scalability and complexity analysis of our algorithms

and demonstrate their performance on synthetic datasets in section 3.2. Finally,

in section 3.3, we obtain the TT format of implicitly known tensors, given as

solutions of Sylvester tensor equations.

3.1 Parallel TT approximations from other tensor formats

In this section, we focus on describing parallel algorithms to compute a TT ap-

proximation of a tensor X when we have access to all its entries. We consider

three scenarios: (1) we can afford to store the whole tensor in cache (see sec-

tion 3.1.1), (2) we can only afford to store a proportion of its entries in cache

(see section 3.1.2), and (3) the Tucker format of X is known and can be stored in

55

cache (see section 3.1.3).

3.1.1 Parallel TT decomposition with SVD

The derivation of the parallel TT decomposition starts with the analogy between

TTSVD and HOSVD. Roughly speaking, HOSVD follows a “compress-then-

combine” approach, which compresses all matricizations first and then com-

putes the core tensor. This makes HOSVD for computing the Tucker decom-

position naturally parallelizable. Comparatively, for the TT format, TTSVD has

a sequential nature that alternates between reshaping and compressing. Here,

we design a “compress-then-combine” algorithm for computing a TT approx-

imation. We compress all the unfoldings first and then combine the resulting

matrices to obtain the TT cores.

We first show that the orthonormal bases of the column space of all tensor

unfoldings are related for a d-dimensional tensor. An alternative way to derive

this result is to use [50, Eqn (2.3) & Appendix A].

Theorem 3.1.1. Let X ∈ Cn1×···×nd , and Xj ∈ C(
∏j

i=1 ni)×(
∏d

i=j+1 ni) be its jth flatten-

ing for 1 ≤ j ≤ d − 1. If Xj = UjV
∗
j with Uj ∈ C(

∏j
i=1 ni)×rj , Vj ∈ C(

∏d
i=j+1 ni)×rj ,

rj ≤ min(
∏j

i=1 ni,
∏d

i=j+1 ni), and Uj has orthonormal columns, then for 1 ≤ k ≤

d− 2, there exist matrices Wk ∈ Crk×nk+1rk+1 such that

reshape

(
Uk+1,

k∏
i=1

ni, nk+1rk+1

)
= UkWk.

Proof. To proceed with the proof, we use the fact that for 1 ≤ i ≤ d − 2, each

column of Xi+1 consists of ni+1 consecutive columns of Xi. This is true for any

d ≥ 3 so it suffices to show the statement holds when X ∈ Cn1×n2×n3 .

56

For notational simplicity, we denote the frontal slices of X by X
(j)
f = X (:, :

, j) ∈ Cn1×n2 for 1 ≤ j ≤ n3 and the lateral slices by X(k)
ℓ = X (:, k, :) ∈ Cn1×n3 for

1 ≤ k ≤ n2. Then, by construction, we have

X1 =

[
X

(1)
f · · · X

(n3)
f

]
, X2 =

X

(1)
ℓ

...

X
(n2)
ℓ

 .
The columns of the frontal slices and those of the lateral slices are mode-1 fibers

of the tensor X , so we can find the same column in the frontal and lateral slices.

That is, (
X

(k)
ℓ

)
j
=
(
X

(j)
f

)
k
= X (:, k, j), 1 ≤ j ≤ n3, 1 ≤ k ≤ n2,

where
(
X

(k)
ℓ

)
j

denotes the jth column of X(k)
ℓ , and similarly for

(
X

(j)
f

)
k
. Given

X1 = U1V
∗
1 , we can write X2 as

X2 =

U1

(
V

(1)
1

)∗
...

U1

(
V

(n2)
1

)∗

 = (I ⊗ U1)Z
∗,

where V (i)
1 is a submatrix that contains rows i, i+ n2, . . . , i+ (n3 − 1)n2 of V1 for

1 ≤ i ≤ n2, and ‘⊗’ is the Kronecker product of two matrices.

Since U1 has orthonormal columns, I ⊗ U1 has orthonormal columns, and

Z∗ = ST ∗, where S ∈ Cr1n2×r2 has orthonormal columns and T ∈ Cn3×r2 . Since

by assumption X2 = U2V
∗
2 , without loss of generality, we can assume that U2 =

(I ⊗ U1)S; otherwise, there is an orthogonal matrix Y ∈ Cr2×r2 such that U2 =

(I ⊗ U1)SY , T = TY , and V2 = V2Y . By reshaping U2 = (I ⊗ U1)S, we find

reshape(U2, n1, n2r2) = U1W, W = reshape(S, r1, n2r2),

which proves the statement for d = 3.

57

One may notice that for 1 ≤ k ≤ d − 2, reshape(Wk, rk, nk+1, rk+1) is the size

of the (k + 1)st core in a TT format, where Wk is defined in Theorem 3.1.1. In

the next theorem, we show the accuracy of the approximation if we construct a

tensor with TT cores given by reshape(Wk, rk, nk+1, rk+1).

Theorem 3.1.2. Let X ∈ Cn1×···×nd , and 0 < ϵ < 1. Suppose further that for 1 ≤ j ≤

d− 1, each unfolding admits ∥Xj − UjV
∗
j ∥F ≤ ϵ√

d−1
∥X∥F , where Uj has orthonormal

columns. Then, the tensor X̃ constructed by TT cores G1 = U1, Gd = V ∗
d−1, and

Gk+1 = reshape

(
U∗
k reshape

(
Uk+1,

k∏
i=1

ni, nk+1rk+1

)
, rk, nk+1, rk+1

)
, (3.1)

for 1 ≤ k ≤ d− 2, satisfies ∥X − X̃∥F ≤ ϵ∥X∥F .

Proof. Since the TT cores are computed with U1, . . . , Ud−1, we can express each

element of X̃ with the same matrices:

X̃i1,i2...,id = G1(i1, :)G2(:, i2, :) · · · Gd(:, id)

= U1(i1, :)U
∗
1U2((i2 − 1)n1 + 1 : i2n1, :) · · ·

U∗
d−2Ud−1

((
(id−1 − 1)

d−2∏
k=1

nk + 1

)
:

(
id−1

d−2∏
k=1

nk

)
, :

)
U∗
d−1Xd−1(:, id).

This indicates that X̃d−1, the (d − 1)th unfolding of X̃ , is an approximation of

Xd−1 with (d − 1) layers of projection using Uj for 1 ≤ j ≤ d − 1. There-

fore, to show the error of this approximation, we need to consider the er-

ror generated by each layer of projection. Now, let Yd−1 = Ud−1U
∗
d−1Xd−1

be the approximation of Xd−1, and construct two sequences of matrices

(Ỹd−1, · · · , Ỹ2) and (Yd−2, · · · , Y1). For 1 ≤ j ≤ d − 2, we use Ỹj+1 =

reshape
(
Yj+1,

∏j
k=1 nk,

∏d
k=j+1 nk

)
to reshape the previous approximation to a

matrix compatible in size with Xj , and Yj = UjU
∗
j Ỹj+1 to apply another layer of

58

approximation with Uj . Then,

∥X − X̃∥2F = ∥Y1 −X1∥2F

= ∥U1U
∗
1 Ỹ2 −X1∥2F

= ∥U1U
∗
1 (Ỹ2 −X1) + (U1U

∗
1 − I)X1∥2F

= ∥U1U
∗
1 (Ỹ2 −X1)∥2F + ∥(U1U

∗
1 − I)X1∥2F

≤ ∥Ỹ2 −X1∥2F + ∥(U1U
∗
1 − I)X1∥2F

= ∥Y2 −X2∥2F + ∥(U1U
∗
1 − I)X1∥2F ,

where the fourth equality holds since (U1U
∗
1 (Ỹ2 −X1))

∗((U1U
∗
1 − I)X1) = 0, the

inequality holds since U1U
∗
1 is an orthogonal projection, and the last equality

holds as reshaping preserves Frobenius norm. Following this argument, by in-

duction on ∥Yj −Xj∥2F for 1 ≤ j ≤ d− 1, we have

∥X − X̃∥2F ≤
d−1∑
k=1

∥(I − UkU
∗
k)Xk∥2F (3.2)

=
d−1∑
k=1

∥(I − UkU
∗
k)(Xk − UkV

∗
k)∥2F

≤
d−1∑
k=1

∥Xk − UkV
∗
k ∥2F ≤ ϵ2∥X∥2F .

Theorem 3.1.2 provides an algorithm to compute a tensor X̃ in TT format that

approximates X (see Algorithm 8). It is also simple to observe that Algorithm 8

can be performed in parallel, since the unfoldings of a tensor are independent.

Since the unfoldings have different sizes, the amount of work assigned to

each processor in Algorithm 8 varies. Roughly speaking, processors that deal

with Xj when j is close to ⌊d/2⌋ have the most computationally expensive

59

Algorithm 8 Parallel-TTSVD: Given a tensor, compute an approximant tensor
in TT format using SVD in parallel.

Input: A tensor X ∈ Cn1×···×nd and a desired accuracy 0 < ϵ < 1
Output: TT cores G1, . . . ,Gd of an approximant X̃

1: for 1 ≤ j ≤ d− 1 do
2: Compute a rank rj approximation of the jth flattening of X in truncated

SVD form so that ∥Xj − UjΣjV
∗
j ∥F ≤ ϵ∥X∥F/

√
d− 1.

3: for 1 ≤ k ≤ d− 2 do
4: Calculate Wk+1 = U∗

k reshape(Uk+1,
∏k

i=1 ni, nk+1rk+1).
5: Set Gk+1 = reshape(Wk+1, rk, nk+1, rk+1).
6: Set G1 = U1 and Gd = Σd−1V

∗
d−1.

SVD. In practice, one can replace the SVD in Algorithm 8 with the random-

ized SVD [96], in which case the computational complexity on each processor

is O(rj
∏d

i=1 ni) where rj is the rank of the jth unfolding. In this scenario, Al-

gorithm 8 is ideal when all the rj’s are equal so that the computation is evenly

distributed across all the processors.

However, when one implements Algorithm 8 in a shared memory comput-

ing environment, such as on a multi-threaded computer, a copy of the entire

tensor X needs to be made on each processor. This might not be feasible in

many cases due to the size of the tensor. Therefore, Algorithm 8 is not practical

in these scenarios. Together with Theorem 3.1.2, they mainly serve for theo-

retical purposes to illustrate the effectiveness of Theorem 3.1.1, and build the

cornerstone for more practical algorithms such as sketching discussed in the

next section.

60

3.1.2 Parallel TT Sketching

When we cannot afford to store an individual copy of the tensor on each pro-

cessor, we cannot use SVD as it requires all the tensor entries to be in cache.

Instead, we may only be able to read a small portion of the entries of X at a time

before discarding.

A common idea in this scenario for large matrices and tensors is sketching,

where information about the matrix or tensor is obtained via matrix-vector mul-

tiplications. This idea is used for computing low-rank approximations of matri-

ces [96], Tucker decomposition on tensors [141,206], and TT decomposition [41].

In particular, SVDs in TTSVD can be replaced by sketching and a randomized

range finder [41]. Here, we develop a parallel TT sketching algorithm based on

Theorem 3.1.1 (see Algorithm 9). Since we want a truncated QR decomposition

to reveal the rank of a given matrix, we use the column pivoted QR (CPQR) [40].

This is a so-called “two-pass” algorithm since X is used twice: the first time to

compute an orthonormal basis of the column space of each unfolding, and the

second time to compute the last TT core. The implementation details of finding

the orthonormal basis are in section 3.2.2.

Since Qj has orthonormal columns for 1 ≤ j ≤ d− 1, (3.2) provides an error

bound for Theorem 9.

Theorem 3.1.3. Let X ∈ Cn1×···×nd , rrr be the desired TT core size, and p ≥ 2. The

approximation X̃ computed in Theorem 9 satisfies

E
[
∥X − X̃∥2F

]
≤

d−1∑
j=1

(
1 +

rj
p− 1

) Mj∑
k=rj+1

σ2
k(Xj)

 , (3.3)

where σk(Xj) is the kth singular value of Xj and Mj = min(
∏j

i=1 ni,
∏d

i=j+1 ni).

61

Algorithm 9 PSTT: Given a tensor, compute an approximant tensor in TT format
using sketching.

Input: A tensor X ∈ Cn1×···×nd , TT core size rrr, and an oversampling parameter
p

Output: TT cores G1, . . . ,Gd of an approximant X̃
1: for 1 ≤ j ≤ d− 1 do
2: Generate Φj ∈ R(

∏d
k=j+1 nk)×(rj+p) with i.i.d. standard Gaussian entries.

3: Calculate Sj = XjΦj , where Xj is the jth flattening of X
4: Compute a CPQR of Sj to obtain Qj with orthonormal cols and set Qj =
Qj(:,1:rj).

5: for 1 ≤ k ≤ d− 2 do
6: Calculate Wk+1 = Q∗

k reshape(Qk+1,
∏k

i=1 ni, nk+1rk+1).
7: Set Gk+1 = reshape(Wk+1, rk, nk+1, rk+1).
8: Set G1 = Q1, and Gd = Q∗

d−1Xd−1.

Further assume that p ≥ 4, then for all u, t ≥ 1,

∥X − X̃∥2F ≤
d−1∑
j=1

(1 + t
√
12rj/p)

 Mj∑
k=rj+1

σ2
k(Xj)

1
2

+ ut
e
√
rj + p

p+ 1
σrj+1(Xj)

2

,

(3.4)

with failure probability at most 5t−p + 2e−u
2/2.

Proof. The expectation bound in (3.3) follows from (3.2) and [96, Thm 10.5]. The

probability bound in (3.4) follows from (3.2) and [96, Thm 10.7].

If the accuracy in Theorem 3.1.2 is considered as a baseline, then (3.3) implies

that the error is within a constant factor of the baseline for moderate p with high

probability. We can understand the probability bound as two parts. The sum of

squares of the “tail” singular values corresponds with the expected approxima-

tion error in (3.3). Analogously, the (j +1)st singular value of each unfolding in

the second term is related to the deviation above the mean.

A bottleneck of Theorem 9 is the size of the dimension reduction maps

62

(DRMs) Φj , which grow exponentially with d. In practice, we can substitute

them with Khatri-Rao products of smaller DRMs [207]. In other words, for

1 ≤ j ≤ d − 1, instead of using Φj ∈ R
∏d

k=j+1 nk×(rj+p) with independent and

identically distributed (i.i.d.) standard Gaussian entries, we use Ψ(j)
d ⊙· · ·⊙Ψ

(j)
j+1,

where ‘⊙’ denotes the Khatri-Rao product, and Ψ
(j)
k ∈ Rnk×(rj+p) has i.i.d. stan-

dard Gaussian entries for j + 1 ≤ k ≤ d. If we partition Xj into
∏d

k=j+2 nk

subblocks each of size
∏j

k=1 nk × nj+1 as Xj =

[
(Xj)1 · · · (Xj)∏d

k=j+2 nk

]
, then

Xj

(
Ψ

(j)
d ⊙ · · · ⊙Ψ

(j)
j+1

)
=

nd∑
ℓd=1

· · ·
nj+2∑
ℓj+2=1

(Xj)I(ℓj+2,...,ℓd)Ψ
(j)
j+1Dℓd · · ·Dℓj+2

, (3.5)

where I(ℓj+2, . . . , ℓd) =
∑d

k=j+3(ℓk − 1)
∏k−1

p=j+2 np + (ℓj+2 − 1) denotes the index

of one subblock, and Dℓq is a diagonal matrix whose diagonal elements are the

elements on row ℓq of Ψ(j)
q for j + 2 ≤ q ≤ d. In other words, the product of a

tensor unfolding and a DRM is converted to a combination of subblocks of the

unfolding. Algorithm 9 with the Khatri-Rao DRMs gives slightly less accurate

approximations in practice, but the storage cost is only linear in nnn and d.

When the tensor X is too large to access its elements for a second time in

line 8 of Algorithm 9, we design a “one-pass” (or “single-pass”) algorithm that

computes Gd without using Xd−1 directly [206]. To be specific, we generate a

new dimension reduction map Ψd−1 ∈ R(
∏d−1

k=1 nk)×(rd−1+p) with i.i.d. standard

Gaussian entries and compute Td−1 = Ψ∗
d−1Xd−1 in lines 2 and 3 when j = d− 1.

Then,

Td−1 ≈ Ψ∗
d−1Qd−1Q

∗
d−1Xd−1 = (Ψ∗

d−1Qd−1)Gd. (3.6)

In this way, we have Gd ≈ (Ψ∗
d−1Qd−1)

†Td−1, where the pseudo-inverse exists

with probability 1. We use PSTT-onepass to denote this single-pass version of

Algorithm 9. Since all TT cores except the last one are obtained as in PSTT, we

63

can determine the expected error of PSTT-onepass by combining (3.3) and the

error of using single-pass approximation on the last TT core.

Theorem 3.1.4. Let X ∈ Cn1×···×nd , rrr be the desired TT core size, and p ≥ 2. The

approximation ˜̃X computed by PSTT-onepass satisfies

E
[
∥X − ˜̃X∥2F

]
≤

d−2∑
j=1

(
1 +

rj
p− 1

) Mj∑
k=rj+1

σ2
k(Xj) +

(
1 +

rd−1

p− 1

)2 Md−1∑
k=rd−1+1

σ2
k(Xd−1),

where σk(Xj) is the kth singular value of Xj and Mj = min(
∏j

i=1 ni,
∏d

i=j+1 ni) for

1 ≤ j ≤ d− 1.

Proof. As in the proof of Theorem 3.1.2, we build two sequences of matrices

to understand our approximation. Let Zd−1 = Qd−1(Ψ
∗
d−1Qd−1)

†Ψ∗
d−1Xd−1, and

for each 1 ≤ j ≤ d − 2, let Z̃j+1 = reshape
(
Zj+1,

∏j−1
k=1 nk,

∏d
k=j nk

)
and Zj =

QjQ
∗
j Z̃j+1. Then, from (3.2) we find that

∥X − ˜̃X∥2F ≤
d−2∑
j=1

∥(I −QjQ
∗
j)Xj∥2F + ∥Zd−1 −Xd−1∥2F .

So, we only need to bound the second term on the right hand side, which rep-

resents the error of using single-pass approximation on the last TT core. Let

Ed−1 = (Ψ∗
d−1Qd−1)

†Ψ∗
d−1Xd−1, then

∥Zd−1 −Xd−1∥2F = ∥Qd−1Ed−1 −Xd−1∥2F

= ∥Qd−1Q
∗
d−1Qd−1Ed−1 −Qd−1Q

∗
d−1Xd−1 +Qd−1Q

∗
d−1Xd−1 −Xd−1∥2F

= ∥Qd−1Ed−1 −Qd−1Q
∗
d−1Xd−1∥2F + ∥Qd−1Q

∗
d−1Xd−1 −Xd−1∥2F

= ∥Ed−1 −Q∗
d−1Xd−1∥2F + ∥(I −Qd−1Q

∗
d−1)Xd−1∥2F ,

where the third equality holds since Qd−1Q
∗
d−1 and I −Qd−1Q

∗
d−1 are orthogonal

64

projectors. We are left to bound ∥Ed−1−Q∗
d−1Xd−1∥2F . Plugging in Ed−1, we have

∥Ed−1 −Q∗
d−1Xd−1∥2F = ∥(Ψ∗

d−1Qd−1)
†Ψ∗

d−1Xd−1 −Q∗
d−1Xd−1∥2F

= ∥(Ψ∗
d−1Qd−1)

†Ψ∗
d−1Xd−1 − (Ψ∗

d−1Qd−1)
†(Ψ∗

d−1Qd−1)Q
∗
d−1Xd−1∥2F

= ∥(Ψ∗
d−1Qd−1)

†Ψ∗
d−1(I −Qd−1Q

∗
d−1)Xd−1∥2F .

The error bound follows from [206, Lemma B.1].

The CPQR in line 4 of Algorithm 9 can be expensive when j is large, and

this still remains an issue when we use the “single-pass” algorithm. It is simple

to notice that Theorem 3.1.1 also holds for the row spaces of the unfoldings of

X . Let d∗ = ⌈d
2
⌉. Then in practice, we compute Qj , orthonormal bases for the

column spaces of Xj when j < d∗, and Pj , orthonormal bases for the row spaces

of Xj when j > d∗. In this way, the TT cores Gj for j ̸= d∗ can be calculated

similarly using lines 6 and 7 of Algorithm 9, and the TT core in the middle Gd∗

needs one extra step

Gd∗ = reshape

(
X ,

d∗−1∏
j=1

nj, nd∗ ,
d∏

j=d∗+1

nj

)
×1 Q

∗
d∗−1 ×3 P

∗
d∗+1. (3.7)

We call this variation PSTT2 to indicate that both column spaces and row spaces

of tensor unfoldings are utilized, and the accuracy bounds in Theorem 3.1.3 con-

tinue to hold for PSTT2. Moreover, one can design PSTT2-onepass, a one-pass

version of PSTT2, by carrying out an extra sketching step for the middle unfold-

ingXd∗ . The sketching step can be performed on either the row or column space

of Xd∗ , and a pseudo-inverse follows it as in (3.6) to obtain Gd∗ .

65

3.1.3 Parallel TT and orthogonal Tucker conversion

Some applications, including signal processing [54], computer vision [216], and

chemical analysis [105], construct and manipulate tensor data in the Tucker for-

mat. If one wants to explore latent structures in the TT format, a common ap-

proach is to convert the tensor back to the original format and then perform a

TT decomposition. This method has a major drawback: it needs to explicitly

construct the tensor in the original format, which ignores the low-rank struc-

ture one intends to utilize in both TT and Tucker format. Here, we develop

a method to directly approximate a tensor X in orthogonal Tucker format by

another tensor X̃ in TT format.

If X has an orthogonal Tucker format (1.7), and H1, . . . ,Hd are the TT cores of

G, then the TT cores of the tensor E×jAj are H1, . . . ,Hj−1,Hj×2Aj,Hj+1, . . . ,Hd.

In this way, (1.7) is equivalent to updating each TT core of G independently with

the Tucker factor matrices. Therefore, we can use these updated cores as the TT

cores of an approximation X̃ (see Algorithm 10).

Algorithm 10 Tucker2TT: Given the Tucker decomposition of a tensor, compute
an approximant tensor in TT format.

Input: The Tucker core E and factor matrices A1, . . . , Ad of a tensor X (see (1.7))
Output: The TT cores T1, . . . , Td of an approximant tensor X̃

1: Perform a parallel TT decomposition on E and get TT cores H1, . . . ,Hd.
2: for 1 ≤ j ≤ d do
3: Set Tj = Hj ×2 Aj .

As the Tucker core, E is much smaller in size than the original tensor X , so

line 1 of Algorithm 10 is computationally cheaper than forming X explicitly and

computing a TT decomposition. In addition, the parallel TT decomposition to

be used in line 1 depends on whether there is a prescribed accuracy of 0 < ϵ < 1

or a prescribed TT rank rrr. Finally, =since all Aj’s have orthonormal columns,

66

and

Xj = (Aj ⊗ · · · ⊗ A1)Ej(Ad ⊗ · · · ⊗ Aj+1)
T ,

we find that rank(Xj) = rank(Ej) for 1 ≤ j ≤ d − 1. Therefore, the accuracy of

Algorithm 10 depends on the parallel TT decomposition in line 1.

If one is provided with a tensor X in TT format, then it is also possible to find

an approximation X̃ in orthogonal Tucker format. By explicit calculation, one

finds that Xj , the jth unfolding of the tensor X for 1 ≤ j ≤ d, can be computed

with the unfoldings of the TT cores:

Xj =

j−1∏
i=1

(
I∏j

k=i+1 nk
⊗ (Gi)2

)
(Gj)2(Gj+1)1

d∏
i=j+2

(
(Gi)1 ⊗ I∏i−1

k=j+1 nk

)
, (3.8)

where In is the identity matrix of size n× n, and (Gi)p is the pth unfolding of Gi

for 1 ≤ p ≤ 2. Then, rewriting (3.8) gives Xj = Pj(Gj)2Qj and

Pj = Inj
⊗

(
j−1∏
i=1

(
I∏j−1

k=i+1 nk
⊗ (Gi)2

))
, Qj =

d∏
i=j+1

(
(Gi)1 ⊗ I∏i−1

k=j+1 nk

)
.

We find that

reshape(X ,
j−1∏
k=1

nk, nj,
d∏

k=j+1

nk) = Gj ×1

(
j−1∏
i=1

(
I∏j−1

k=i+1 nk
⊗ (Gi)2

))

×3

(
d∏

i=j+1

(
(Gi)1 ⊗ I∏i−1

k=j+1 nk

))
.

We can therefore find relationships between matricizations of X and those of Gj :

X(j) = (Gj)(2)

(d∏
i=j+1

(Gi)1 ⊗ I∏i−1
k=j+1 nk

)
⊗

(
j−1∏
i=1

I∏j−1
k=i+1 nk

⊗ (Gi)2

)T
 ,

where X(j) is the jth matricization of X and (Gj)(2) is the second matriciza-

tion of Gj . When (G1)2, . . . , (Gj−1)2 have linearly independent columns and

(Gj+1)1, . . . , (Gd)1 have linearly independent rows, the column space ofX(j) and

(Gj)(2) match. This criterion can be satisfied when the TT core size is the TT

67

rank of X . In this way, since Tucker decomposition algorithms such as HOSVD

or Tucker sketching use orthonormal bases of column spaces of X(j) as factor

matrices, we can find an orthogonal Tucker approximation of X simply by re-

placing X(j) by (Gj)(2). We summarize this procedure in Algorithm 11, and use

a particular version of HOSVD (see [23, Alg. 1]). This algorithm is also equiva-

lent to the computing routines introduced in [58, Sec. 4.1], with simpler tensor

notations.

Algorithm 11 TT2Tucker: Given a tensor in TT format, compute an approximant
tensor in orthogonal Tucker format.

Input: The TT cores T1, . . . , Td of a tensor X
Output: The TT cores H1, . . . ,Hd of the Tucker core E , and factor matrices

A1, . . . , Ad of X̃
1: for 1 ≤ j ≤ d do
2: Compute Aj with orthonormal columns that approximates column

space of (Tj)(2).
3: Calculate Hj = Tj ×2 A

∗
j .

This algorithm is parallelizable since the TT cores of X are independent.

Users need to either prescribe a desired accuracy or a multilinear rank to dis-

cover orthonormal bases of column spaces in step 2. HOSVD guarantees the

performance of this algorithm if we use SVD, or [206, Thm. 5.1] if we use sketch-

ing. Compared to HOSVD or Tucker sketching, Algorithm 11 is faster due to the

known TT cores. As a result, memory costs and computation powers can be sig-

nificantly reduced.

68

3.2 Complexity Analysis and Numerical Examples

In this section, we model the computational and spatial cost of the proposed

methods for TT decomposition, and compare these models with numerical ex-

periments2. For simplicity, we assume that the tensor X of dimension d is

“square,” meaning that ni = n for all 1 ≤ i ≤ d and ri = r for all 1 ≤ i ≤ d− 1.

We focus on the two-sided sketching methods PSTT2 and PSTT2-onepass

defined at the end of section 3.1.2, since both the SVD based and the one-sided

PSTT algorithms have poor spatial complexity. In addition, the SVD algorithm

is much slower than the counterparts with sketching. As a baseline, we compare

the results to a modified version of Algorithm 5.1 in [41], which is referred to in

this manuscript as Serial Streaming TT Sketching (SSTT).

In section 3.2.1, we discuss the computational environment and software

used to implement our methods. Next, in section 3.2.2, we discuss how PSTT2,

PSTT2-onepass, and SSTT are modified to be performed in a distributed mem-

ory environment. In section 3.2.3, we discuss the improvements of PSTT2 and

PSTT2-onepass over previous serial algorithms in terms of spatial complexity.

Finally, in section 3.2.4 we discuss time complexity of these algorithms. To il-

lustrate the practicality of our algorithms, we show numerical experiments in

section 3.2.3 and section 3.2.4.
2For codes, see https://github.com/SidShi/Parallel_TT_sketching

69

https://github.com/SidShi/Parallel_TT_sketching

3.2.1 Computational Details

All experiments are performed in C, using the OpenMPI implementation of MPI

for parallelization. All subroutines take advantage of LAPACKE and BLAS to

vectorize large linear algebra operations, such as matrix-matrix multiplication

and QR factorization. Experiments are performed on a machine with eight 12-

core compute nodes, each consisting of two Intel Xeon E5-2620 v3 processors

with 32 GB per node. For each trial, we measure the relative Frobenius error of

the TT approximation, and achieve ϵ < 10−10 (see (1.5)). For our experiments,

we assume that the ranks are known a priori. Nevertheless, when they are not

known, one can implement an adaptive algorithm such as Algorithm 5.2 in [41].

To measure the memory improvements of the two-sided methods, we com-

pare the total allocated memory using the gperftools implementation of TC-

Malloc. In particular, the memory is measured on each core and then averaged.

Transient memory allocations by MPI are ignored in the overall memory mea-

surement.

Throughout the following sections, we refer to some standard MPI functions

to describe the parallel algorithm. These primarily include

• Send: the operation of sending some array of memory from one core to an-

other.

• Receive: the operation of receiving the memory sent by send.

• Reduce: the operation of summing matrices from a group of cores, used to

summarize information gained by individual cores.

To avoid confusion in the following sections, we use “core” to refer to a single

70

core of the CPU. This is different from a “TT core” in the TT format.

3.2.2 Parallel Tensor Sketching

We first discuss the process of parallelizing SSTT, PSTT2, and PSTT2-onepass.

We focus on the parallel sketching step, which is responsible for most of the

time and storage. The predominance of the sketching step is emblematic of the

“compress-then-combine” approach, as most of the computational work hap-

pens when compressing. The other steps needed for a fully parallel algorithm

are discussed at the end of the section.

The parallel algorithms have a structure that is reminiscent of dense

matrix-matrix multiplication algorithms such as Cannon’s algorithm [38] or

SUMMA [214]. These algorithms perform the operation C = AB by dividing A,

B, and C into submatrices and distributing these submatrices across multiple

cores. In this way, the overall spatial complexity is reduced.

For the parallel implementation of the TT sketching algorithms, a natural

extension is to partition an unfolding Xj into submatrices, and then proceed

with standard matrix-matrix multiplications for the sketch step (see Algorithm

9)

Si = XiΦi. (3.9)

However, a computational hurdle with this approach is that we need to sketch

multiple unfoldings during the same computational step since we want as few

passes of the tensor as possible. As such, we aim for a guarantee that if M is a

submatrix of Xi, then some reshaping of M is also a submatrix of Xi′ for some

i ̸= i′. In this way, parallel linear algebra algorithms work equally well for all

71

unfoldings.

For this reason, we introduce the notion of a sub-tensor, which is a multi-

linear generalization of the submatrix. Sub-tensors have previously been used

for computing the Tucker decomposition in parallel [16] as well as hierarchical

sub-tensor decompositions [66]. They have also been proposed specifically for

the matricized-tensor times Khatri-Rao product (MTTKRP) in [17, 18], which is

similar to the algorithm we develop in this section. In each dimension k, we

partition the tensor index 1 ≤ ki ≤ n into Pi equal “chunks” (or in the case that

Pi does not divide into n, nearly equal chunks). In MATLAB notation, we have

that Yj is a sub-tensor of X if

Yj = X
(
1 +

n(j1 − 1)

P1

:
nj1
P1

, 1 +
n(j2 − 1)

P2

:
nj2
P2

, . . . , 1 +
n(jd − 1)

Pd
:
njd
Pd

)
,

where j = (j1, . . . , jd) is a multi-index specifying the target sub-tensor. Defining

P =
∏d

k=1 Pk, it is clear that the memory needed to store Yj is a factor of 1/P

smaller than the memory needed to store X . We also notice that any unfolding

of Yj is a submatrix of an unfolding of X , although those submatrices are not

necessarily contiguous. Lastly, for notational simplicity, we use the column-

major block index

j = j1 + (j2 − 1)P1 + · · ·+ (jd − 1)P1 . . . Pd−1,

and in this way, we have Yjjj = Yj .

The sub-tensor gives an efficient method to store one part of the multiplica-

tion in (3.9). To be specific, the matrix Φi can be stored in d or fewer matrices

of size O(nr) via the Khatri-Rao DRMs in (3.5). This is a small enough cost that

each core can store every Φi. As a result, the only thing we need to distribute

is the “sketch” Si. In fact, the matrices Si dominate the memory complexity of

72

PSTT2 and PSTT2-onepass (see section 3.2.3), and are therefore important to dis-

tribute. We distribute them by splitting Si into sub-sketches Si,k, with the column

sub-sketches defined by

Si,k = reshape(Si, n, . . . , n︸ ︷︷ ︸
d−L

, r)

(
1 +

n(k1 − 1)

P1

:
nk1
P1

, . . . , 1 +
n(kd−i − 1)

Pd−i
:
nkd−i
Pd−i

, :

)
.

(3.10)

We note that sketches for finding row spaces are performed by simply using XT
j

instead of Xj in (3.9). Row sub-sketches and the other necessary steps can be

immediately derived from the same reasoning.

Using the notions of sub-tensors and sub-sketches, we can expand (3.9) into

an explicit form with the Khatri-Rao DRMs Ψℓ as Si,k =
∑Pi+1

ji+1=1 · · ·
∑Pd

jd=1 Si,k,j

with

Si,k,j =reshape

(
Yj,

n

P1

, . . . ,
n

Pi
,

d∏
ℓ=i+1

n

Pℓ

)
×i+1(

Ψ
(i)
d

(
1 +

n(jd − 1)

Pd
:
njd
Pd

, :

)
⊙ · · · ⊙Ψ

(i)
i+1

(
1 +

n(ji+1 − 1)

Pi+1

:
nji+1

Pi+1

, :

))T
,

(3.11)

where Si,k,j is the contribution of the sub-tensor Yj to the sub-sketch Si,k, under

the condition that j(1 : i) = k.

Now, we write down the parallel sketching procedure, which is a subroutine

(see Algorithm 12) for PSTT2, PSTT2-onepass, and SSTT. For generality, we as-

sume that the input to each algorithm is some function f that takes as input the

index of the tensor (ℓ1, . . . , ℓd), and outputs a value of the tensor Xℓ1,...,ℓd . This

function allows us to load parts of the tensor into memory without necessarily

loading the full tensor. We also assume that the time it takes to load a single

element τf does not depend on the element or the number of elements loaded

concurrently. Often, loading or computing the tensor via f is the dominant time

73

cost of the algorithm. In practice, f can be a function that reads data from a

file, or evaluates a given function. In the former case, the assumption that f can

be called independently from individual nodes may be false, as there are likely

bottlenecks to loading data at some maximum bandwidth. At the beginning of

the algorithm, if the tensor is stored completely in memory, then one can assume

that τf = 0. In this situation, our algorithm only has a constant (but not asymp-

totic) improvement in memory costs, and the fastest algorithm for computing

the TT decomposition is parallelized SSTT.

Algorithm 12 outputs full sketches Si for multiple values of i, and each of

the sketches is stored as sub-sketches across all cores. As a consequence of the

requirement that each sub-sketch is distributed, we must have that P is at least

C2. To see this, apply PSTT2 to a tensor with n > C. The algorithm performs

a column sketch on the first unfolding, and a row sketch on the last unfolding.

For the first unfolding, the sketch matrix is divided into sub-sketches according

to only P1, implying that P1 ≥ C for each core to receive at least one sub-sketch.

A similar argument for the last row sketch implies that Pd ≥ C as well, so P ≥

P1Pd ≥ C2. As a result, we choose the partition to be concentrated only on P1

and Pd in practice. Comparatively, if n < C, it is impossible to evenly distribute

the sketch, so we extend the partition to include at least m dimensions until

nm > C. That is, we require P1 · · ·Pm ≥ C and Pd · · ·Pd−m+1 ≥ C, so that the

mth column and row sketches are distributed. When the tensor is stored fully in

memory, one can simply assume that each core already holds P/C sub-tensors,

and that τf = 0 for the analysis in the following sections.

Due to the requirement that P ≥ C2, we make the additional assumption

that C divides into both P1 and Pd evenly (or, if n < C, C divides P1 · · ·Pm and

74

Pd · · ·Pd−m+1). This ensures that the algorithm is load-balanced, meaning each

core is responsible for sketching P/C sub-tensors, and storing a factor of 1/C

of the number of sub-sketches Si,j . By default, we assume that the sub-sketches

are distributed in “column-major” order, i.e., the cores each store sub-sketches

Si,j that are consecutive in j. To contribute the sub-sketch to the core holding

Si,k, it is necessary to add an additional send/receive communication step. This

algorithm is convenient for PSTT2 and PSTT2-onepass, as all sub-sketches can

be computed with a single stream of a given sub-tensor.

Algorithm 12 Find multiple sketches of a tensor in parallel.

Input: Tensor oracle f , sketch dimensions i, Khatri-Rao DRMs Ψ(k)
i

Output: Sketches Si for all i ∈ i
1: Initialize Si,k to zero for each i ∈ i, distributed among the available cores
2: parallel for 1 ≤ j ≤ P do
3: Load Yj into memory via f
4: for i in i do
5: Compute Si,k,j via (3.11)
6: Send Si,k,j to owner of Si,k
7: for each Si,k,j′ received do
8: Add Si,k,j′ to Si,k

When P = C, the tensor is already loaded, and we only compute a single

sketch (i.e., i has length 1), Algorithm 12 is equivalent to Algorithm 2 in [17]

for computing the MTTKRP. The only difference is we assume that the factor

matrices Ψ(k) are assessible by all cores. This assumption allows for one fewer

communication step, and only sacrifices a factor of O(rn) in spatial complex-

ity per core. These conditions apply in the algorithm for SSTT, as only a single

sketch needs to be performed at a time. For PSTT2 and PSTT2-onepass, we re-

quire multiple sketches and P ≥ C2 for load balance, so the algorithms diverge.

We illustrate the use of Algorithm 12 on a simple and small tensor in the next

example.

75

Example. Consider the tensor X ∈ R2×2×2, and we wish to sketch the column space

of the first unfolding (i = {1}) with rank r = 1, a number of cores C = 2, and the

partition P = {C, 1, C}. Here, we explain with no oversampling, i.e., p = 0, but in

practice we use p = 2. The entries of X can be written as

X (:, :, 1) =

 X111 X121

X211 X221

 , X (:, :, 2) =

 X112 X122

X212 X222

 ,
where we have put in lines to designate how the tensor is partitioned. We assign the

first core to stream j = 1 (X(1, :, 1)) and j = 3 (X(1, :, 2)), and the second core to

stream j = 2 (X(2, :, 1)) and j = 4 (X(2, :, 2)). We then multiply each tensor against

the DRMs

Ψ
(2)
1 =

 Ψ
(2)
1,1

Ψ
(2)
1,2

 , Ψ
(3)
1 =

 Ψ
(3)
1,1

Ψ
(3)
1,2

 ,
where include a line to emphasize that Ψ(3) is partitioned according to P3. Each core is

assumed to know the full matrices Ψ(2) and Ψ(3) at the start of the algorithm. Before the

loop, core 1 initializes S1,1 = [0] and core 3 initializes S1,2 = [0].

In the first loop of the iteration, core 1 streams j = 1 and core 3 streams j = 3,

where core 1 calculates S1,1,1 and core 2 calculates S1,2,2 by the multiplications

S1,1,1 =

[
X111 X121

] Ψ
(3)
1,1Ψ

(2)
1,1

Ψ
(3)
1,1Ψ

(2)
1,2

 , S1,2,2 =

[
X211 X221

] Ψ
(3)
1,1Ψ

(2)
1,1

Ψ
(3)
1,1Ψ

(2)
1,2

 .
Because core 1 owns S1,1 and core 2 owns S1,2, there is no communication at this step.

Core 1 adds S1,1,1 to S1,1 and core 2 adds S1,2,2 to S1,2. In the next step, core 1 streams

j = 3 and core 2 streams j = 4, and they perform the multiplications

S1,1,3 =

[
X112 X122

] Ψ
(3)
1,2Ψ

(2)
1,1

Ψ
(3)
1,2Ψ

(2)
1,2

 , S1,2,4 =

[
X212 X222

] Ψ
(3)
1,2Ψ

(2)
1,1

Ψ
(3)
1,2Ψ

(2)
1,2

 .

76

Again, there is no communication to be done, so core 1 adds S1,1,3 to S1,1 and core 3

adds S1,2,4 to S1,2. This is the end of the algorithm.

One can confirm that the output is the same as the full unfolding multiplication:

 S1,1

S1,2

 =

 X111 X121 X112 X122

X211 X221 X212 X222

Ψ
(3)
1,1Ψ

(2)
1,1

Ψ
(3)
1,1Ψ

(2)
1,2

Ψ
(3)
1,2Ψ

(2)
1,1

Ψ
(3)
1,2Ψ

(2)
1,2

.

Note that no communication is required for the first sketch since: (i) we assume every

core knows every DRM in full, and (ii) core ℓ streams the sub-tensor “rows” that corre-

spond to the sketch it owns, i.e., in the order Yℓ,Yℓ+C , . . . ,Yℓ+C(C−1). As a result, there

is no communication for column sketches. However, communication is still required for

row sketches, so this fact primarily benefits SSTT.

In all three algorithms, the step after Algorithm 12 is to find an orthonormal

basis for Si,k, except for the middle sketch of PSTT2-onepass. For this purpose,

we use the skinny QR algorithm in [29], which is fast and has a low memory

overhead in comparison to the sketching step. These sketches are then con-

verted to TT cores, and we assume that each processor has enough memory

to store a full tensor train. Other steps for specific algorithms that need to be

parallelized are:

• SSTT: The first step is to find an orthonormal basis for the column space us-

ing Algorithm 12 with i = 1 and skinny QR, and use this basis as the first

TT core G1. Because G1 only has nr entries, it can be stored in each core to

reduce the overall required communication. Then, we compute Z = GT1 X1

and obtain sub-sketches of Z with Algorithm 12. These sketching and multi-

plication steps are repeated until all TT cores are obtained, and we distribute

77

all sub-sketches among the cores. Overall, the second pass of streaming takes

a significant amount of time, and the largest storage contribution comes from

storing the first calculated Z.

• PSTT2: To obtain all but the middle TT core, it is necessary to multiply or-

thonormal bases of column/row spaces against each other via (3.1), which

can be easily rewritten in terms of sub-tensors. Since the orthonormal bases

are much smaller than the tensor itself, communicating sub-sketches avoids

high communication costs. In the end, the middle TT core is obtained via an-

other streaming loop to perform (3.7), which adds significant computational

time to the overall algorithm.

• PSTT2-onepass: All TT cores but the middle one are obtained as in PSTT2.

Then, the middle TT core is computed with two matrix-matrix multiplica-

tions and a small least-squares problem. These are rewritten in terms of sub-

sketches, and are cheap as they use already compressed data.

3.2.3 Memory Complexity

In this section, we analyze the memory complexity of our algorithms. We give

estimates of the memory costs of a sub-tensor, a TT representation, and the

three algorithms SSTT, PSTT2, and PSTT2-onepass. The asymptotic costs are

then compared to measured total memory allocation per core from numerical

experiments, showing PSTT2 and PSTT2-onepass have lower overall memory

requirements, especially for high-dimensional tensors.

Throughout the section, we focus on trials using the Hilbert tensor, defined

78

d 3 5 9
n 960, 960, 960 96, 96, 96, 96, 96 12, 12, 12, 12, 12, 12, 12, 12, 12
r 1, 25, 25, 1 1, 17, 18, 18, 17, 1 1, 12, 18, 18, 19, 19, 18, 18, 12, 1
P 96, 1, 96 96, 1, 1, 1, 96 12, 6, 1, 1, 1, 1, 1, 6, 12

tensor size 6.59 GB 60.8 GB 38.4 GB
TT size 4.94 MB 0.710 MB 0.197 MB

sub-tensor size 0.769 MB 6.79 MB 7.60 MB

Table 3.1: Dimensions and memory sizes of the three tensors used for profil-
ing. The ‘tensor size’ line is calculated through the formula 8nd/230, and the ‘TT
size’ and ‘sub-tensor size’ lines are measured via heap profiling. One can con-
firm that the sub-tensor sizes are nearly a factor of 1/P off from the tensor size,
with discrepancies due to auxiliary information stored in the sub-tensor data
structure. The ranks r are determined using asymptotic formulas from [193].
The choices of P align with our assumption of load balancing, so the sub-tensor
sizes are equal for every core. A full TT is allocated on every core as well.

as

Xi1,...,id =
1

1− d+ i1 + · · ·+ id
, 1 ≤ ij ≤ nj, 1 ≤ j ≤ d.

It is known that this tensor can be accurately approximated by a numerically

low TT rank tensor, and the TT ranks can be estimated a priori [193]. Also, it is

apparent that the total memory allocated does not depend on actual values of

the tensor, but only on the dimension d, sizes n, and ranks r. Therefore, even

though the Hilbert tensor is an artificial example, the memory results generalize

to real-world tensors of similar sizes and ranks. We report numerical experi-

ments for d = 3, d = 5, and d = 9 Hilbert tensors with sizes n, ranks r, and

partitions P given in Table 3.1. The dimensions are chosen to represent a range

of practical tensor dimensions. The partitions are chosen so that P = 962, i.e.,

they match the minimum value of P for PSTT2 and PSTT2-onepass discussed

in section 3.2.2 for C = 96.

For each core, the number of stored entries of a sub-tensor and a TT format

are

Msub−tensor = nd/P, MTT = (d− 2)r2n+ 2rn,

79

where we use capital ‘M ’s to denote all spatial costs. For the actual memory

required, these quantities can be multiplied by the memory of a single entry. We

note that neither of the above costs depend explicitly on the number of cores C,

assuming P > C. The memory requirements for the three Hilbert examples are

given in Table 3.1. We see that while the tensors have sizes in the gigabyte range,

each of the cores only stores on the order of megabytes for the given values of

P. In addition, if the tensor is distributed in memory at the beginning of the

algorithm, the amount of storage for the sub-tensor is Msub−tensor = nd/C, and

this is always the dominant cost.

One can then express the memory costs of the individual algorithms as:

• SSTT: As mentioned in section 3.2.2, the predominant memory cost comes

from storing the first calculation Z = GT1 X1, which has rnd−1 entries. We

distribute the entries among all cores, so the asymptotic memory cost of SSTT

is

MSSTT = O(rnd−1/C). (3.12)

• PSTT2: The only major storage cost is to store the sketches. Each column

sketch has a per-core memory cost of

MSi
= O(nir/C + (d− i)nr),

where the two terms are the memory needed for Si and the random Khatri-

Rao DRMs. One needs to be careful that the above expression holds when P is

large enough in the correct dimensions so that Sj can be split into C different

sub-sketches. In practice, we choose P that the divisions are concentrated

near P1 and Pd as in Table 3.1. This allows all column and row sketches to be

distributed among the cores. We choose the middle index d∗ = ⌈d/2⌉ so that

80

the storage is balanced among row and column sketches, and thus the overall

storage of PSTT2 is

MPSTT2 = O
(
rn⌊d/2⌋/C + drn

)
. (3.13)

When d > 4 and C ≪ n, the first term dominates the second, improving upon

SSTT by a factor of n⌈d/2⌉−1. When d = 3, the second term – the storage cost

of the DRMs – exceeds that of the actual sketch matrices. Nevertheless, this

complexity is better than that of SSTT, which depends on n2.

• PSTT2-onepass: The storage cost of PSTT2-onepass is different from that of

PSTT2 only because of the final middle sketch. Hence, the complexity is

MPSTT2−onepass = O
(
rn⌈d/2⌉/C

)
. (3.14)

When d is even, this spatial complexity is asymptotically the same as (3.13).

When d is odd, however, the two complexities differ. This is most appar-

ent for d = 3, when (3.14) matches (3.12), leading to neither algorithm being

better in storage.

In practice, all our algorithms require some extra memory for the communicated

quantities. However, this cost depends on 1/P , which is by assumption less

than 1/C, and is thus absorbed in our asymptotic statements.

In Figure 3.1, we see the memory allocated per-core as a function of the to-

tal number of cores C for the three different Hilbert tensor TT computations,

discounting the allocations of the sub-tensor and the TT. We discount these al-

locations because each algorithm requires the same allocation of memory for

these components. The rest of the allocation is dominated by the size of the

sketches themselves. For PSTT2, the memory allocated for sketches is compara-

ble to the sub-tensor size in Table 3.1, but for SSTT and PSTT2-onepass the cost

81

Figure 3.1: Measured memory allocated per-core for (left) d = 3, (middle) d = 5,
and (right) d = 9 Hilbert tensors, discounting the memory allocated for sub-
tensors and the TT. The right plot is missing a single data point for SSTT with
C = 12 because the d = 9 tensor is too large to store in memory. See Table 3.1
for additional details of each experiment.

of sketching is larger in comparison. For each algorithm and each Hilbert ten-

sor, we use C = 12, C = 24, C = 48, and C = 96. We see that PSTT2 reliably has

the smallest memory overhead, and the improvement over SSTT increases as

the dimension increases. This agrees with the asymptotic expectations of (3.13)

and (3.12). We see that PSTT2-onepass also improves upon SSTT for all but the

d = 3 trial, where the two asymptotic spatial complexities agree. Moreover, the

d = 9, C = 12 SSTT trial data is missing due to an out-of-memory error. This

occurs because the first sketch has r1 = n1, leading to no compression on the

first step of SSTT. As a result, the first Z calculated needs to store the full tensor

of 38.4 GB in memory, which is over the 32 GB limit of a single node.

As a function of C, the PSTT2 memory profiles are relatively flat due to the

importance of storing sketch matrices. Specifically, PSTT2 storage costs are more

influenced by the cost of storing DRMs and other similarly sized allocations,

especially for small d. These costs are constant per-core, whereas the sub-sketch

storage costs are distributed evenly across the cores as much as possible.

82

3.2.4 Time Complexity

The major cost of our algorithms is streaming via the function f , which we as-

sume to be proportional to the size of the tensor. Because streaming is evenly

split amongst the cores, the complexity to stream the tensor once is

Tstream = τfn
d/C, (3.15)

where capital ‘T ’s are used to designate time complexities. From numerical

experiments, we find that (3.15) takes a significant portion of the computation

time in the C = 1 setting with no communication. We also want to remark that

PSTT2-onepass has half the cost of streaming since it only streams the tensor

once.

Even when the function evaluation is cheap, the time to multiply the DRMs

against the sub-tensors can still be expensive. There are d−1 sketches for PSTT2,

each with a time cost of O(rnd/C), and this leads to a total sketching time of

O(drnd/C). PSTT2-onepass has a single more sketch to compute, but the com-

plexity is the same as d becomes large. Comparatively, SSTT has a leading order

complexity of O(rnd/C), as only the first sketch and calculation of Z involve

multiplications with the full tensor. For this reason, SSTT is expected be faster

for high-dimensional tensors, at the expense of an increased storage cost.

For our experiments, we begin by comparing the single-core timing of the

three presented algorithms to the standard TTSVD algorithm in TT-Toolbox

written in MATLAB [161]. In the case of a single core with only a single par-

tition (P = C = 1), SSTT exactly matches the algorithm presented in [41], where

the authors observe speedups of around a factor of 10 for multiple large, low-

rank tensors. To test that we have a similar speedup, we factor the d = 3 and

83

Figure 3.2: A timing comparison between the presented algorithms SSTT,
PSTT2, and PSTT2-onepass to the TT-Toolbox package function tt tensor
[161] on the random tensor with C = 1 and P = 1. In each plot, the dimen-
sion d is held fixed with d = 3 (left) and d = 5 (right), and the tensor size n
varies. The rank for d = 3 is held fixed at r = 10 and the rank for d = 5 is held
at r = 8.

d = 5 tensors, both with the TT-Toolbox command tt tensor and our im-

plementations of SSTT, PSTT2, and PSTT2-onepass for varying values of n (see

Figure 3.2). With a given rank, we construct a random tensor from its TT repre-

sentation, which is consisted of i.i.d. standard Gaussian entries. For the d = 3

tensors, we choose r = 10, and for d = 5, we choose r = 8. For these tests,

we omit the time of streaming for ease of comparison to [41], i.e., τf = 0. The

single-core experiments are performed on a personal computer with an Intel

Core i7-7700 CPU with 3.60 GHz and 16 GB RAM.

In Figure 3.2, we see that all three of the sketching algorithms are faster than

TT-Toolbox for large n, since the SVD steps in TT-Toolbox use a version of SVD

that has a time complexity of O(nd+1) for the first unfolding. This leads to a

speedup on the order of n/r for the sketching algorithms. For d = 3 and n = 512,

SSTT is faster than tt tensor by a factor of 43.5. For d = 5 and n = 42, SSTT is

faster than tt tensor by a factor of 14.5. For large n, all three sketching algorithms

have about the same cost for d = 3, and for d = 5 SSTT is faster than PSTT2 and

84

Figure 3.3: Strong scaling for the Hilbert tensor (left) d = 5, and (right) (b) d = 9.
On each plot, a black line with slope −1 is shown for comparison (see Table 3.1
for details).

PSTT2-onepass by a factor of about 1.6.

Figure 3.3 shows the strong scaling timing results for the same d = 5 and

d = 9 Hilbert tensors in the memory experiments (see Table 3.1). The slopes

of the strong scaling times are near −1 for all algorithms and both values of d,

i.e. the time nearly scales as 1/C. This agrees with both (3.15) and the scaling

of multiplying against the tensor. We see that PSTT2 and SSTT take comparable

amounts of time for d = 9 and PSTT2 is moderately faster for d = 5. However,

the speedup is only by a constant factor, and is difficult to predict. In compari-

son, PSTT2-onepass is significantly faster than the other two algorithms, due to

the single streaming loop. For d = 5 and C = 96, PSTT2-onepass is faster than

PSTT2 by a factor of 1.11 and faster than SSTT by a factor of 1.37. For d = 9,

PSTT2-onepass is faster than PSTT2 by a factor of 1.10 and SSTT by 1.14.

85

3.2.5 Communication Cost

Now, we turn to a discussion of the communication cost. From inspection of

Algorithm 12, we see that the multi-sketching step has dP sends and receives

in the worst case scenario. However, since the core that calculates Si,k,j also

stores Si,k, not every communication is necessary. As noted in Example 3.2.2,

the first sketch of SSTT can be performed with zero communication when the

cores stream rows of the first unfolding. SSTT still requires communication for

the QR decomposition, but the bandwidth cost for each core is only O(log(C)r2).

For PSTT2 and PSTT2-onepass, this strategy of streaming rows of unfoldings

can also eliminate the communication for column space sketches, but the cost of

communicating row sketches remains. The worst case bandwidth cost is when

every row sub-sketch obtained by a given core is communicated. Each core

streams P/C sub-sketches, and each sub-sketch has a size of O(rn⌊d/2⌋/C) for

PSTT2 and O(rn⌈d/2⌉/C) for PSTT2-onepass, leading to the worst case band-

width costs

BPSTT2 = O(rdn⌊d/2⌋P/C2), BPSTT2−onepass = O(rdn⌈d/2⌉P/C2). (3.16)

In each of our examples in Table 3.1, we choose P = C2 for C = 96, the largest

considered value of C. The cost of communication is approximately propor-

tional to the size of a sketch times the number of sketches. For trials with

C = 12, (3.16) predicts a quadratic slowdown by a factor of 16, but this amount

still leaves the bandwidth costs asymptotically much smaller than the costs of

the matrix multiplications for large n. However, if we increase P , the cost of

communication dominates, so (3.16) reveals a balance between memory effi-

ciency and communication efficiency. As more messages are sent, there is an in-

creased cost due to latency and synchronization as well. As a result, streaming

86

Figure 3.4: Strong scaling for the d = 3 Hilbert tensor (left) and d = 3 Gaussian
bumps tensor (right). On each plot, a black line with slope −1 is shown for
comparison (see Table 3.1 for details).

larger sub-tensors is generally preferable when there is sufficient space avail-

able in memory. The cost in (3.16) is pessimistic when compared to the bounds

for MTTKRP [18], and we have not solved the problem on how to optimally

distribute sub-tensors when one is interested in computing sketches of every

unfolding.

Figure 3.4 (left) shows the d = 3 Hilbert tensor in Table 3.1 where PSTT2

and PSTT2-onepass are slower than SSTT due to high communication costs rel-

ative to the tensor size. While the bandwidth cost in (3.16) is still predicted to

be small relative to the matrix multiplications, the latency and synchronization

costs from communicating frequently cause a significant slowdown of the algo-

rithm. However, we emphasize that these communications are still relatively

unimportant when the evaluation of a tensor element is expensive, as can be

seen in an experiment with a Gaussian mixture model, with the function de-

fined as

Xi1,i2,i3 =
N∑
j=1

e−γ((x1−ξj)
2+(x2−ηj)2+(x3−ζj)2), xj =

2ij
nj

− 1,

where ξj , ηj , and ζj are the center coordinates of the jth Gaussian and γ controls

the width of the Gaussians. Figure 3.4 (right) shows the result when N = 100,

87

γ = 10, and the centers are uniformly random numbers between −1 and 1. Be-

cause each calculation of a tensor entry takes the evaluation of N Gaussians,

the evaluation is significantly longer than that of a Hilbert tensor. Although

PSTT2 is still slower than SSTT, PSTT2-onepass becomes the fastest option since

avoiding the second set of function evaluations gains more than the added com-

munications.

3.3 Solve Sylvester tensor equations in TT format

Many tensors in practice are known implicitly as solutions of tensor equations.

For example, the discretized solution of a multivariable PDE might satisfy a

tensor equation.

In this section, we focus on computing an approximation X̃ in TT format

of a tensor X ∈ Cn1×···×nd that satisfies the Sylvester tensor equation in (1.13).

This type of algebraic relation appears when discretizing Poisson’s equation of a

tensor-product domain with either a finite difference scheme [134] or a spectral

method [193]. We describe an algorithm that solves the 3D Sylvester tensor

equation of the form

X ×1 A+ X ×2 B + X ×3 C = F , F ∈ Cn1×n2×n3 ,

A,B,C normal, A ∈ Cn1×n1 , B ∈ Cn2×n2 , C ∈ Cn3×n3 , (3.17)

and extensions of this algorithm to solve d dimensional Sylvester tensor equa-

tions are described at the end of this section. To ensure a unique solution

of (3.17), we assume that λi(A) + λj(B) + λk(C) ̸= 0, for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2,

and 1 ≤ k ≤ n3, where λi(A) is an eigenvalue of A [195]. We further suppose

that F is given in the TT format with TT rank (1, r1, r2, 1) and cores G1,G2, and

88

G3. Our goal is to compute an approximate solution X̃ to (3.17) in the TT format.

Since Sylvester equations can be converted to a linear system via vectorizing X

and F , our proposed solver is one way to solve a specific type of high dimen-

sional linear system where the right-hand-side is provided in the TT format. For

algorithms to solve such general linear systems, we refer the reader to alternat-

ing minimal energy methods [62] and TT-GMRES [61].

Since TT cores of a tensor are analogues of factor matrices in a matrix de-

composition, our key idea is to convert (3.17) into several Sylvester matrix equa-

tions and use fADI. If we reshape X and F to their 1st unfolding, respectively,

then (3.17) becomes

AX1 +X1(I ⊗B + C ⊗ I)T = F1 = (G1)1(G2)1((G3)2 ⊗ I), (3.18)

where (G1)1 is the 1st unfolding of G1, (G2)1 is the 1st unfolding of G2, and (G3)2

is the 2nd unfolding of G3. Similarly, we get another Sylvester matrix equation

by reshaping X and F to their 2nd unfolding:

(I ⊗ A+B ⊗ I)X2 +X2C
T = F2 = (I ⊗ (G1)1)(G2)2(G3)2, (3.19)

where (G2)2 is the 2nd unfolding of G2.

Algorithm 7 in section 2.4.3 (ST21) describes a way to compute the solution

of (3.17) in TT format. It starts by computing the first TT core U1 as an orthonor-

mal basis of the column space of X1 from (3.18), and then finds the other two TT

cores via solving:

(I ⊗ Ã+B ⊗ I)Y + Y CT = (I ⊗ G̃1)(G2)2(G3)2, (3.20)

where Ã = U∗
1AU1, and G̃1 = U∗

1 (G1)1. (3.20) is similar to (3.19) but (3.20) has

two disadvantages: (1) Parallelism when finding TT cores is not exploited, as

89

the two fADI loops are carried out in an order, (2) Ã is a dense matrix, which

may have a higher cost of solving shifted linear systems than that of A. In this

way, we want an algorithm that, in certain scenarios, can solve (3.18) and (3.19)

simultaneously and only solve shifted linear systems with A,B, and C.

With fADI, we can obtain U1 and U2, orthonormal bases of the column space

of X1 and X2, from (3.18) and (3.19) independently. In the meantime, solv-

ing (3.19) yields the solution X2 = U2DY
∗ and we can use DY ∗ as the third

TT core of the solution X . As a result, Theorem 3.1.1 allows us to compute all

three TT cores with only one extra matrix-matrix multiplication.

In general, we need two sets of shift parameters to solve (3.18) and (3.19).

The Zolotarev number associated with (3.18) is

Zk(Λ(A),Λ(−B) + Λ(−C)) := inf
r∈Rk,k

supz∈Λ(A) |r(z)|
infz∈Λ(−B)+Λ(−C) |r(z)|

, k ≥ 0, (3.21)

where ‘+’ is the Minkowski sum of two sets. Similarly, the Zolotarev number

corresponded to (3.19) is

Zk(Λ(A) + Λ(B),Λ(−C)) := inf
r∈Rk,k

supz∈Λ(A)+Λ(B) |r(z)|
infz∈Λ(−C) |r(z)|

, k ≥ 0. (3.22)

We find that the number

Lk(Λ(A),Λ(B),Λ(C)) := inf
r∈Rk,k

supz∈Λ(A)∪[Λ(A)+Λ(B)] |r(z)|
infz∈Λ(−C)∪[Λ(−B)+Λ(−C)] |r(z)|

, k ≥ 0,

is an upper bound for both (3.21) and (3.22), so that bounds in (1.16) can be

acquired for both X1 and X2:

∥Xi − (Xi)k∥F ≤ Lk(Λ(A),Λ(B),Λ(C))∥X∥F , i = 1, 2.

Therefore, we can choose the same shift parameters when we use fADI on (3.18)

and (3.19), which means U1 and U2 can be found in a single set of iterations.

90

Since we do not need U2 in a low-rank format, we can recover U2 column-by-

column in a way introduced in ST21 by using ADI (Algorithm 5) on reshapes of

the columns. We summarize the 3D Sylvester equation solver in Algorithm 13.

Algorithm 13 TT-fADI: Given a 3D Sylvester tensor equation (3.17), com-
pute an approximate solution in TT format with three cores computed almost-
simultaneously.

Input: Matrices A,B, and C, TT cores G1,G2, and G3 and TT ranks r1 and r2 of
F , and desired accuracy 0 < ϵ < 1

Output: TT cores H1,H2, and H3 of an approximate solution X̃
1: Use the spectra ofA,B, andC to find shift parameter arrays ppp and qqq of length
ℓ.

2: Solve (A− q1In1)Z1 = (G1)1. Let Z = Z1.
3: Solve ((In2 ⊗ A+B ⊗ In1)− q1In1n2)W1 = (In2 ⊗ (G1)1)(G2)2. Let W = W1.
4: Solve (−C − p1In3)Y1 = (G3)

T
2 . Let Y = Y1.

5: Let D = (q1 − p1)Ir2 .
6: for 1 ≤ j ≤ ℓ− 1 do
7: Set Rj = (qj+1 − pj)Zj , Uj = (qj+1 − pj)Wj , and Vj = (pj+1 − qj)Yj .
8: Solve (A− qj+1In1)Zj+1 = Rj . Set Zj+1 = Zj+1 + Zj and Z =

[
Z Zj+1

]
.

9: Solve ((In2 ⊗ A+B ⊗ In1)− qj+1In1n2)Wj+1 = Uj . Set Wj+1 = Wj+1 +Wj

and W =
[
W Wj+1

]
.

10: Solve (−C − pj+1In3)Yj+1 = Vj . Set Yj+1 = Yj+1 + Yj and Y =
[
Y Yj+1

]
.

11: Set D =

[
D

(qj+1 − pj+1)Ir2

]
.

12: Recompress W,D, and Y to get ∥W̃ D̃Ỹ ∗ −WDY ∗∥ ≤ ϵ∥WDY ∗∥.
13: Set W = W̃ ,D = D̃, and Y = Ỹ , and s2 to be the rank.
14: Compute a CPQR of Z to obtain U1 with orthonormal cols and set U1 = U1(:

, 1:s1) if U1(s1 + 1, s1 + 1) ≤ ϵ.
15: Calculate T = U∗

1 reshape(W,n1, n2s2).
16: Set H1 = U1, H2 = reshape(T, s1, n2, s2), and H3 = DY ∗.

We demonstrate Algorithm 13 with a simple example. Consider the equation

X ×1 A+ X ×2 A+ X ×3 A = F , A ∈ Rn×n, F ∈ Rn×n×n, (3.23)

where A is a diagonal matrix with diagonal elements aj ∈ [−1,−1/(30n)] for

1 ≤ j ≤ n, and F has TT rank (1, ⌊n/4⌋, 2, 1) with all three TT cores consisting of

i.i.d. uniform random numbers in (0, 1). Figure 3.5 shows the running time of

91

three Sylvester equation solvers. The green line represents the algorithm ST21.

The blue line represents a direct solver, which computes each element of X by

Xi,j,k = Fi,j,k/(ai+aj+ak) for 1 ≤ i, j, k ≤ n, and performs TT decomposition on

X . This algorithm has complexity O(n3). The red line represents Algorithm 13.

We can see when n ≥ 100, Algorithm 13 is the fastest. With n = 350, Algorithm

13 is 4 times faster than ST21, and almost 6 times faster than the direct solver.

The performance of ST21 is affected since s1, the size of the first TT core of the

solution X , can be close to n despite the fact that s1 = O(log n) [193]. Therefore,

the cost of solving shifted linear systems of Ã in (3.20) is significantly higher

than that of A.

It is straightforward to extend Algorithm 13 to solve d dimensional Sylvester

tensor equations (1.13). Since Algorithm 13 can be rewritten into d− 1 Sylvester

matrix equations for each unfolding of X , we can find a universal set of shift

parameters by optimizing the number

Lk(Λ(A
(1)), . . . ,Λ(A(d))) := inf

r∈Rk,k

supz∈⋃d−1
j=1 [

∑j
ℓ=1 Λ(A

(ℓ))] |r(z)|

infz∈⋃d
j=2[

∑d
ℓ=j Λ(−A(ℓ))] |r(z)|

, k ≥ 0,

where the summation is Minkowski sum of sets. Then, we can use fADI to solve

for orthonormal bases U1, . . . , Ud−1 for column spaces of unfoldings of X and

the final TT core. In particular, for 2 ≤ j ≤ d − 1, the reshape of each column

of Uj satisfies a j-dimensional Sylvester equation with a full-rank right-hand-

side tensor so we can use existing solvers to recover the columns. We then can

perform d−2 multiplications to obtain all the TT cores with Theorem 3.1.1. Fur-

thermore, to avoid solving high-dimensional Sylvester equations for columns

of Uj , we can incorporate the two-sided idea in section 3.1.2 to solve for both

orthonormal bases for column and row spaces of unfoldings of X . This helps

reduce the computation costs in practice.

92

Size, n

Ti
m

e
(s

ec
)

TT-fA
DI

ST
21

D
ir

ec
t

Figure 3.5: The execution time of direct solver (blue), ST21 (green), and Algo-
rithm 13 (red) to solve (3.23) with size of the problem 10 ≤ n ≤ 500.

93

CHAPTER 4

SPECTRAL, TENSOR AND DOMAIN DECOMPOSITION METHODS

FOR FRACTIONAL PDES

In this chapter1, we develop new spectral solvers for ractional partial differential

equations (PDEs) on simple geometries. Fractional PDEs have recently received

a tremendous amount of attention, which can be attributed to the flexibility of

fractional operators in capturing long-range effects, due to their nonlocal nature.

In addition, they have fewer regularity requirements than their classical coun-

terparts. In particular, the fractional Laplacian has been successfully used as a

regularizer in imaging science in place of the total variation regularization [7,8].

Moreover, the fractional Helmholtz equation was derived in [225], using first

principle arguments combined with a constitutive relation, to model geophysi-

cal electromagnetism. Other applications include: Quasi-geostrophic flow [47],

phase field models [4, 7], porous media [55], and quantum mechanics [130].

4.1 Introduction

Motivated by these applications, we introduce a new approach to solve the frac-

tional PDE
(−∆)su = f in Ω

u = 0 on ∂Ω,

(4.1)

where Ω ⊂ Rn is a bounded open domain with boundary ∂Ω, and s ∈ (0, 1) is the

fractional exponent. The operator (−∆)s denotes the spectral fractional Lapla-

1This chapter is based on a paper with Harbir Antil and Drew Kouri [191]. I derived the dis-
cretization, developed the algorithms, ran the numerical experiments, and was the lead author
in writing the paper.

94

cian, whose rigorous definition will be provided in Section 4.1.1. The nonlocal-

ity of the fractional Laplacian makes it challenging to realize in practice [37,201].

However, several approaches exist. For example, the authors in [199] use a spec-

tral discretization in space and discuss computing the spectrum of the Laplacian

to realize the fractional Laplacian. Unfornately, computing the spectrum of an

operator in general domains can be expensive. Whereas, the authors in [32] dis-

cuss an alternative approach based on the so-called Kato formula. Here, spatial

discretization is carried out using the finite element method. For the standard

problem such as (4.1), the Kato formula approach is desirable, but is delicate,

especially when lower-order terms are present [225].

Another popular approach is based on the so-called Caffarelli–Silvestre ex-

tension. This extension was originally introduced by Caffarelli and Silvestre

in [37] for the case of unbounded Ω and was extended to bounded domains by

Stinga and Torrea in [201]. The main idea is to rewrite the nonlocal problem (4.1)

as a local problem in one additional spatial dimension (i.e., the domain of the

resulting local problem is Ω × (0,∞) with dimension n + 1). This idea was ex-

ploited in [156], where the authors introduced a finite element method (FEM) to

solve the extended problem on a bounded domain Ω× (0, R) with R < ∞. The

choice of R in [156] is motivated by the fact that the solution in the extended

direction decays exponentially. Recently, the authors in [19, 149] introduced hp-

FEM that reduces the complexity of the (n+1)-dimensional problem to log-linear

with respect to the number of degrees of freedom in Ω. We also mention that an

interesting hybrid FEM-spectral method based on approximation of the Lapla-

cian eigenvalues was considered in [3].

An additional issue with the Caffarelli–Silvestre extension is that the solu-

95

tion in the extended dimension suffers from low regularity when s ̸= 1/2. As

a result, spectral methods do not provide the typical exponential convergence.

This has been thoroughly investigated in [42], where the authors use general-

ized Laguerre functions as a basis in the extended dimension to solve a weak

formulation of (4.1). To overcome this regularity issue and improve the con-

vergence rate, the authors apply an enrichment technique for spectral methods.

The convergence rate improves, as the enrichment terms are included, but the

matrices for the discretized problem are generally dense. In addition, the system

becomes ill-conditioned, and if there are too many singular terms included, the

convergence rate can deteriorate significantly due to ill-conditioning. Finally,

we mention extensive work on numerical methods for fractional PDEs with dif-

ferent fractional derivatives such as Riemann Liouville. See, for example [233],

and the review article [137].

The goal of this paper is to introduce a new efficient and robust spectral

method to solve fractional PDEs based on the Caffarelli–Silvestre extension. For

simplicity, we present our method for n = 2 on two types of domains: disks

and rectangles. By utilizing a tensor equation solver, our method is easily gen-

eralized to even higher dimensions. For example, as shown in our numerical

examples in Section 4.4, our method directly applies to n = 3 on a cube. In

addition, with spherical polar coordinates, our method can solve the problem

on a ball. Our spectral method utilizes ultraspherical, Chebyshev, and Fourier

polynomial discretizations. The resulting discrete systems are tensor equations,

which we solve with a direct solver based on the real Schur decomposition. For

the disk domain, we rewrite the extended problem in polar coordinates and use

the Double Fourier Sphere (DFS) method [230] to overcome the singular behav-

ior when the extended dimension z = 0. Using DFS, z = 0 is no longer treated

96

as a boundary. Afterward, we consider two cases: (i) z1/s can be approximated

well by a polynomial; (ii) z1/s cannot be approximated well by a polynomial.

The former case occurs, for example, when 1/s is an integer. In the latter case,

we employ piecewise polynomials over subdomains. In this manuscript, we

focus on fewer subdomains with higher polynomial degrees for simpler sys-

tems to solve. One can alternatively choose to use more subdomains with lower

polynomial degrees [13]. For our numerical results, we use chebfun [63] to au-

tomatically generate the subdomains. We then solve the extended PDE directly

using ultraspherical, Fourier, and Chebyshev spectral discretizations for the ra-

dius, angle, and extended direction. For rectangular domains, we spectrally dis-

cretize the extended PDE with ultraspherical polynomials in the space domain

and Chebyshev polynomials for the extended direction. In addition, when z1/s

is approximated by a piecewise polynomial, we design a domain decomposition

solver that handles each piece independently. As a result, this solver is easily

parallelized. The convergence analysis for ultraspherical spectral methods can

be found in [159]. In practice, we use the polynomial coefficients of the solution

to determine if the solver has converged. Specifically, when a coefficient falls

below a given threshold (e.g., we choose 10−10 in this paper), we terminate the

spectral method and use the result as the discrete approximation of the solution

to the fractional PDE.

In all numerical examples and for all values of s, we observe exponential

convergence with just a few degrees of freedom. In this sense, the potential

benefits of our method are clear. Additionally, the proposed approach has sev-

eral other advantages over the existing spectral methods. We can combine our

spectral methods on rectangles with the ultraspherical spectral element method

(UltraSEM) [73] to develop solvers on polygonal domains with unstructured

97

quadrilateral or triangular meshes. To be specific, we can partition the general

domain Ω into quadrilateral subdomains, convert them into rectangles with a

change of variables, and apply our solver. As a result, the total number of de-

grees of freedom is the sum of those used on each subdomain. Finally, when

n = 2, we emphasize that our method can be generalized to solve fractional

PDEs of the form:
Lsu = f in Ω

u = 0 on ∂Ω,

(4.2)

where the operator L is the general elliptic operator Lu = −∇ · (A∇u) + cu.

Here, A ∈ R2×2 is matrix function that is symmetric and positive definite and

0 ≤ c ∈ R is a function. This is feasible due to [73]. However, [73] only considers

the case with n = 2, motivating our restriction to n = 2 in (4.2).

The remainder of this chapter is organized as follows. We first review pre-

liminary results on fractional PDEs (see Section 4.1.1) as well as the polynomial

notation (see Section 4.1.2) that we use. In Section 4.2, we introduce the direct

solver for the disk domain. In Section 4.3, we solve the extended PDE on rect-

angles both directly and with a parallel domain-decomposition solver. Finally,

in Section 4.4, we demonstrate our method on two applications: solving the

fractional elliptic PDE on the cube, and solving a fractional PDE-constrained

optimal control problem.

4.1.1 Preliminary results

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary ∂Ω. Let −∆ be the

L2(Ω) realization of the standard Laplace operator with zero Dirichlet boundary

conditions. It then follows that −∆ has compact resolvent and its eigenvalues

98

can be arranged as 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · with limk→∞ λk = ∞. Let us

denote by φk ∈ H1
0 (Ω) the eigenfunctions corresponding to λk. These eigenfunc-

tions form an orthonormal basis of L2(Ω).

For s ≥ 0, we let

Hs(Ω) :=

{
u =

∞∑
k=1

ukφk

∣∣∣∣∣ ∥u∥2Hs(Ω) :=
∞∑
k=1

λsku
2
k <∞, where uk =

∫
Ω

uφkdx

}
.

For a relation between Hs(Ω) and the classical fractional-order Sobolev space

Hs(Ω), we refer to [9,57], and the references therein. We shall denote the dual of

Hs(Ω) by H−s(Ω). Specifically in this manuscript, we focus on 0 < s < 1. Now,

to define the fractional Laplacian: (−∆)s is the mapping

(−∆)s : Hs(Ω) → H−s(Ω)

defined for all u ∈ Hs(Ω) by

(−∆)su =
∞∑
k=1

λskukφk.

To solve (4.1), we use the Caffarelli–Silvestre extension [37, 201]. This re-

quires introducing an extension variable ζ , and the change of variable z =(
ζ
2s

)2s
. Then, the resulting problem aims to find U : Ω× [0,∞) → R that satisfies

the following equation

∆xU + zαUzz = 0 in Ω× (0,∞),

U(x, z) = 0 on ∂Ω× (0,∞),

∂νU(x, 0) = dsf(x) on Ω× {0},

(4.3)

where α = 2 − 1
s
, and ds = s2s−1 Γ(1−s)

Γ(s)
. Here, ∆x denotes the Laplacian with

respect to the original domain Ω and Uzz denotes the second derivative with

respect to the extended dimension z. After solving for U , we can recover the

solution to (4.1) as u(x) = U(x, 0).

99

In general, approximating functions by polynomials on an unbounded do-

main is a challenging problem. Motivated by the fact that the solution U in the

z-direction decays exponentially [156] (also confirmed by our numerical exper-

iments), we consider the following truncated problem:

z(1/s)∆xU + z2Uzz = 0 in Ω× (0, R),

U(x, z) = 0 on ∂Ω× (0, R),

U(x,R) = 0 on Ω× {R},

∂νU(x, 0) = dsf(x) on Ω× {0},

(4.4)

where R > 0 is the truncation parameter. In our numerical experiments, the

choice of R is motivated by [156]. In particular, we set R = O(log(DoFΩ)) for

the rectangular domains, where DoFΩ is the total degrees of freedom used for

Ω. Experimentally, we notice that for the disc domain it is more appropriate to

choose R = O(DoF
1/3
Ω). We emphasize that the additional variable z introduced

by the extension requires that we solve a problem of one dimension higher. In

particular, although Ω is chosen to be rectangles or disks in this paper, we must

solve (4.4) in hexahedron or cylinders.

4.1.2 Ultraspherical Polynomial Basis and Spectral Methods

Ultraspherical (or Gegenbauer) polynomials are a special family of polynomials

that are usually denoted by C
(λ)
n (x). Here, λ > 0 is a coefficient and n is the

polynomial degree of x [158, Table 18.3.1]. They are orthogonal on the interval

(−1, 1) with respect to the weight function w(x) = (1 − x2)λ−1/2 and satisfy the

100

three-term recurrence [158, Table 18.9.1]

C
(λ)
0 (x) = 1,

C
(λ)
1 (x) = 2λx,

C
(λ)
n+1(x) =

2(n+ λ)

n+ 1
xC(λ)

n (x)− n+ 2λ− 1

n+ 1
C

(λ)
n−1(x).

(4.5)

For notational convenience, we use C̃(λ)
n (x) to denote the L2(−1, 1)-normalized

ultraspherical polynomials with respect to the weight w(x). Two well-known

classes of polynomials, Chebyshev polynomials of the second kind and Leg-

endre polynomials, are both special cases of ultraspherical polynomials, with

coefficient λ = 1 and λ = 1/2, respectively.

4.2 Spectral Discretization for Fractional PDEs on a Disk

In this section, we solve (4.4) on a disk domain. Without loss of generality, we

let Ω be the unit circle. Otherwise, we can easily convert to this problem by

scaling with the radius. We use polar coordinates to rewrite (4.4) as

z1/s
(
Uρρ +

1

ρ
Uρ +

1

ρ2
Uθθ

)
+ z2Uzz = 0 in [0, 1)× [−π, π]× (0, R),

U(1, θ, z) = 0 on [−π, π]× (0, R),

U(ρ, θ, R) = 0 on [0, 1)× [−π, π],

∂νU(ρ, θ, 0) = dsf(ρ, θ) on [0, 1)× [−π, π].

(4.6)

101

To avoid the singularity at ρ = 0, we use the DFS method [230] to extend to

ρ ∈ (−1, 1) by setting

Ũ(ρ, θ, z) =

U(ρ, θ, z) (ρ, θ, z) ∈ [0, 1)× [−π, π]× (0, R)

U(−ρ, θ + π, z) (ρ, θ, z) ∈ (−1, 0]× [−π, π]× (0, R)

,

f̃(ρ, θ) =

f(ρ, θ) (ρ, θ) ∈ [0, 1)× [−π, π]

f(−ρ, θ + π) (ρ, θ) ∈ (−1, 0]× [−π, π]
.

Notice that both Ũ and f̃ are now continuous at ρ = 0, which leads to simpler

spectral discretization with smaller polynomial degrees. From this point, we

work directly with these “doubled” functions so that the singularity at ρ = 0

does not require additional consideration. The disk domain allows us to assume

that both the solution Ũ and the function f̃ have Fourier expansions:

Ũ(ρ, θ, z) ≈
m/2−1∑
k=−m/2

Ũk(ρ, z)e
ikθ and f̃(ρ, θ) ≈

m/2−1∑
k=−m/2

f̃k(ρ)e
ikθ.

In this way, we can decouple (4.6) into differential equations for each Fourier

mode:

z1/s
(
(Ũk)ρρ +

1

ρ
(Ũk)ρ −

k2

ρ2
Ũk

)
+ z2(Ũk)zz = 0 in (−1, 1)× (0, R),

Ũk(±1, z) = 0 on (0, R),

Ũk(ρ,R) = 0 on (−1, 1),

∂νŨk(ρ, 0) = dsf̃k(ρ) on (−1, 1).

(4.7)

Following [74, § 4.1.2], we assume that the ansatz for Ũk is given by

Ũk(ρ, z) = (1− ρ2)ρmin(|k|,2)Ṽk(ρ, z), (4.8)

where the term (1 − ρ2) incorporates the boundary condition Ũk(±1, z) = 0.

Then, we solve for Ṽk. The choice of the above ansatz only imposes partial

102

regularity on Ũk, and we refer to [74, § 4.1.2] for a detailed discussion on why it

is challenging to impose full regularity.

Since the fractional exponent s can be any number between 0 and 1, the

function z1/s makes the development of solvers for (4.7) a challenging task for

our spectral method. To overcome this difficulty, we develop different solvers

for varied values of s.

4.2.1 Polynomial Approximation of z1/s

We first consider the case in which s ∈ (0, 1) is such that the function z 7→

z(1/s) can be approximated accurately by a polynomial of low degree. For the

discretized problem, the multiplication by z(1/s) is transformed into a matrix-

matrix product. Consequently, the polynomial degree is directly related to the

discretization size, and the definition of “low degree” in the above statement

is related to the size of the discretized system one is capable of solving. For

example, one may interpret “low degree” to mean “degree less than 50”. In this

case, any value of s such that 1/s is an integer between 1 and 50 falls into this

class.

To make the spectral discretization easier, we make the change-of-variables

103

w = 2
R
z − 1 ∈ (−1, 1). In this way, the PDE in (4.7) becomes:(

R(w + 1)

2

)1/s(
(Ũk)ρρ +

1

ρ
(Ũk)ρ −

k2

ρ2
Ũk

)
+ (w + 1)2(Ũk)ww = 0 in (−1, 1)2,

Ũk(±1, w) = 0 on (−1, 1),

Ũk(ρ, 1) = 0 on (−1, 1),

∂νŨk(ρ,−1) = Rdsf̃k(ρ)/2 on (−1, 1),

(4.9)

and we solve for

Ũk(ρ, w) = (1− ρ2)ρmin(|k|,2)Ṽk(ρ, w). (4.10)

Conventionally, one spectrally discretizes Ṽk with Chebyshev polynomials for

both ρ and w, but the matrices used to represent differentiation and function

multiplication in the discretized equations are dense and hard to manipulate.

Instead, we set

Ṽk(ρ, w) =

n1−1∑
i=0

n2−1∑
j=0

X
(k)
ij C̃

(3/2)
i (ρ)Tj(w), f̃k(ρ) =

n1−1∑
i=0

F
(k)
i C̃

(3/2)
i (ρ), (4.11)

where Tj(w) is the Chebyshev polynomial of the first kind of degree j,X(k) is the

matrix of coefficients of Ṽk in the C̃(3/2) basis, and F (k) is the vector of coefficients

of f̃k in the Chebyshev basis. Although C̃(3/2) is an uncommon polynomial basis,

it is easy and efficient to transform coefficients in the C̃(3/2) basis to Chebyshev

coefficients [74]. Therefore, users of the solver do not need to know about the

special ultraspherical polynomial basis.

In this way, (4.10) indicates that we have three cases:

104

• If |k| ≥ 2, then Ũk = ρ2(1− ρ2)Ṽk, and (4.7) becomes:(
R

2

)1/s

(w + 1)1/s[ρ2(1− ρ2)(Ṽk)ρρ + ρ(5− 9ρ2)(Ṽk)ρ + (4− k2 + (k2 − 16)ρ2)Ṽk],

+ρ2(1− ρ2)(w + 1)2(Ṽk)ww = 0 in (−1, 1)2,

Ṽk(ρ, 1) = 0 on (−1, 1),

ρ2(1− ρ2)∂νṼk(ρ,−1) = dsRf̃k(ρ)/2 on (−1, 1).

(4.12)

Following [74] on operations related to C̃(3/2) and [159] on operations related

to Chebyshev polynomials, (4.12) can be discretized to the following matrix

equations:

(Mρ2D + 5MρMDu + (14− k2)M − 10I)X(k)(S2,0B1)
T + (Mρ2M)X(k)(B2D2)

T = 0

(Mρ2M)X(k)LT = H(k),

(4.13)

where D is a diagonal matrix representing the second derivatives of (1 −

ρ2)C̃(3/2)(ρ), M is a symmetric penta-diagonal matrix with 0 super and sub

diagonals representing the operation of multiplying C̃(3/2)(ρ) by (1 − ρ2),

Mρ2 = I −M represents the operation of multiplying C̃(3/2)(ρ) by ρ2, Mρ is

a tridiagonal matrix derived from the three-term recurrence (4.5) to represent

the operation of multiplying C̃(3/2)(ρ) by ρ, Du is a dense matrix represent-

ing the first derivatives of C̃(3/2)(ρ), but MDu is tridiagonal [158, (18.9.8) &

(18.9.19)], B1 represents the operation of multiplying the Chebyshev polyno-

mials T (w) by (R/2)1/s(1 + w)1/s, B2 represents the operation of multiplying

C(2)(x)—ultraspherical polynomials with coefficient 2—by (1+w)2, D2 repre-

sents the second derivative of the Chebyshev basis, S2,0 converts the Cheby-

shev basis to the C(2) basis,

L =

T ′
0(−1) T ′

1(−1) . . .

T0(1) T1(1) . . .

 ,
105

and H(k) is a matrix with two columns:

H(k) =

[
−dsRF (k)/2 0

]
.

One can find details and visualizations of these operational matrices in [74,

210].

• If |k| = 1, then Ũk = ρ(1 − ρ2)Ṽk. Using the same matrix notation, the dis-

cretized matrix equation is:

(MρD + 3MDu − 6Mρ)X
(k)(S2,0B1)

T + (MρM)X(k)(B2D2)
T = 0

(MρM)X(k)LT = H(k).

(4.14)

• If k = 0, then Ũk = (1− ρ2)Ṽk, and the discretized version of (4.7) is:

(Mρ2D +MρMDu − 2Mρ2)X
(0)(S2,0B1)

T + (Mρ2M)X(0)(B2D2)
T = 0

MX(0)LT = H(0).

(4.15)

We can merge the linear equation with the linear constraint into one matrix

equation in all three cases, see for instance [210] for a similar approach. It is

desirable to keep the structure and the sparsity of the matrices related to ultras-

pherical discretization while solving the equation. However, due to the variable

s, we do not know the spectrum of the matrices associated with the Chebyshev

basis, which is essential if we want to use fast iterative solvers such as ADI (Al-

gorithm 5). Therefore, we treat all matrices as general dense matrices and solve

all matrix equations with the Bartels–Stewart algorithm (Algorithm 4). Nev-

ertheless, QZ decompositions on sparse penta-diagonal matrices are cheaper

and more stable than general dense matrices. Thus, we gain from using ultras-

pherical polynomials. The solutions X(k) can be transformed to the Chebyshev

coefficient matrix for both variables, and then they form the frontal slices of the

solution Z to the discretized DFS version of (4.6). Finally, the coefficient matrix

106

that represents the solution of (4.1) can be calculated via

Z ×2

[
T0(−1) T1(−1) · · ·

]
.

We summarize this solver in Algorithm 8.

Algorithm 14 Fractional PDE solver on the unit disk — Polynomial approxima-
tion of z1/s

1: Input: The coefficient matrix F of f after DFS extension in Chebyshev and
Fourier bases.

2: Output: The coefficient matrix W of the solution u in Chebyshev and
Fourier bases.

3: Convert the columns of F into coefficients in C̃(3/2) basis.
4: while maxiX

(k)
i,n2

> 10−10 for any k in (4.11) do
5: Increase n2

6: Solve (4.13), (4.14), and (4.15) for X(k).
7: Stack all X(k) in the tube direction to form Z ..
8: Calculate W = Z ×2

[
T0(−1) T1(−1) . . .

]
.

9: Convert the columns of W into coefficients in Chebyshev basis.

Remark (Numerical convergence). As a test, consider s = 1/2 so that the ex-

tended PDE is a Laplace equation on a cylinder. When f = J0(s01ρ), where J0 is

the first Bessel function of the first kind, and s01 is the first nonzero root of J0,

the solution is

U =
1

s01 cosh(s01R)
J0(s01ρ) sinh(s01R(1− z)/2).

Figure 4.1 shows the reduction of approximation error through our adaptive

solver.

4.2.2 Piecewise Polynomial Approximation of z1/s

The more challenging case is when z1/s is not well-approximated by a polyno-

mial. For these values of s, we approximate z1/s with piecewise polynomials,

107

DoF (extended direction)
Er

ro
r

Figure 4.1: Solving fractional PDE for f = J0(s01ρ) and s = 1/2 on the unit disk
with our spectral solver. By increasing the degrees of freedom in the extended
direction, the error between the analytic and numerical solutions decreases.

i.e.,

z1/s ≈ pi(z), zi ≤ z ≤ zi+1, (4.16)

where pi is a polynomial for 0 ≤ i ≤ ℓ − 1, z0 = 0, and zℓ = R. Then, on the

interval (zi, zi+1), we have that

pi(z)

(
(Ũ

(i)
k)ρρ +

1

ρ
(Ũ

(i)
k)ρ −

k2

ρ2
Ũ

(i)
k

)
+ z2(Ũ

(i)
k)zz = 0 in (−1, 1)× [−π, π]× (zi, zi+1),

Ũ
(i)
k (±1, z) = 0 on (zi, zi+1),

with bottom and top boundary conditions
Ũ

(0)
k (ρ, z1) = ϕ̃1(ρ),

∂νŨ
(0)
k (ρ, z0) = dsf̃k(ρ),

∂νŨ
(0)
k (ρ, z1) = ψ̃1(ρ),

Ũ

(ℓ−1)
k (ρ, zℓ−1) = ϕ̃ℓ−1(ρ),

Ũ
(ℓ−1)
k (ρ,R) = 0,

∂νŨ
(ℓ−1)
k (ρ, zℓ−1) = −ψ̃ℓ−1(ρ),

and

Ũ
(i)
k (ρ, zi) = ϕ̃i(ρ),

Ũ
(i)
k (ρ, zi+1) = ϕ̃i+1(ρ),

∂νŨ
(i)
k (ρ, zi) = −ψ̃i(ρ),

∂νŨ
(i)
k (ρ, zi+1) = ψ̃i+1(ρ),

1 ≤ i ≤ l − 2, (4.17)

108

where ϕ̃i and ψ̃i are implicitly defined. We use these implicit boundary condi-

tions to ensure that Ũi can form an overall continuous solution. On intersection

surfaces, solutions on the two sides have identical Dirichlet conditions and op-

posite Neumann conditions.

On each interval, we perform a change of variables to produce similar PDEs

as (4.9). These PDEs can be discretized into mℓ matrix equations. We solve on

all intervals simultaneously by combining the matrix equations corresponding

to the same Fourier mode into one equation. We use the matrix notation from

Section 4.2.1 and get the following three matrix equations:

• If |k| ≥ 2, then we have:

(Mρ2D + 5MρMDu + (14− k2)M − 10I)Y (k)ET
1 + (Mρ2M)Y (k)ET

2 = 0

(Mρ2M)Y (k)BT
z = H(k). (4.18)

• If |k| = 1, then we have:

(MρD + 3MDu − 6Mρ)Y
(k)ET

1 + (MρM)Y (k)ET
2 = 0

(MρM)Y (k)BT
z = H(k). (4.19)

• If k = 0, then we have:

(Mρ2D +MρMDu − 2Mρ2)Y
(0)ET

1 + (Mρ2M)Y (0)ET
2 = 0

MY (0)BT
z = H(0). (4.20)

In the matrix equations above, we set

Y (k) =

[
X

(k)
0 · · · X

(k)
ℓ−1

]
,

where X(k)
j is the kth Fourier mode solution on (zj, zj+1). The first column of

H(k) is −dsRf̃k(ρ)/2 and all other columns are zero. E1 and E2 are block di-

agonal matrices with diagonal blocks S2,0Bi and KiD2, respectively, where Bi

109

represents the multiplication of pi and Ki represents the multiplication of the

Chebyshev basis by (w + zi+1+zi
zi+1−zi)

2. In addition, we set

Bz =

P−1

2
z1
P1 − 2

z2−z1P−1

Q1 −Q−1

2
z2−z1P1 − 2

z3−z2P−1

Q1 −Q−1

. . .

Q1

,

where P−1 = [T ′
0(−1) T ′

1(−1) · · ·], P1 = [T ′
0(1) T ′

1(1) · · ·], Q−1 =

[T0(−1) T1(−1) · · ·], and Q1 = [T0(1) T1(1) · · ·]. Then, we can form X0 from

Y (k) and obtain the coefficient matrix of the solution u of (4.1).

By construction, the first two columns of D2 are 0. As a result, E2 has 2ℓ scat-

tered zero columns. This property is undesirable when using the solver in [210].

Instead, we permute the columns of E2 so that the first 2ℓ columns are 0, and

permute E1, Y (k), Bz and H(k) accordingly. After solving the permuted ma-

trix equations, we can easily obtain the original solution. We note that the two

solvers are, in fact, equivalent for different values of s. The solver in this sub-

section can be thought of as a generalized version of the solver in Section 4.2.1,

where the solution only has one piece and no implicit boundary conditions are

needed. This generalized solver is described in Algorithm 9.

Remark. In our numerics, we use Chebfun [63] to automatically partition the ex-

tended direction and approximate z1/s with Chebyshev polynomials on each do-

main with desired accuracy level, i.e., to determine pi and zi in (4.16). Chebfun

110

Algorithm 15 Fractional PDE solver on the unit disk — Piecewise approxima-
tion of z1/s

1: Input: The coefficient matrix F of f after DFS extension in Chebyshev and
Fourier basis.

2: Output: The coefficient matrix W of the solution u in Chebyshev and
Fourier basis.

3: Convert the columns of F into coefficients in C̃(3/2) basis.
4: while maxi

(
X

(k)
j

)
i,n

(j)
2

> 10−10 for any k or j do

5: Increase n(j)
2 .

6: Construct the matrices in (4.18), (4.19), and (4.20), and permute E1, E2,
Y (k), Bz and H(k) such that the first 2ℓ columns of E2 are zero columns while
the equations still hold.

7: Solve for Y (k).
8: Stack X(k)

0 to form X0..
9: Calculate W = X0 ×2

[
T0(−1) T1(−1) . . .

]
.

10: Convert the columns of W into coefficients in Chebyshev basis.

only divides the domain when a high degree polynomial cannot achieve the

resolution, so the piecewise polynomial approximation tends to have as few

pieces as possible. From the above discretized systems, one notices that more

pieces lead to more complicated matrix equations to solve. Consequently, it is

beneficial to use Chebfun for approximations. Figure 4.2 shows the number

of polynomial segments needed to approximate the map z 7→ z1/s on (0, 10)

for varying s ∈ (0, 1) with an accuracy of 10−12 using Chebfun. If we strive

for machine precision, the numbers need to be larger. However, we found in

practice that 10−12 gives sufficiently accurate PDE solutions. Comparatively, it

is also possible to partition the z-direction into more segments so that z1/s can

be approximated by a low degree polynomial on each interval. For this way of

partitioning, we point the readers to [13] for more details.

111

s
N

um
be

r
of

pi
ec

es

Figure 4.2: The number of segments for a piecewise polynomial approximation
of z1/s on (0, 10) with accuracy 10−12.

4.3 Spectral Discretization for Fractional PDEs on a Rectangle

In this section, we solve (4.1) in the unit square (−1, 1)2 by spectrally discretiz-

ing the truncated, extended PDE (4.4). General rectangles are straightforward

to scale to unit squares by a change-of-variables and are thus easy to solve with

the same method. It is also worth noting that the solver can be easily gener-

alized to higher-dimensional domains. To this end, we demonstrate the solver

application on a cube in Section 4.4.

We first introduce a direct solver that is similar to the solvers in Section 4.2.

The direct solver, can encounter efficiency issues as the equations become large

when z1/s needs to be approximated by a piecewise polynomial with many

pieces. In those scenarios, we design a parallelizable solver using domain de-

composition in Section 4.3.2.

112

4.3.1 Direct Solver

We first approximate z1/s as an ℓ-piece piecewise polynomial (4.16), with the

simplest case being ℓ = 1. On each interval (zi, zi+1), we have the PDE:

pi(z)
(
U (i)
xx + U (i)

yy

)
+ z2U (i)

zz = 0 in (−1, 1)× (−1, 1)× (zi, zi+1),

U (i)(±1, y, z) = 0 on (−1, 1)× (zi, zi+1),

U (i)(x,±1, z) = 0 on (−1, 1)× (zi, zi+1),

with bottom and top boundary conditions
U (0)(x, y, z1) = ϕ1(x, y),

∂νU
(0)(x, y, z0) = dsfk(x, y),

∂νU
(0)(x, y, z1) = ψ1(x, y),

U (ℓ−1)(x, y, zℓ−1) = ϕℓ−1(x, y),

U (ℓ−1)(x, y, R) = 0,

∂νU
(ℓ−1)(x, y, zℓ−1) = −ψℓ−1(x, y),

and

U (i)(x, y, zi) = ϕi(x, y),

U (i)(x, y, zi+1) = ϕi+1(x, y),

∂νU
(i)(x, y, zi) = −ψi(x, y),

∂νU
(i)(x, y, zi+1) = ψi+1(x, y),

1 ≤ i ≤ l − 2, (4.21)

where ϕi and ψi are implicitly defined to ensure continuity of the entire solution.

We employ the change the variables w = 2
zi+1−zi (z − zi) − 1 on (zi, zi+1), and

assume the ansatz:

U (i) = (1− x2)(1− y2)

n1∑
p=0

n2∑
q=0

n
(i)
3∑

r=0

X (i)
pqrC̃

(3/2)
p (x)C̃(3/2)

q (y)Tr(w),

f =

n1∑
p=0

n2∑
q=0

FpqC̃
(3/2)
p (x)C̃(3/2)

q (y),

(4.22)

where C̃(3/2)
p (x) is the pth normalized ultraspherical polynomial with coefficient

3/2, Tr(w) is the rth Chebyshev polynomial, X (i) is a 3D tensor, and F is a ma-

113

trix. As before, X (i) and F contain the coefficients of U (i) and f in C̃(3/2) and

Chebyshev basis, respectively. We can then write the discretized problem as a

tensor equation by stacking X (i) in the tube direction to form Y :

Y ×1 A×3 E1 + Y ×2 A×3 E1 + Y ×1 A×2 A×3 E2 = 0,

Y ×1 M ×2 M ×3 Bz = G,
(4.23)

where A = D−1M , the first frontal slice of G is −dsRF/2 and the remaining

slices are zero, and all other matrices are defined in Section 4.2. In order to use

a tensor analogue of the solver in [210], we first perform a column permutation

on E1, E2 and Bz, and a frontal slice permutation on Y and G so that the first 2ℓ

columns of E2 are zero and (4.23) still holds.

The linear constraint Y ×1 M ×2 M ×3 Bz = G in (4.23) can be rewritten as

Y ×3 L = H, where L = SBz =

[
I L̃

]
such that the leftmost 2ℓ× 2ℓ submatrix

of L is the identity matrix, and H = G ×1 M
−1 ×2 M

−1 ×3 S. Then, (4.23) can be

combined into a single equation:

Y ×1 A×3 (E1 − (E1)1:2ℓL) + Y ×2 A×3 (E1 − (E1)1:2ℓL) + Y ×1 A×2 A×3 (E2 − (E2)1:2ℓL)

= −H×1 A×3 (E1)1:2ℓ −H×2 A×3 (E1)1:2ℓ −H×1 A×2 A×3 (E2)1:2ℓ,

(4.24)

where (E1)1:2ℓ represents the first 2ℓ columns of E1. Since the first 2ℓ columns

of E2 are 0 and the leftmost 2ℓ× 2ℓ submatrix of L is the identity, we know that

the first 2ℓ frontal slices of Y do not influence the solution. Therefore, we can

solve for Y2, which contains the rest of the frontal slices, by solving a smaller

Sylvester equation:

Y2 ×1 A×3 R1 + Y2 ×2 A×3 R1 + Y2 ×1 A×2 A×3 R2

= −H×1 A×3 (E1)1:2ℓ −H×2 A×3 (E1)1:2ℓ, (4.25)

114

where R1 is the first
(∑

i

(
n
(i)
3

)
− 2ℓ

)
rows of (E1)2ℓ+1:

∑
i

(
n
(i)
3

) − (E1)1:2ℓL̃, and

R2 is the first
(∑

i

(
n
(i)
3

)
− 2ℓ

)
rows of (E1)2ℓ+1:

∑
i

(
n
(i)
3

). After computing Y2, it is

then straightforward to use the linear constraint to calculate the first 2ℓ frontal

slices by Y1 = H− Y2 ×3 L̃.

Since we do not know the behavior of the spectrum of R1 and R2, we use a

tensor analogue of the Bartels–Stewart algorithm (Algorithm 4) to solve for each

column fiber of Y2. Finally, we recover X (0) as the first n(0)
3 frontal slices of Y ,

convert it to the Chebyshev coefficient tensor Z and get the coefficient matrix of

the solution of (4.1) by Z ×3

[
T0(−1) T1(−1) . . .

]
. This direct solver on a unit

square is summarized in Algorithm 10.

Algorithm 16 Direct fractional PDE solver on the unit square

1: Input: The coefficient matrix F of f in Chebyshev basis.
2: Output: The coefficient matrix W of the solution u in Chebyshev basis.
3: Convert both columns and rows of F into coefficients in C̃(3/2) basis.
4: while maxp,q

∣∣∣X (i)

p,q,n
(i)
3

∣∣∣ > 10−10 for any i in (4.22) do

5: Increase n(i)
3 .

6: Solve (4.25) for Y2 and compute Y1 = H− Y2 ×3 L̃.
7: Stack Y1 and Y2 in the tube direction, and form X (0) to be the first n(1)

3

frontal slices of Y ..
8: Calculate W = X (0) ×2

[
T0(−1) T1(−1) · · ·

]
.

9: Convert both columns and rows of W into coefficients in Chebyshev basis.

Remark (Numerical convergence). As a numerical example, we consider the case

that u = sin(πx) sin(πy) + sin(2πx) sin(2πy), then f = (2π2)s sin(πx) sin(πy) +

(8π2)s sin(2πx) sin(2πy) by the spectral definition. Figure 4.3 (Left) shows the

coefficient decay along the extended direction of the discretized tensor solution

for different values of s. This plot demonstrates that when the algorithm termi-

nates, the coefficient of the polynomial terms of the discretized solution is small

enough. Figure 4.3 (Right) shows the accuracy improvements of our adaptive

115

Slice (extended direction)

C
oe

ffi
ci

en
t

DoF (extended direction)

L
2

Er
ro

r

Figure 4.3: Solving the fractional PDE for f = (2π2)s sin(πx) sin(πy) +
(8π2)s sin(2πx) sin(2πy) and different values of s on Ω = (−1, 1)2 with our spec-
tral solver. Left: the largest coefficient in magnitude on each slice along the
extended direction in the discretized solution, i.e., the largest Xpqr when r is
fixed in (4.22). When s = 2/5 and s = 4/7, z(1/s) is approximated by piecewise
polynomials with two pieces. The coefficient patterns show the decay of both
pieces. Right: the accuracy achieved with different degrees of freedom in the
extended direction. For s = 1/4, we achieve sufficient coefficient decay within
five iterations. For s = 4/7, we require two iterations and for s = 2/5, the coef-
ficients of a 28 × 28 × 121 discretization decay below 10−13 in the first iteration,
resulting in a single point on the plot.

algorithm. With the increase of polynomial degree to approximate the extended

domain, we obtain a reduction of error between the numerical and analytic so-

lution.

Remark (Numerical convergence for non-compatible datum). As another exam-

ple, we consider a non-compatible case with f = 2 and s < 1/2, leading to

low regularity of the solution to the fractional PDE [156, Sec. 6.3]. Figure 4.4

shows the coefficient decay along the extended direction of the discretized ten-

sor solution for different values of s. Again, when the algorithm terminates, the

coefficient of the polynomial terms of the discretized solution is small enough,

and the number of coefficients to achieve this decay is smaller than that in Re-

mark 4.3.1.

116

Slice (extended direction)
C

oe
ffi

ci
en

t

Figure 4.4: Solving the fractional PDE for f = 2 and different values of s < 1/2
on Ω = (−1, 1)2 with our spectral solver. The plot shows the largest coefficient
in magnitude on each slice along the extended direction in the discretized so-
lution, i.e., the largest Xpqr when r is fixed in (4.22). When s = 2/5, z(1/s) is
approximated by a piecewise polynomial with two pieces. The coefficient pat-
terns show the decay of both pieces.

4.3.2 Domain Decomposition Solver

In the previous section, we solved (4.1) on the unit square by jointly solv-

ing (4.21) for all segments. However, the solution of (4.1) only corresponds to

X (0), the solution on the first domain. Therefore, we design a domain decom-

position solver, inspired by the hierarchical Poincaré–Steklov method [144], to

solve only for X (0).

Suppose we know the Robin boundary conditions for X (0) and Dirichlet

boundary conditions for all other X (i). It is then straightforward to write a ten-

sor equation for each X (i) in the form of (4.24):

(X (i) ×1 A+ X (i) ×2 A)×3 (Ci − (Ci)1:2Li) + X (i) ×1 A×2 A×3 (M2 − (M2)1:2Li)

= −H(i) ×1 A×3 (Ci)1:2 −H(i) ×2 A×3 (Ci)1:2,

(4.26)

117

where Ci = S2,0Bi, M2 = KiD2, L0 = N0

P−1

Q1

 = [I L̃0], Li = Ni

Q−1

Q1

 = [I L̃i]

for i > 1, H(i) = G(i) ×1 M
−1 ×2 M

−1 ×3 Ni, and the two frontal slices of G(i)

correspond to the boundary conditions of X (i) that are assumed to be known.

This means that, once we have G(i), we are able to solve for X (i).

Equation (4.26) allows us to construct a solution map S(i) ∈ Rn1n2n
(i)
3 ×2n1n2 :

S(i) = −[(Ci − (Ci)1:2Li)⊗ I ⊗ A+ (Ci − (Ci)1:2Li)⊗ A⊗ I + (M2 − (M2)1:2Li)⊗ A⊗ A]−1

(((Ci)1:2Ni)⊗ (I ⊗ A+ A⊗ I)),

(4.27)

such that vec
(
X (i)

)
= S(i) vec

(
G(i)
)
, where vec

(
X (i)

)
reshapes all elements in

X (i) to a vector. In addition, we define the Dirichlet-to-Neumann (DtN) map

K(i) ∈ R2n1n2×2n1n2 by

K(i) =
2

zi − zi−1

P−1

P1

⊗ I ⊗ I

S(i).

The map K(i) converts the Dirichlet boundary conditions G(i) into the Neumann

values B(i) on the boundaries.

We solve for each column of S(i) by solving a tensor Sylvester equation:

S(i)
j ×1A×(Ci−(Ci)1:2Li)+S(i)

j ×2A×3(Ci−(Ci)1:2Li)+S(i)
j ×1A×2A×3(M2−(M2)1:2Li) = W(i)

j ,

where S(i)
j the jth column of S(i) reshaped to an n1 × n2 × n

(i)
3 tensor, and W(i)

j

is the jth column of ((Ci)1:2Ni) ⊗ (I ⊗ A + A ⊗ I) reshaped to an n1 × n2 × n
(i)
3

tensor. This suggests that the computation of S(i)
j is a parallelizable process. We

can calculate the operator K(i) by

K(i)
j =

2

zi − zi−1

S(i)
j ×3

P−1

P1

 ,
118

where K(i)
j is the jth vector of K(i) reshaped to a 2× n1 × n2 tensor.

Our goal is to use the solution operator S(0) to solve for X (0). Thus, we must

obtain the implicit Dirichlet boundary condition. Next, we show that we can

carefully merge the solution maps S(i) and DtN mapsK(i). As a result, we obtain

solution maps and DtN maps that work on several domains simultaneously,

and these merged maps can help us find the desired boundary condition.

The boundaries for each domain consist of one upper surface and one lower

surface so that we can separate the boundary conditions into two parts and the

DtN operator into four parts, i.e.,

vec
(
G(i)
)
=

G(i)
v

G(i)
u

 , vec
(
B(i)
)
=

B(i)
v

B(i)
u

 , K(i) =

K(i)
v,v K

(i)
v,u

K
(i)
u,v K

(i)
u,u

 .
Then we can follow [144] to merge the solution and DtN operators:

S(i,i+1) =
(
K(i)
u,u −K(i+1)

v,v

)−1
[
−K(i)

u,v K
(i+1)
v,u

]
,

K(i,i+1) =

K(i)
v,v 0

0 K
(i+1)
u,u

+

 K
(i)
v,u

K
(i+1)
u,v

S(i,i+1),

so that

G(i)
u = G(i+1)

v = S(i,i+1)

 G(i)
v

G(i+1)
u

 ,
 B(i)

v

B(i+1)
u

 = K(i,i+1)

 G(i)
v

G(i+1)
u

 .
In other words, given the Dirichlet boundary conditions on the lower surface of

the ith domain and the upper surface of the (i + 1)st domain, K(i,i+1) enables

one to compute the Neumann conditions on those surfaces, and S(i,i+1) allows

one to calculate the Dirichlet condition of the overlapping surface.

We need G(0)
u or G(1)

v to compute X (0). To achieve this, we can merge the

operators for X (1), . . . ,X (ℓ−1) to get S(1,ℓ−1) and K(1,ℓ−1), and then merge them

119

with S(0) and K(0) in the final step. In particular, there are two ways of merging

the operators:

1. Starting from the top piece, we form S(ℓ−1) and K(ℓ−1). We then iterate

downwards from i = ℓ − 1 to i = 0, form new operators for each piece,

and merge them with the operators from the previous iteration. This is

merging in a sequential way.

2. Since the maps for each piece are independent, we can form the opera-

tors on all domains in parallel. Then, we merge in a hierarchical manner,

merging two of them simultaneously, and these merging operations are

parallelizable.

In summary, this domain decomposition solver is Algorithm 11.

Algorithm 17 Domain decomposition fractional PDE solver on the unit square

1: Input: The coefficient matrix F of f in Chebyshev basis.
2: Output: The coefficient matrix W of the solution u in Chebyshev basis.
3: Convert both columns and rows of F into coefficients in C̃(3/2) basis.
4: while maxp,q

∣∣∣X (i)

p,q,n
(i)
3

∣∣∣ > 10−10 for any i in (4.26) do

5: Increase n(i)
3 .

6: Form solution and DtN maps on each domain.
7: Merge the maps to get S(1,ℓ−1) and K(1,ℓ−1).
8: Merge with S(0) and K(0) to get solution tensor X (0) on the first domain..
9: Calculate W = X (0) ×2

[
T0(−1) T1(−1) · · ·

]
.

10: Convert both columns and rows of W into coefficients in Chebyshev basis.

Remark. We can also use domain decomposition to construct a parallel solver for

the disk domain. The solution operator S(i) ∈ Cn1n
(i)
2 m×2n1m on the ith domain

takes in the Dirichlet boundary coefficients on the top and the bottom surfaces,

and returns the coefficients of Ũ (i). Although we cannot construct S(i) in one

setting due to partial regularity, we discover that row
(
(k − 1)n1n

(i)
2 + 1

)
to row

120

(
kn1n

(i)
2

)
of S(i) corresponds to the (k − 1 − m/2)th Fourier mode of the solu-

tion. In this way, we can construct these rows with the linear system converted

from the generalized Sylvester equation. It is then straightforward to construct

the DtN map K(i) from S(i), and we can use the hierarchical Poincaré–Steklov

method described for the rectangle domain.

4.4 Numerical Example and Application to Optimal Control

Problems

In this section, we present two examples. In the first example, we extend our

2D solver to 3D to solve the fractional elliptic PDE on Ω = (0, 1)3. The second

example is an optimal control problem with a fractional PDE constraint.

4.4.1 Fractional PDE on the Cube

We can extend our solver from Section 4.3 to solve fractional PDEs on the unit

cube. Using ultraspherical polynomials for the cube dimensions and Chebyshev

polynomials for the extended direction, the discretized problem is the follow-

ing:

Y ×1 A×2 A×4 E1 + Y ×2 A×3 A×4 E1 + Y ×1 A×3 A×4 E1 + Y ×1 A×2 A×3 A×4 E2 = 0,

Y ×1 M ×2 M ×3 M ×4 Bz = −dsRF/2,

(4.28)

where Y is formed by stacking 4D tensor solutions of the discretized problem

on each interval along the fourth dimension, F is a 3D tensor representing the

121

polynomial coefficients of the initial condition, and all other matrices have been

defined in Section 4.3.

We solve (4.28) by merging the linear constraint into the tensor equation

and using a 4D Bartels–Stewart algorithm analogue to obtain the solution

directly. For a numerical example, we consider the simple case that f =

(3π2)s sin(πx) sin(πy) sin(πz) + (12π2)s sin(2πx) sin(2πy) sin(2πz) so that the ana-

lytic solution is u = sin(πx) sin(πy) sin(πz)+sin(2πx) sin(2πy) sin(2πz). Figure 4.5

(Left) shows the coefficient decay along the extended direction of the discretized

tensor solution for different values of s. This plot shows that the coefficient of

the discretized solution is small enough when the algorithm finishes. Figure 4.5

(Right) shows the accuracy improvements in our adaptive algorithm when we

increase the degrees of freedom by allowing higher polynomial degrees to ap-

proximate the solution in the extended direction. Similar to the problem on the

square, polynomial coefficients of the discretized solution decay exponentially

along the extended direction, which allows us to find an accurate numerical

solution with only a few degrees of freedom.

4.4.2 Optimal Control Problem

We consider the optimization problem given by

min
(u,q)

{
J(u, q) :=

1

2

∫
Ω

|u− ud|2 +
α

2

∫
Ω

|q|2
}
,

subject to (−∆)su = q in Ω, (4.29)

where ud is a given function and α is the control penalty parameter. We solve

this problem via a direct solver. Specifically, we express the optimality condition

122

Slice (extended direction)

C
oe

ffi
ci

en
t

DoF (extended direction)

L
2

Er
ro

r

Figure 4.5: Solving the fractional PDE for f = (3π2)s sin(πx) sin(πy) sin(πz) +
(12π2)s sin(2πx) sin(2πy) sin(2πz) and different values of s on Ω = (−1, 1)3 with
our spectral solver. Left: the largest coefficient in magnitude on each slice
along the extended direction in the discretized solution, i.e., the largest coef-
ficient when the fourth index of the discretized tensor solution is fixed. When
s = 2/5, z(1/s) is approximated by a piecewise polynomial with two pieces. In
this case, the coefficient patterns show the decay of both pieces. Right: the ac-
curacy achieved with different degrees of freedom in the extended direction.
When s = 1/4, the algorithm performs five iterations, increasing the degrees of
freedom along the extended direction to achieve sufficient decay of the coeffi-
cients. On the other hand, when s = 2/5, the solution admits sufficient coef-
ficient decay in the first iteration because the adaptive solver adds additional
degrees of freedom.

as two fractional PDEs, discretize both, combine them into one tensor equation

and obtain the best u and z directly. In particular, we solve

(−∆)su = − 1

α
p,

(−∆)sp = u− ud,

(4.30)

where we have eliminated the so-called gradient equation. For simplicity, we

consider solving (4.30) directly on the unit square. Let U and P be the coefficient

tensors for the extensions of u and p, respectively. Then, U and P satisfy the

123

following tensor equations:

U ×1 A×3 E
(u)
1 + U ×2 A×3 E

(u)
1 + U ×1 A×2 A×3 E

(u)
2 = 0,

U ×3 B
(u)
y = G(u),

P ×1 A×3 E
(p)
1 + P ×2 A×3 E

(p)
1 + U ×1 A×2 A×3 E

(p)
2 = 0,

P ×3 B
(p)
y = G(p), (4.31)

where the first frontal slice of G(u) is dsz1
2α

P×3

[
T0(−1) . . . T

n
(p)
3
(−1) 0 . . . 0

]
,

the first frontal slice of G(p) is −dsz1
2

(
U ×3

[
T0(−1) . . . T

n
(u)
3
(−1) 0 . . . 0

]
− Ud

)
,

and Ud is the coefficient matrix of ud. To distinguish between matrices used in

the equations for u and p, we use superscripts (u) and (p). The matrices E1, E2

and By are defined in Section 4.3. We can then rearrange (4.31) so that we only

have one tensor Sylvester equation and a linear constraint:

Y ×1 A×3

E(u)
1

E
(p)
1

+ Y ×2 A×3

E(u)
1

E
(p)
1

+ Y ×1 A×2 A×3

E(u)
2

E
(p)
2

 = 0,

Y ×3 By = G,
(4.32)

where Y is formed by stacking U and P along the tube direction, G is a zero

tensor except for the last frontal slice of 1
2
dsz1Ud,

By =

B
(u)
y (1) −dsz1

2α

[
T0(−1) . . . T

n
(p)
3
(−1) 0 . . . 0

]
B

(u)
y (2 : end)

B
(p)
y (2 : end)

dsz1
2

[
T0(−1) . . . T

n
(u)
3
(−1) 0 . . . 0

]
B

(p)
y (1)

,

and B
(u)
y (i) is the ith row of B(u)

y . We can then solve for Y , get U and P , and

calculate the coefficient tensor Q of q by Q = − 1
α
P .

124

L
2

Er
ro

r
DoF (extended direction)

Figure 4.6: Solving the optimal control problem (4.29) with different values of
s for α = 10−2, ud = (1 + α(2π2)2s) sin(πx) sin(πy) and Ω = (−1, 1)2. As the de-
grees of freedom in the extended direction increase, the approximation of both
u and q improves. When s = 1/4, we perform four iterations, which add more
degrees of freedom along the extended direction, before our algorithm termi-
nates. When s = 2/5, our first trial guarantees enough decay in the coefficients
for both u and q, resulting in a single point for each on the plot.

For numerical demonstration, we take Ω = (−1, 1)2, α = 10−2, and ud =

(1+α(2π2)2s) sin(πx) sin(πy). The analytic solution of (4.29) with this data is u =

sin(πx) sin(πy) and q = (2π2)s sin(πx) sin(πy). Figure 4.6 shows the performance

of our adaptive direct solver. As demonstrated, our method generates accurate

numerical solutions for both u and q with only a few degrees of freedom in the

extended direction.

4.5 Conclusions

In this chapter, we present a spectral method that uses ultraspherical and

Fourier polynomials to solve fractional Laplacian equations on square and disk

domains via the Caffarelli–Silvestre extension. Based on the value of the frac-

tional exponent s, we decompose the PDE along the extended domain. We

show a direct method that finds solutions on all sub-domains through one ten-

125

sor equation, and a parallelizable domain decomposition solver generated from

the hierarchical Poincaré–Steklov method. Numerical tests suggest that coeffi-

cients of the solutions decay exponentially along the extended direction, and we

can recover accurate discretized solutions with a few degrees of freedom. Our

method is easily generalized to problems of higher dimensions, such as solving

fractional PDEs on cubes, and it can be used to accurately compute solutions

of optimal control problems. For future work, we will develop spectral solvers

for fractional operators with variable coefficients (4.2) through the extension

scheme, yielding an approach that can be used to solve more general PDEs and

optimal control problems as in [186].

126

CHAPTER 5

ELECTRON CORRELATION ENERGY COMPUTATION WITH

SYLVESTER EQUATIONS

In this chapter1, we incorporate dimensionality increase ideas and Sylvester

tensor equation methods to compute electron correlation energy in computa-

tional quantum chemistry. In the past few decades, correlation has been used

by researchers in quantum many-body problems to explain behaviors that are

not described by density functional theory [148, 171, 180, 231]. The journey to

highly accurate correlation energy is a long haul, where storage and computa-

tional inefficiency have accompanied the emergence of new accurate computing

routines. We introduce numerical linear algebra and scientific computing into

second-order Møller–Plesset perturbation theory (MP2) model [103, 208], one

of the current most popular and accurate density functional approximation, to

design fast algorithms for handling correlation.

5.1 Introduction

In quantum chemistry, a longstanding challenge is to evaluate the electron cor-

relation energy of the electronic ground state of molecules at the lowest possible

computational cost. Starting from the mean-field Hartree-Fock (HF) method,

1This chapter is based on a project with Abdulrahman Aldossary, Yang Liu, Zhenling Wang,
Martin Head-Gordon, and Sherry Li. I started working on this project in the summer of 2021 as
a research intern at Lawrence Berkeley National Laboratory (LBL), and will continue to make
more progress on it as a postdoc at LBL. For this project, I derived the mathematical formula-
tions, implemented MATLAB codes for preliminary results and C++ codes for comparison with
existing methods. This material is based upon work supported by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Computing Research and Office of Basic
Energy Sciences, Scientific Discovery through Advanced Computing (SciDAC) program.

127

chemists have included dependence on different forms of density and atom or-

bitals to achieve a higher level of accuracy during computations [101,142]. Cur-

rently, we can obtain density functional approximations with the smallest error

using double hybrid density functional theory [79,142,143]. However, computa-

tion costs of these accurate methods grow drastically with respect to the system

size N . For example, wave function-based improvements upon the HF method,

such as MP2, coupled-clusters with singles and doubles (CCSD) [21, 22], and

CCSD with correcting for perturbative triples (CCSD(T)) [174] hold the highest

level of accuracy, but scale as O(N5), O(N6), and O(N7) respectively. Therefore,

the needs to reduce the scaling of these methods are well-recognized and have

been research tasks for many years.

As the lowest order perturbation theory correction to HF, MP2 is free of

self-interaction or delocalization errors, and provides a considerate amount of

improvement in accuracy. It mainly exhibits significant advantages for stable

closed shell organic and main group inorganic molecules [80, 104]. In addition,

MP2 also improves the quality of optimized molecular structures and proper-

ties of closed shell molecules such as dipole moments [95, 104] and electrical

polarizabilities [94]. MP2 typically experiences failures when the molecules are

strongly correlated [196]. It also has drawbacks when the HF orbitals exhibit

artificial symmetry-breaking even without obvious strong correlations [131],

and when there is the presence of significant non-additive weak correlation

effects [188]. Nevertheless, the simplicity and comparatively low scaling still

mark MP2 as one of the most popular and useful methods for electron correla-

tion.

In quantum chemistry, two types of orbital basis are often used. There is

128

the atomic orbital (AO) basis, where electrons in it are under the influence of

only one nucleus of the atom. There is also the molecular orbital (MO) basis,

where electrons in it are affected by two or more nuclei in a molecule. In gen-

eral, the AO basis is an inherent property of the an atom, while an MO basis

is formed by a linear combination of the AO basis. Given this formulation,

MO basis of a molecule is not unique. To date, there are several successful at-

tempts to reduce the scaling of MP2. One of them is the cutoff-based Laplace

transform MP2 method [6, 12], which yields asymptotically quadratic or even

linear scaling using canonical MO basis (see section 5.1.2). Another is the local

density-fitting MP2 [180,226], which combines MP2 and localized MO basis (see

section 5.1.2), and is shown to have linear scaling. Similar ideas have also been

applied to CCSD and CCSD(T) to achieve linear scaling [91]. However, these

ideas usually include many truncations during system construction, giving dis-

continuities when the geometry changes and unbounded errors for chemical

approximations. In this chapter, we develop alternative methods for comput-

ing the correlation energy using MP2 with electrons in canonical and localized

MO basis. These methods have good theoretical scaling, and also perform ex-

cellently in practice.

A major component to understanding chemical orbitals is to differentiate

occupied orbitals and virtual orbitals [102]. In general, occupied orbitals are

those that contain at least one electron and are used to update the mean-field

potential in HF theory. The rest are then defined as virtual (or unoccupied)

orbitals. Mathematically speaking, occupied and virtual orbitals lie within the

solution of a nonlinear generalized eigenvalue problem [189]:

F (C)C = SCϵ, (5.1)

where F is the Fock matrix representing effective potentials, S is the overlap

129

matrix indicating locations of electrons, C stores the generalized eigenvectors,

and ϵ contains all the generalized eigenvalues. The lowest nocc eigenvalues cor-

respond to the occupied orbitals, and we can use their corresponding eigenvec-

tors as coefficients to form an occupied orbital basis. As a result, the rest nvirt

eigenvalues correspond to the virtual orbitals, and we can form a virtual orbital

basis with eigenvectors inC. Due to the dependence of F onC, we need to solve

this eigenvalue problem iteratively until convergence. For notational and con-

ceptual simplicity, we refer to the final result of F and S as the Fock and overlap

matrices for the remainder of this chapter. In particular, in a representation of

orthogonal orbitals for both occupied and virtual basis, the overlap matrix S is

the identity matrix, and thus we can gain huge computational benefits.

In the rest of this section, we briefly describe the mathematical problem we

encounter to compute the correlation energy through perturbation theory, and

introduce a couple of orbital bases we consider our problems in. Then, in sec-

tion 5.2, we rewrite our target linear system into Sylvester tensor equations, and

discuss how we interpret them in canonical and localized orbital bases. Next,

we design a block low-rank solver for the canonical representation using fADI

in section 5.3, and a sparsity enforcement Krylov subspace solver for the local-

ized representation in section 5.4. Finally, we make some concluding remarks

and discuss our future directions in section 5.5.

5.1.1 Mathematical formulation of correlation energy

The simplest way to capture more of the many–body wavefunction character is

to use perturbation theory, i.e., Rayleigh–Schrodinger theory [228, 229]. In this

130

approximation, the correlation energy is:

Ecorr = L · T , L, T ∈ Rnvirt×nocc×nvirt×nocc , (5.2)

La,i,b,j = (ia|jb) =
∫
dr

∫
dr′ϕa(r)ϕb(r)

1

|r − r′|
ψi(r

′)ψj(r
′), (5.3)

1 ≤ i, j ≤ nocc, 1 ≤ a, b ≤ nvirt,

where T is an unknown tensor we need to solve for, nocc is the number of

occupied orbitals, nvirt is the number of virtual orbitals, (ia|jb) are unsym-

metrized two-electron integrals in Mulliken notation with ϕ and ψ linear combi-

nations of spherical harmonic Gaussians [132, 153]. If L is reshaped to a matrix

L ∈ Rnvirtnocc×nvirtnocc , L is also referred to as the electron repulsion integral (ERI)

matrix. Throughout this chapter, we use a, b to denote indices for the virtual

orbitals, and i, j to denote indices for the occupied orbitals. Because (5.2) is a

dot product, our goal is to solve either T , or T = reshape(T , nvirtnocc, nvirtnocc),

or t = T (:). If we assume that each orbital has two electrons, t is the solution of

the linear system

∆t = 2l − k = c, (5.4)

where l = L(:), k = K(:),K = (ib|ja), and ∆ = reshape(H, n2
virtn

2
occ, n

2
virtn

2
occ) with

Ha,i,b,j,a′,i′,b′,j′ = Sa,a′Fi,i′Sb,b′Sj,j′ + Sa,a′Si,i′Sb,b′Fj,j′

− Fa,a′Si,i′Sb,b′Sj,j′ − Sa,a′Si,i′Fb,b′Sj,j′ . (5.5)

Here, to comply with notations used in quantum chemistry community, we use

Fvirt and Focc to denote submatrices of the Fock matrix that correspond to the

virtual and occupied orbitals respectively. Similarly, we can define Svirt and

Socc, and in fact,

F =

Focc

Fvirt

 , S =

Socc

Svirt

 .
131

In addition, we use Fa,a′ and Fb,b′ to access a specific element of Fvirt, Sa,a′ and

Sb,b′ to access a specific element of Svirt, and similarly for the occupied orbitals.

In a representation of orthogonal orbitals, (5.5) can be simplified to

Ha,i,b,j,a′,i′,b′,j′ = δa,a′Fi,i′δb,b′δj,j′ + δa,a′δi,i′δb,b′Fj,j′

− Fa,a′δi,i′δb,b′δj,j′ − δa,a′δi,i′Fb,b′δj,j′ , (5.6)

where δ is the Dirac delta function.

It is important to emphasize that since we fix spin orthogonality, (5.4) is

different from the linear system that one generates with the Hylleraas func-

tional [107, 180, 208]. However, this simplification drops a lot of chemical com-

plications, and we can use it as a first step to test our new algorithms. In addi-

tion, since (5.2) only consists of a dot product, we can show that

Ecorr = lT t = lT (∆−1c) = (∆−1l)T c, (5.7)

where the last equality holds since ∆ is symmetric. In other words, we can

switch the role of l and c in (5.2) and (5.4), which can be beneficial when we

want to use the structure of l or L to solve the linear system.

5.1.2 Different orbital bases

In this section, we review a couple of MO bases we use in this chapter. We

start with the canonical orbitals [208], which diagonalize the Fock matrix F and

therefore also diagonalize Fvirt and Focc. F in this scenario stores all the eigen-

values of this chemical system. The canonical orbitals are the easiest to handle

with respect to (5.4), especially for orthogonal orbitals, since ∆ becomes a diag-

132

onal matrix, and we have a formula for each element of T :

Ta,i,b,j =
2(ia|jb)− (ib|ja)
−ϵa − ϵb + ϵi + ϵj

, (5.8)

where ϵi and ϵj are diagonal elements of Focc, and ϵa and ϵb are diagonal elements

of Fvirt. However, with canonical orbitals, the ERI matrix is dense, and we need

to construct each element through the double repulsion integral formula, which

is an expensive procedure both in terms of memory and computations.

Another commonly used orbital basis is the localized orbital basis, which

can be obtained from the canonical orbitals by standard localization procedures

as proposed by Boys [33] or Pipek and Mezey [170], and is used to span lo-

calized MOs. Then, the virtual space is spanned by a basis of nonorthogonal

projected AOs, which are obtained from the AO basis functions by projecting

out the occupied orbital space [173]. For example, with Boys localization, the

sum of spread of each orbital is minimized, and the orbital locality is thus max-

imized. Figure 5.1 shows the effects of Boys localization on the object C10H22.

With localization, chemical information is clustered together, leading to sparsity

in the ERI matrix. As a result, many elements in L vanishes, such as when i and

j are far apart, or a and b are far apart. This greatly reduces memory costs and

computation power of the ERI generation.

The final orbital basis that we introduce is the resolution of the identity (RI)

basis, which appears in density fitting methods [112]. In short, the one-electron

charge densities in (5.3) are approximated by linear expansions in an auxiliary

basis set [223,224]. Mathematically speaking, this gives us a low rank factoriza-

tion of the ERI matrix

L = (ia|jb) ≈ (ia|A)(A|B)−1(B|jb), (5.9)

133

Figure 5.1: Effects of Boys localization method on C10H22. The blue and red
clumps represent the canonical orbital basis (left) and the localized orbital basis
(right) as distribution functions, since both are linear combinations of the AO
basis, whose basis functions are commonly considered to be Gaussian distribu-
tions. We can see that with localization, each MO basis is clustered around a
small region, and this helps promote sparsity in the chemical system.

where the size of the RI basis is much smaller than nvirtnocc. Here, we also over-

load the notation a little and use (ia|jb) to represent a matrix. Since L is sym-

metric, we can represent this low rank approximation as

L ≈ UUT , (5.10)

where U is a tall-and-skinny matrix. By now, density fitting is a well-established

approach, and has been applied to MP2 in canonical [223] and localized [226]

representations with optimized fitting basis sets. In this chapter, we utilize den-

sity fitting by exploiting the low rank structure of L (5.10), and develop a low

rank solver in a representation with the canonical orbital basis.

5.2 Sylvester equation representation

Our main contribution in this project is to adopt the dimensionality increase

idea and rewrite the linear system (5.4) and (5.5) into higher-dimensional

Sylvester tensor equations and then use Sylvester solvers to find t in vector,

matrix, or tensor form efficiently. To be specific, since each element in ∆ can be

134

expressed as the sum of products of elements of four matrices, we see that

∆ =− Socc ⊗ Svirt ⊗ Socc ⊗ Fvirt + Socc ⊗ Svirt ⊗ Focc ⊗ Svirt

− Socc ⊗ Fvirt ⊗ Socc ⊗ Svirt + Focc ⊗ Svirt ⊗ Socc ⊗ Svirt. (5.11)

In this way, (5.4) can be rewritten into a 4D generalized Sylvester equation

T ×1 (−Fvirt)×2 Socc ×3 Svirt ×4 Socc + T ×1 Svirt ×2 Focc ×3 Svirt ×4 Socc

+ T ×1 Svirt ×2 Socc ×3 (−Fvirt)×4 Socc + T ×1 Svirt ×2 Socc ×3 Svirt ×4 Focc = C,

(5.12)

where T = reshape(t, nvirt, nocc, nvirt, nocc) and C = reshape(c, nvirt, nocc, nvirt, nocc).

When we want to use structures of the ERI matrix L or C = 2L−K, we can also

rephrase (5.12) into a generalized Sylvester equation

(−Socc ⊗ Fvirt + Focc ⊗ Svirt)T (Socc ⊗ Svirt)
T

+ (Socc ⊗ Svirt)T (−Socc ⊗ Fvirt + Focc ⊗ Svirt)
T = 2L−K = C.

(5.13)

In a representation with orthogonal orbitals, we can simplify (5.12) to

T ×1 (−Fvirt) + T ×2 Focc + T ×3 (−Fvirt) + T ×4 Focc = C (5.14)

and (5.13) to

(−I ⊗ Fvirt + Focc ⊗ I)T + T (−I ⊗ Fvirt + Focc ⊗ I)T = C. (5.15)

In particular, since Fvirt, Focc, and C are all symmetric, (5.15) is also a Lyapunov

equation. In this chapter, we focus on representations with orthogonal orbitals,

but we mention extensions to the nonorthogonal orbital case whenever possible.

Compared to solving the linear system (5.4), Sylvester equation representations

avoid the construction of ∆ and compute directly with Fock and overlap matri-

ces, which significantly reduce storage and computation costs.

135

5.2.1 Canonical representation

When canonical MO basis is used, Fvirt and Focc are both diagonal, then there

is no difference finding the solution via (5.4) or (5.14) or (5.15) as all of them

collapse down to the direct scaling (5.8). Because of the one-to-one correspon-

dence between the solution and the dense ERI matrix, ERI generation and direct

evaluations take O(n2
virtn

2
occ) to accomplish.

A well-recognized approach with canonical orbital basis is the RI-MP2

method [223], which uses density fitting to help generate an approximation

of the ERI matrix, and uses Laplace transform to convert the division with

di,a,j,b = −ϵa− ϵb+ ϵi+ ϵj into a finite summation. To be specific, we perform the

Laplace transform

1

di,a,j,b
=

∫ ∞

0

e−sdi,a,j,bds ≈
Nq∑
q=1

wqe
−sqdi,a,j,b , (5.16)

where the approximation is a choice of a quadrature rule so that wq represents

the quadrature weights and tq denote the discretization points. Typically in

practice, 7 ≤ Nq ≤ 10, so combining this truncated Laplace transform with

density fitting allows us not to solve for the solution element-by-element but as

a linear combination of the ERI matrix expressed with the RI basis.

The Sylvester matrix equation formulation (5.15) provides an alternative

way to derive RI-MP2. Since all eigenvalues of Focc and −Fvirt are negative,

we can write out a closed-form solution [177] of (5.15) as

T =

∫ ∞

0

−esΛCesΛds, (5.17)

where Λ = I ⊗ (−Fvirt) + Focc ⊗ I . Then, it is straightforward to see that (5.17)

with a numerical quadrature routine is equivalent to RI-MP2 with the approx-

imation (5.16). Furthermore, since spectra of Focc and −Fvirt are the same with

136

any type of basis, (5.17) remains to hold even when they are not diagonal. There-

fore, one can also evaluate (5.17) numerically to obtain a solver in a represen-

tation with localized orbitals. However, the performance of this method can be

greatly hindered by the computation of dense matrix exponentials.

In conclusion, existing MP2 methods with canonical orbital basis can be un-

derstood with our Sylvester equation formulation. This encourages us to de-

velop more ways to compute electron correlation energy with Sylvester equa-

tion solvers.

5.2.2 Localized representation

When Focc and −Fvirt are obtained from localized MO basis, they are dense and

symmetric, so a 4D analogue of the eigen-based solver Algorithm 3 is the most

straightforward algorithm for (5.14). Figure 5.2 shows a timing comparison be-

tween the eigen-based Sylvester solver and GMRES [178] to solve (5.4) on sev-

eral chemical objects. We implement our Sylvester solver in MATLAB and use

the MATLAB built-in GMRES routine. Table 5.1 contains the same results but

we also report the exact object name and number of iterations for GMRES to con-

verge (in parenthesis after timing). From the results, we see that using Sylvester

equation solvers is more beneficial than the traditional way of solving linear

systems.

Eigen-decomposition is not the dominant cost since we need to solve for

every entry of the solution. As a result, this Sylvester solver has complexity

O(n2
virtn

2
occ). In addition, although it shows prevalence over traditional linear

system solvers, this direct eigen-based Sylvester solver is far from ideal as we

137

nvirt
Ti

m
e

G
M

RES
Pre

co
nd

-G
M

RES

Sylvest
er

Figure 5.2: Comparison of GMRES with no preconditioner (red), GMRES with
diagonal preconditioner (green) and 4D analogue of Algorithm 3 (blue) of test
examples in the localized representation. The Sylvester solver is in general the
fastest in small problems, and is the only solver that can handle larger problems.

Table 5.1: Summary of GMRES, preconditioned GMRES and eigen-
decomposition Sylvester solver on same test objects in Figure 5.2.

Name ch4-sto3g C2H6 C2H6-tz C4H10 C6H14 C8H18 C10H22 C12H26

nocc 5 9 9 17 25 33 41 49
nvirt 4 49 135 243 351 459 567 675

GMRES 0.0262 (24) 4.4101 (42) 82.5693 (55)
Pre-GMRES 0.0187 (7) 3.2311 (15) 60.9482 (30)
Eigen-Sylv 0.0320 0.0488 0.1662 1.6467 5.7733 16.6457 45.4504 113.3039

neglect any structure associated with the ERI matrix. In fact, the diagonalization

step tries to convert the problem back to one with canonical orbital basis, so

we lose all benefits from using a localized orbital basis. Therefore, we need to

design more sophisticated solvers to utilize the sparsity and data-sparsity of the

ERI matrix.

In a representation with nonorthogonal orbitals, we can use a 4D analogue

of the Bartels–Stewart Algorithm (Algorithm 4) to solve (5.12) directly. This

algorithm also has complexity O(n2
virtn

2
occ). Similar to the orthogonal orbital

case, we wish to develop solvers that exploit the structures of the ERI matrix

138

and achieve better complexity.

5.3 Low rank method for canonical representation

The RI-MP2 method sheds light on a solver that does not solve for each element

of the solution T , but for a combination of terms obtained from the AO basis.

Together with the fact that we have a low rank factorization of L from density

fitting, RI-MP2 motivates us to develop a method that solves for T in a low rank

representation as well.

Using the RI basis, we obtain L = UUT where the number of columns of U

is roughly 3(nvirt + nocc) in practice. Therefore, the idea of exchanging L and C

in (5.15) and (5.2) inspires us to use fADI (Algorithm 6) on the Sylvester equation

(−I ⊗ Fvirt + Focc ⊗ I)T + T (−I ⊗ Fvirt + Focc ⊗ I)T = UUT ,

and recover the correlation energy with Ecorr = T ·C = 2T ·L−T ·K. However,

K is almost full rank, so the computation T · K takes O(n2
virtn

2
occ) and destroy

the data sparsity we create in the matrix T . As a result, our desired solver needs

to satisfy two criteria: (1) it can introduce some level of data sparsity in T , and

(2) it needs to use the product with L to calculate the correlation energy.

Chemists have found that the canonical orbitals around a certain group of

atoms are highly correlated, leading to low rank structures of submatrices of the

ERI matrix L. For example, Figure 5.3(left) is a histogram of the numerical ranks

of sub-blocks of size nvirt × nvirt of C with accuracy 10−5 for the chemical object

C4H10. We notice that the 16 sub-blocks on the top left corner, which correspond

to the carbon atoms, have low rank, and the 169 sub-blocks that correspond to

139

nvirt

Ti
m

e

D
ire

ctLow-rank

Figure 5.3: Left: The numerical rank of sub-blocks of size nvirt × nvirt of C4H10.
Here, nvirt = 243 and nocc = 17. Right: Timing comparison of the direct solver
(red) and partitioned low rank solver (blue) of (5.15).

the hydrogen atoms on the bottom right corner are high-rank or full rank. This

observation also holds for nvirt×nvirt sub-blocks of other chemical objects of the

form CnH2n+2. In particular, we can observe n2 low rank blocks in the top left

corner.

Given this special block data sparsity structure of C, we can design a solver

that separately treats low and full rank blocks. This is feasible since Fvirt and

Focc are both diagonal in the canonical orbital basis, so we can partition (5.15)

into an individual Sylvester equation for each sub-block:

(−Fvirt + Fi,iI)Ti,j + Ti,j(−Fvirt + Fj,jI) = Ci,j, 1 ≤ i, j ≤ nocc, (5.18)

where Ti,j and Ci,j are the (i, j)th sub-blocks of size nvirt × nvirt of T and C re-

spectively. For objects such asCnH2n+2, (5.18) allows one to use low rank solvers

for 1 ≤ i, j ≤ n, and direct method or full rank iterative method for the rest of

the blocks.

We can apply fADI (Algorithm 6) to (5.18), but from practice we find that the

ranks of low rank blocksCi,j are not very small (see Figure 5.3 (left)). As a result,

using Algorithm 6 directly is not very efficient. Instead, it’s straightforward to

140

notice that the solution Ti,j can be computed as

Ti,j = Wi,j ◦ Ci,j,

where ◦ denotes the Hadamard (or entry-wise) product, and Wi,j is the solution

to the Sylvester equation

(−Fvirt + Fi,iI)Wi,j +Wi,j(−Fvirt + Fj,jI) = 1, (5.19)

where 1 represents a matrix with all entries 1. In this way, (5.19) has a rank-

1 right-hand-side, so solving it using Algorithm 6 is very fast. Next, suppose

Wi,j =
∑s

ℓ=1 σℓzℓh
T
ℓ and Ci,j =

∑r
k=1 λkukv

T
k , where the factors zℓ are orthonor-

mal, and similarly for hℓ, uk, and vk, then the solution Ti,j can be represented

as

Ti,j =
s∑
ℓ=1

r∑
k=1

σℓλk(zℓ ◦ uk)(hℓ ◦ vk)T . (5.20)

Since zℓ ◦uk or hℓ ◦ vk are not necessarily groups of orthonormal vectors, trunca-

tion based on the values of σℓλk does not guarantee optimal accuracy. Neverthe-

less, we can still apply the heuristics and truncate terms with small magnitude

in this double summation. In practice, we can do two sweeps of truncation for

Ti,j :

1. Truncate terms with small σℓλk.

2. By Cauchy-Schwarz inequality, we can show that ||zℓ◦uk|| ≤ ||zℓ||||uk|| ≤ 1

and ||hℓ ◦ vk|| ≤ 1. Therefore, for the remaining terms, we can truncate

those with small σℓλk||zℓ ◦ uk||||hℓ ◦ vk||.

In this way, we take away as many terms as possible, while limiting the number

of computations for vector norms. We summarize this method in Algorithm 12.

This algorithm only considers Sylvester equations with diagonal matrices, and

141

is very similar to the fiADI algorithm [211]. Finally, we want to mention that for

computational efficiency, we do not compress our final result since we do not

necessarily need the factor matrices to have orthonormal columns. All we care

about are low rank factorizations of the blocks, so matrix multiplications with

blocks of L to compute the correlation energy are cheaper.

Algorithm 18 Low rank method for diagonal Sylvester equation of the form
LX +XRT = UΛV T , where the right-hand-side has a rank of moderate size.

Input: Diagonal matrices L, R, and Λ, matrices with orthonormal columns U
and V , and accuracy ϵ

Output: Low rank factorization of solution matrix X
1: Use Algorithm 6 to solve LW +WR = 1 for W =

∑s
ℓ=1 σℓzℓh

T
ℓ .

2: For all ℓ and k, form aℓ,k = zℓ ◦ uk and bℓ,k = hℓ ◦ vk that has σℓλk > ϵ. Denote
the index set by (ℓ̃, k̃).

3: For all index pairs (ℓ̃, k̃), keep only terms with σℓ̃λk̃||aℓ̃,k̃||||bℓ̃,k̃|| > ϵ. Denote
the index set by (ℓ̂, k̂).

4: The solution X = σℓ̂λk̂||aℓ̂,k̂||||bℓ̂,k̂||.

Fig 5.3 (Right) shows the timing result of the direct scaling method and

this partitioned low rank solver on test problems in Table 5.1, represented with

canonical orbital basis. We notice that as the problem size gets larger, the parti-

tioned low rank solver has better performance. Suppose for notational simplic-

ity that nvirt = n, then Algorithm 18 takes O(n log n log(1/ϵ) + rsn) for each

low rank sub-block if no truncation is applied in the algorithm. With near-

optimal truncation, this algorithm takes roughly O(n log n log(1/ϵ)) efforts. As a

result, the block partitioned solver has a better complexity than the direct scal-

ing method, and works better in practice, especially for large problems.

The practicality of this algorithm is limited by the construction of low rank

factors of blocks Ci,j at this stage. For testing purposes, we manually com-

pute low rank factorizations of Ci,j and carry out our algorithm. In the future,

we plan to incorporate hierarchical matrix and fast multipole method (FMM)

142

ideas [87, 227] to generate a low rank factorization of Ci,j directly during evalu-

ations of the ERI matrix. This allows us to use Algorithm 12 in real applications.

5.4 Sparsity enforcement method for localized representation

The most important feature of localized orbital basis is the introduction of spar-

sity in the ERI matrix. For moderate-sized test problem, we see in practice the

localized ERI matrix have O(N2) number of nonzeros, and this can reach O(N)

for even larger problems. For example, Figure 5.4 (left) shows the portion of

nontrivial entries with different threshold in the ERI matrix of C20H42 associ-

ated with different localized orbital bases [222]. This motivates us to develop

a method to use the sparsity pattern of the ERI matrix, and optimally, we want

the solution T to have the same sparsity level as C, which is easily determined

by that of L.

Since (5.2) is only a dot product between the solution T and the ERI matrix

L, T has the optimal sparsity pattern if its positions of nonzero entries form a

subset of those of C. Unfortunately, this is rarely possible as the solution of a

sparse linear system generally has a different sparsity pattern from that of the

right-hand-side. However, in the linear system (5.4), if the ℓth row and column

of ∆ contain all zeros when the ℓth element of c is zero, then we can see that the

ℓth element of the solution t is also zero. This inspires us to design a sparsity-

enforced solver for (5.4) by manually setting certain columns and rows of ∆ to

be 0, so that nontrivial elements of t and c have the same indices. Undoubtedly,

we lose some accuracy by setting nonzero elements of t to be 0, but we gain great

computation efficiency. For example, the blue line of Figure 5.4 (right) shows the

143

Figure 5.4: Left: The number of entries greater than a certain threshold of the
ERI matrix associated with C20H42 in a variety of localized orbital basis. We can
see that for this chemical object, the majority of the elements in the ERI matrix
can be considered trivial. Right: The accuracy of the computed electron correla-
tion energy when elements of L that are below a threshold, and corresponding
rows and columns of ∆ in (5.4) are set to 0 for the test example C6H14 (blue line).
For example, if we want the error of the correlation energy to be smaller than
10−4, we only need to keep elements that are greater than 10−6 in L, and their
corresponding columns and rows in ∆.

accuracy level of this sparsity-enforced method for the chemical object C6H14

when we choose a different threshold to determine which elements in L to keep.

We can see that for this class of object, the loss of accuracy is acceptable.

5.4.1 Removing columns and rows in Kronecker products

In the original form of ∆ in (5.11) where all rows and columns are kept, matrix-

vector products ∆v are equivalent to tensor mode-n products

V ×1 (−Fvirt)×2 Socc ×3 Svirt ×4 Socc + V ×1 Svirt ×2 Focc ×3 Svirt ×4 Socc

+ V ×1 Svirt ×2 Socc ×3 (−Fvirt)×4 Socc + V ×1 Svirt ×2 Socc ×3 Svirt ×4 Focc,

144

where V = reshape(v, nvirt, nocc, nvirt, nocc). With orthogonal orbital basis, the

products are simply

V ×1 (−Fvirt) + V ×2 Focc + V ×3 (−Fvirt) + V ×4 Focc.

Therefore, if we use Krylov subspace methods to solve (5.4), we never need to

construct ∆, and can work directly with Fock and overlap matrices.

We now consider a slightly different matrix-vector multiplication Ev, where

E = A⊗B ⊗ C ⊗D,

A ∈ Rn4×n4 , B ∈ Rn3×n3 , C ∈ Rn2×n2 , and D ∈ Rn1×n1 are symmetric matri-

ces. Then, each of the four components in ∆ can be viewed as a special case of

E. If we can still represent the matrix Ē, which is obtained via setting certain

rows and columns of E to be 0, with Kronecker products of matrices related

to A,B,C, and D, then we are able to perform the multiplication Ēv efficiently

using tensor notations.

From the Kronecker product structure, we find that each column of E can be

computed with columns of A,B,C, and D, i.e.,

Eh(i,a,j,b) = Aj ⊗Bb ⊗ Ci ⊗Da,

where Aj, Bb, Ci, Da, and Eh(i,a,j,b) represents the jth, bth, ith, ath, and

h(i, a, j, b) = jn3n2n1 + bn2n1 + in1 + ath column of A,B,C,D, and E respec-

tively. Here, for notational simplicity, we use the indexing routines in C and

C++ that 0 ≤ a ≤ n1, 0 ≤ i ≤ n2, 0 ≤ b ≤ n3, and 0 ≤ j ≤ n4. In this way, we can

express

Ēh(i,a,j,b) = Āj ⊗ B̄b ⊗ C̄i ⊗ D̄a,

where

Āj =

[
0 · · · 0 Aj 0 · · · 0

]

145

is used to represent a matrix whose jth column is the only nonzero column with

entries from Aj , and similarly for B̄b, C̄i, D̄a, and Ēh(i,a,j,b). Then, Ēh(i,a,j,b) corre-

sponds to the extreme case that only the h(i, a, j, b)th element of v is nontrivial,

so that all columns of E except the h(i, a, j, b)th are manually set to 0. Simi-

larly, since E is symmetric, ĒT
h(i,a,j,b) corresponds to a matrix that only keeps the

h(i, a, j, b)th row of E. In this case, one can easily check that ĒT
h(i,a,j,b)v yields

the same answer as Ēr,c
h(i,a,j,b)v, where Ēr,c

h(i,a,j,b) is a matrix whose only nontrivial

entry is at the (h(i, a, j, b), h(i, a, j, b)) position.

For the index of each element in the vector v, we can use the function h to

find its associated i, a, j, and b values, so we can use the tuple (iajb) to denote

a specific index. In this way, if there are M nontrivial elements in v, we can la-

bel them as (i1a1j1b1), . . . , (iMaMjMbM). In practice, we can store these M tuples

according to their (ij) value pair and (ab) value pair. Specifically, we store all

the unique (ij) pairs from (i1j1), . . . , (iMjM); then for each nonempty (ij) com-

bination, we store all pairs (ab) from (a1b1), . . . , (aMbM) that share the same (ij)

values. This storage routine is based on an efficient method to generate the ERI

matrix, where double integrals are only performed on certain (ij) and (ab) pairs.

In this way, our target matrix-vector multiplication Ev is transformed to

Ēr,c
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM)v,

where Ēr,c
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM) is originated from E by setting columns and

rows not related to the indices (i1a1j1b1), . . . , (iMaMjMbM) to zero. However, its

closed-form expression usingA,B,C, andD is very complicated, so instead, we

carry out the matrix-vector product

ĒT
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM)v, (5.21)

where Ēh(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM) keeps columns h(i1, a1, j1, b1), . . . , h(iM , aM , jM , bM)

146

of E with all others set to zero.

5.4.2 Closed-form expressions of Kronecker product matrices

with columns removed

The remaining task is to relate Ēh(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM) with A,B,C, and D

through Kronecker products, so that the multiplication ĒT
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM)v

can be converted into tensor mode-n products of V . According to the storage

pattern of the (iajb) index tuples, we obtain

Ēh(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM) =
M∑
k=1

Ājk ⊗ B̄bk ⊗ C̄ik ⊗ D̄ak

=
∑

j′∈uniqueJ

Āj′ ⊗

 ζj′∑
w=1

B̄bw ⊗ C̄iw ⊗ D̄aw

 , (5.22)

where J is a set containing j1, . . . , jM . This representation can be understood

in the following way: for each unique value j′ that corresponds to nontrivial

elements, we find all (iwawbw) tuples that share this value j′. Therefore, we

must have
∑

j′∈uniqueJ ζj′ = M . Representation (5.22) is used to single out the

matrix A, so it is most useful when we have orthogonal orbitals with A = Focc

and B = C = D = I .

Similarly, when we want to single out C for the index i, we have

Ēh(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM) =
∑

i′∈unique I

(
γi′∑
w=1

Ājw ⊗ B̄bw ⊗ C̄i′ ⊗ D̄aw

)
, (5.23)

where I contains i1, . . . , iM . This can be understood as the same way of (5.22)

and
∑

i′∈unique I γi′ =M .

147

Due to the way tuples (iajb) are stored, we need slightly different represen-

tations if we want to single out the matrix D:

Ēh(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM) =
∑
w

(
Ājw ⊗ B̄bw ⊗ C̄iw ⊗ D̄(A|iw,bw,jw)

)
, (5.24)

where (A|iw, bw, jw) denotes all values of a given the choice of jw, bw, and iw. This

is equivalent to finding all (iwaℓjwbw) tuples with the same iw, jw, and bw values

and group them together. For this representation, we must have
∑

w αw = M

where αw = |(A|iw, bw, jw)| and | · | counts the cardinality of a set. Additionally,

to single out the matrix B with b indices, we have

Ēh(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM) =
∑
w

(
Ājw ⊗ B̄(B|iw,jw,aw) ⊗ C̄iw ⊗ D̄aw

)
. (5.25)

For this,
∑

w βw =
∑

w |(B|iw, jw, aw)| = M holds. In the next two subsections,

we show how to use (5.22), (5.23), (5.24), and (5.25) in electron correlation energy

computation to develop matrix-vector multiplication routines that scale linearly

with respect to the number of nonzero entries.

5.4.3 Orthogonal orbital basis

In a representation with orthogonal orbital basis, three of the four matrices

A,B,C, and D are identity. In this case, many multiplication processes in

ĒT
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM)v when using (5.22), (5.23), (5.24), and (5.25) can be

simplified to selections of sub-vectors of v. In particular, we can perform the

multiplication as follows:

• When A = B = C = I : we use (5.24). We observe that (ĪTj ⊗ I ⊗ I ⊗ I)v is

equivalent to constructing matrix (V̄ T
(4))j , i.e., this operation results in a matrix

148

that preserves the jth row of V(4). With some reshaping, we find that it has

the same nonzero elements as (V̄(1))jn2n3:(j+1)n2n3−1, a matrix that preserves

columns jn2n3 to (j +1)n2n3 − 1 of V(1). Similarly, (I ⊗ ĪTb ⊗ I ⊗ I)v preserves

columns (ℓn3+ b)n2 to (ℓn3+ b+1)n2−1 for 0 ≤ ℓ ≤ n4−1 of V(1), and (I⊗I⊗

ĪTi ⊗I)v preserves (kn2+i)th columns for 0 ≤ k ≤ n3n4−1 of V(1). Finding the

intersection of these preserved columns yields the only outstanding column

of V(1) to be its [(jn3+b)n2+i]th column, and the corresponding column in the

result is to multiply D with this column. Therefore, if we take the sparsity of

nontrivial a indices into consideration, the complexity of multiplying (5.24)

with a vector v when A = B = C = I is O(
∑

w α
2
w). Normally, αw is a

constant, so this complexity is O(M) in the worst case scenario when all M

indices have different j, b, and i value combinations.

• When A = C = D = I : we use (5.25) and do the same trick as in the case

of A = B = C = I to perform ĒT
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM)v. We find that

with fixed j, i, and a index, the [(jn2 + i)n1 + a]th column of V(3) is the only

outstanding one. Then, the complexity of multiplying (5.25) with a vector v

when A = C = D = I is O(
∑

w β
2
w) = O(M).

• WhenA = B = D = I : we use (5.23). We find that with fixed j, b, and a index,

the [(jn3 + b)n1 + a]th column of V(2) is the only outstanding one, and the

ith element of this column in the result is to multiply C̄T
i with this column.

According to the way we group elements together with the same value i,

their corresponding multiplications can be performed together, and we can

find that the complexity of multiplying (5.23) with a vector v is O(|u(I)|M),

where |u(I)| denotes the number of unique values in I. This is again O(M)

since |u(I)| can be treated as a constant.

• When B = C = D = I : we use (5.22) and do the same trick as in the case

149

of A = B = D = I . We find that with fixed i, b, and a index, the [(bn2 +

i)n1 + a]th column of V(4) is the only outstanding one. Then, the complexity

of multiplying (5.22) with a vector v is O(|u(J)|M) = O(M).

Finally, we can sum up the results from each group and achieve the final result.

Clearly, the overall complexity is O(M).

5.4.4 Nonorthogonal orbital basis

The situation for nonorthogonal orbital basis is more complicated, but we can

still think about the multiplication ĒT
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM)v using (5.24), and

we can find out that fixed value of j, b, i still only preserve one nonzero column.

To be specific, we carry out the multiplication in four steps:

1. Perform y = (ĀTj ⊗ I ⊗ I ⊗ I)v. Since V(4) = V T
3 , we can compute y = vec(H̄j)

with the nontrivial column Hj =
∑

j′∈uniqueJ Aj,j′(V3)j′ . With a different ma-

tricization, if we partition V(1) into blocks each with n2n3 columns, then the

block of Y1 that contains column jn2n3 to (j + 1)n2n3 − 1 is a linear combina-

tion of these submatrices of V(1), and all other columns of Y1 are 0.

2. Perform z = (I ⊗ I ⊗ C̄T
i ⊗ I)y. Since the index i picks (kn2 + i)th columns

for 0 ≤ k ≤ n3n4 − 1 of Y1, then the nonzero columns of Y1 are those with

k values jn3 ≤ k ≤ (j + 1)n3 − 1. In this way, we can find that Z1 only

has n3 nonzero columns, and each nontrivial column can be calculated as

(Z1)kn2+i =
∑

i′∈unique (I|j)Ci,i′(Y1)kn2+i′ for jn3 ≤ k ≤ (j+1)n3−1, where (I|j)

contains all the i values with a fixed choice of j.

3. Perform w = (I ⊗ B̄T
b ⊗ I ⊗ I)z. Since the index b picks columns (ℓn3 + b)n2

to (ℓn3 + b+ 1)n2 − 1 for 0 ≤ ℓ ≤ n4 − 1 of Z1, then the only nonzero column

150

of W1 can be computed as (W1)(jn3+b)n2+i =
∑

b′∈unique (B|j,i)Bb,b′(Z1)(jn3+b′)n2+i,

where (B|j, i) contains all the b values with fixed j and i.

4. The final product with D̄T
(aℓ|i,b,j) is a straightforward multiplication.

The computation of the first three steps to compute the specific column of

W1 can be combined into:

(W1)(jn3+b)n2+i =
∑

b′∈unique (B|j,i)

∑
i′∈unique (I|j)

∑
j′∈uniqueJ

Bb,b′Ci,i′Aj,j′(V1)(j′n3+b′)n2+i′ .

This contributes to one subscript w in (5.24), and thus leads to the complexity

of construction of this column to be O(|u(J ||(I|j)||(B|j, i)|αw). Therefore, the

overall complexity of all four steps is

O(
∑
w

(|u(J ||(I|j)||(B|j, i)|+ αw)αw) = O(M).

With both orthogonal and nonorthogonal orbital basis, we derive computing

routines that can calculate ∆̄T
h(i1,a1,j1,b1),...,h(iM ,aM ,jM ,bM)v where v has M nonzeros

at positions h(i1, a1, j1, b1), . . . , h(iM , aM , jM , bM) in O(M) time. This allows us

to develop fast Krylov subspace methods such as GMRES or conjugate gradi-

ent (CG) [190]. What is more, because of the Kronecker product structure (5.11)

of ∆, we can obtain a triangular part of ∆ by using the corresponding trian-

gular part of the matrices in (5.11). We can use the same method to obtain the

diagonal of ∆. Therefore, applying Jacobi or Gauss-Seidel preconditioners in

Krylov subspace methods is equivalent to solving special diagonal or triangu-

lar 4D Sylvester equations, which are much easier than solving general Sylvester

equations and have complexity O(M).

151

5.5 Conclusion and future directions

In this chapter, we introduce a Sylvester tensor equation formulation into com-

putational quantum chemistry, and use different Sylvester equation solvers to

compute electron correlation energy with MP2. In particular, we show that the

eigen-decomposition direct method is much more efficient than traditional lin-

ear system solvers, even though we exploit no structures in the system. We

also present a block low-rank method for canonical orbital basis, and a sparsity-

enforced Krylov subspace method for localized orbital basis. Our next step is to

implement the sparsity-enforced method into Q-Chem [70] and compare it with

RI-MP2. We want to emphasize the effectiveness of localized orbital basis in the

quantum chemistry field.

Researchers also discovered the existence of hierarchical semi-separable

(HSS) structure in the Fock matrix [45] and the ERI matrix [232] with localized

orbital basis when the problem size is sufficiently large. Since matrices with an

HSS structure have fast linear system solvers, we plan to combine it with fADI

to develop a faster solver for (5.15). In addition, we will explore the interest-

ing direction of using HSS and sparsity enforcement simultaneously on the ERI

matrix. As a result, we can bridge the gap between accuracy and efficiency in

electron correlation computations.

152

CHAPTER 6

CHEBYSHEV COEFFICIENT APPROXIMATIONS WITH QUANTIZED

TENSOR-TRAIN FORMAT

Starting from the Weierstrass approximation theorem, approximating a given

function with polynomials is a well-established task in mathematical analysis.

With a fixed polynomial degree N , there are two major approaches for function

approximation with a single piece of polynomial, i.e., a global polynomial ap-

proximation. One way is the “value-space” approximation, where we sample

the function at N + 1 points, and use them for interpolation. The other way is

the “coefficient-space” approximation, where we choose a basis for polynomi-

als of degree ≤ N and estimate the function with a linear combination of these

polynomials. The former method requires us to store function values on a cer-

tain grid, and researchers have shown that the QTT format of the values on a

uniform grid for some special functions has low rank [111, 118]. Comparatively

in the latter method, we store the coefficients in a vector, but the QTT format of

it is not considered in existing literature.

Chebyshev polynomials are an important family of orthogonal polynomials

in numerical analysis and scientific computing [75, 145, 176, 212], and are used

extensively in quadrature rules [46], and numerical solution of integral equa-

tions [67, 68] and PDEs [210]. In this chapter1, we introduce the QTT tensor for-

mat to store coefficients of Chebyshev polynomial approximation of uni-variate

analytic functions, and provide theoretical guarantees of compressibility.

1This chapter is based on a project with Alex Townsend, where I derived the theories.

153

6.1 Chebyshev polynomial approximation of functions

For j ≥ 0, the Chebyshev polynomial of the first kind, or simply Chebyshev

polynomial, with degree j is denoted by Tj(x) and defined on the interval [−1, 1]

by

Tj(x) = cos(j arccosx), x ∈ [−1, 1].

The family of Chebyshev polynomials is orthogonal with respect to a weighted

inner product

∫ 1

−1

Ti(x)Tj(x)√
1− x2

dx =

π, i = j = 0,

π/2, i = j ≥ 1,

0, i ̸= j,

so Chebyshev polynomials form a natural basis for functions on [−1, 1], just as

one uses Fourier series for periodic functions on [−π, π].

In general, there are two ways to approximate a function f : [−1, 1] → C

by a polynomial of degree at most N represented in the Chebyshev polyno-

mial basis. The first polynomial approximant with great practical value is re-

ferred to as the Chebyshev interpolant, which interpolates at N + 1 points

(xcheb0 , f0), . . . , (x
cheb
N , fN) to find pinterpN in the form of

pinterpN =
N∑
k=0

ckTk(x),

such that pinterpN (xchebk) = fk for 0 ≤ k ≤ N , where

xchebk = cos

(
(N − k)π

N

)
, 0 ≤ k ≤ N,

are called the Chebyshev points. In practice, Chebyshev interpolant pinterpN offer

a quasi-optimal approximation of continuous f defined on [−1, 1] with bounded

total variation [212, Thm. 15.1 & 15.2], and can be computed via the discrete

154

Chebyshev transform, which is equivalent to the type-I discrete cosine trans-

form [78].

The other polynomial approximant that is often used for theoretical pur-

poses is the Chebyshev projection, which is obtained by truncating the Cheby-

shev series of f after N + 1 terms. To be specific, if f is Lipschitz continuous,

then it has an absolutely and uniformly convergent Chebyshev series [212, Thm.

3.1] given by f(x) =
∑∞

k=0 akTk(x), and the Chebyshev projection has the form

pprojN =
N∑
k=0

akTk(x), (6.1)

where

ak =

1
π

∫ 1

−1
f(x)Tk(x)√

1−x2 dx, k = 0,

2
π

∫ 1

−1
f(x)Tk(x)√

1−x2 dx, k ≥ 1.

(6.2)

If f is analytic on [−1, 1] and is analytically continuable to an Berstein ellipse

Eρ with ρ > 1, which is the open region in the complex plane bounded by the

ellipse with foci ±1 and semiminor and semimajor axis lengths summing to ρ,

then it can be shown [212, Thm. 8.1] that the coefficients satisfy

|a0| ≤M, |ak| ≤ 2Mρ−k, k ≥ 1, (6.3)

where |f(x)| ≤ M < ∞. This exponential decay of Chebyshev coefficients im-

plies high compressibility if QTT format is used for storage. For example, we

can approximate f(x) = 1
1+1000x2

to machine precision with a Chebyshev pro-

jection (6.1) of degree 1177. Suppose its Chebyshev coefficients are stored in

a vector a, then we can find that reshape(a, 11, 107) has numerical rank 3 with

machine precision as accuracy. However, (6.3) cannot be used to prove this low

rank property, and we are not aware of existing literature that provides theoret-

ical guarantees of this property for all types of analytic functions.

155

6.2 Analytic functions with poles

A large family of analytic functions are those with poles in the complex plane.

In [69], the author provides an alternative way to compute the Chebyshev coef-

ficients (6.2) of a function f via Cauchy integrals, i.e.,

ak =
1

πi

∫
C

f(z)dz
√
z2 − 1

(
z ±

√
z2 − 1

)k , k ≥ 0, (6.4)

where C is a contour on and within which f(z) is regular, and the sign is chosen

so that |z ±
√
z2 − 1| > 1. This leads to an expression of formulating aj as a sum

of terms related to poles and residues of f with the residue theorem, and we

can then use it to bound the QTT rank of the Chebyshev coefficients of all such

functions.

6.2.1 Functions with finite simple poles

We start with the case that the function f has K < ∞ simple poles. Following

the arguments in [69, Sec. 2], we can choose the contour C in (6.4) to be any

Berstein ellipse Eρ with ρ > 1 that encloses all the poles. Here, we overload the

notation and use Eρ to denote the perimeter of a Berstein ellipse. If the integral

around Eρ tends to 0 as ρ→ ∞ for all k > k0, then (6.4) becomes

ak = −2
K∑
q=1

rq√
z2q − 1

(
zq ±

√
z2q − 1

)k , k > k0, (6.5)

where zq is a pole of f and rq is its associated residue. In this way, if we can

approximate f with a degree N Chebyshev projection (6.1), and without loss of

generality assume that N = k0k1 for an integer k1, then the elements of A =

156

reshape(a, k0, k1) can be computed as

Aj,ℓ = −2
K∑
q=1

rq√
z2q − 1

1(
zq ±

√
z2q − 1

)(ℓ−1)k0

1(
zq ±

√
z2q − 1

)j , (6.6)

for 1 ≤ j ≤ k0, and 2 ≤ ℓ ≤ k1. This ensures that A has rank at most K + 1.

We can also factor N = k̃0k̃1 for any k̃0, k̃1 > k0, and the coefficient matrix A =

reshape(a, k̃0, k̃1) still has rank at most K+1. When N is not a multiple of k0, we

can increase the degree of the Chebyshev projection to Ñ so that Ñ = k0k1 by

introducing a few higher-degree terms. This enriches the vector of coefficients

to ã ∈ CÑ , but does not affect the accuracy of the function approximation. In

this way, the matrix Ã = reshape(ã, k0, k1) is a matrix of rank at most K + 1.

6.2.2 Functions with infinitely many simple poles

When the number of poles K is very large, such as when K > k0, the coefficient

A is hardly compressible. In addition, in the extreme case that the function f

has infinitely many simple poles, we can update (6.5) as

ak = −2 lim
K→∞

K∑
q=1

rq√
z2q − 1

(
zq ±

√
z2q − 1

)k , k > k0, (6.7)

as long as no pole lies on the contour Eρ and the integral (6.4) approaches 0 as

ρ→ ∞, but it’s hard to compress the coefficient matrix A through its mathemat-

ical rank. In these scenarios, we need to further truncate the summation in (6.5)

or (6.7) to show that A has a low numerical rank.

Since there are generally no connections between poles, we can only per-

form a heuristic scheme to truncate (6.5) and (6.7). When K < ∞, we can enu-

merate all the poles and residues, and we can compute the terms bk(zq, rq) =

157

rq√
z2q−1(zq±

√
z2q−1)

k for all 1 ≤ q ≤ K and 1 ≤ k ≤ N . Since
∣∣zq ±√z2q − 1

∣∣ = ρ > 1

from construction,
∣∣bk(zq, rq)∣∣ decays to 0 as k increases, and thus we need fewer

terms to accurately calculate ak for large k. Therefore, we need to determine the

number of bk(zq, rq) terms used for k0 < k ≤ k̂0, where k̂0 is a constant such that

1∣∣zq±√z2q−1

∣∣k̂0+1
is below some threshold. As a result, we calculate

∣∣bk̂0(zq, rq)∣∣ for

all 1 ≤ q ≤ K, and keep those with values larger than the chosen threshold. An

approximation of the numerical rank of the coefficient matrix A is thus K̃ + 1,

where K̃ is the number of remaining poles after truncation.

The situation for an infinite number of simple poles is more complicated,

since we are unable to evaluate
∣∣bk(zq, rq)∣∣ for all the poles. We can sort the

poles with respect to the values of
∣∣√z2q − 1

∣∣, but truncations based on these

do not guarantee accurate approximations since we do not have bounds for

the residues. Therefore, we can only bound the QTT rank of the Chebyshev

coefficients of some special functions with infinitely many poles. For example,

authors in [68, 69] consider the function

f(x) =
s

(s2 + 1)− (s2 − 1) cosπ(α + x)
,

where s > 1 and −1 ≤ α ≤ 1 are two constants. This function has poles at

zq = (2q − α)± iβ, q = 0, ±1, ±2, · · · ,

where β = 1
π
cosh−1 s2+1

s2−1
, and the residue is −i/2π when Im zq > 0, and i/2π

when Im zq < 0. This means that the magnitude of the residue is indepen-

dent of the function poles, and thus we can truncate (6.7) based on
∣∣√z2q − 1

∣∣.
Specifically, [69, Table 1] shows very accurate result to compute the Chebyshev

coefficients with only poles ±iβ, so the coefficient matrix of this function has

rank at most 3.

158

6.2.3 Functions with repeated poles

So far we only consider the function f to have simple poles on the complex

plane, and in this section we focus on functions with poles of order more than

1, such as

f(x) =
c

(x− x1)t
,

where c is a constant and x1 is then a pole of xwith an integer order t. We further

assume that x1 is not on [−1, 1]. Instead of working directly with the Chebyshev

coefficients of f , we look at an alternative function f̃(x) of the form

f̃(x) =
c

(x− x1 − ϵ1) · · · (x− x1 − ϵt)
,

where ϵ1, . . . , ϵt are some numbers such that |ϵ1|, . . . , |ϵt| < ϵ for a threshold

0 < ϵ < 1, and x1 + ϵ1, . . . , x1 + ϵt /∈ [−1, 1]. f̃(x) can be viewed as a per-

turbed version of f(x) in the sense that we obtain the poles of f̃(x) from those

of f(x) through small perturbations. This scheme of generating approximations

through perturbations has been widely used in numerical linear algebra and

scientific computing. In this way, we can bound

||f − f̃ ||∞ ≤ max
x∈[−1,1]

∣∣∣∣∣1− (x− x1)
t

(x− x1 − ϵ1) · · · (x− x1 − ϵt)

∣∣∣∣∣||f ||∞.
Since ϵℓ can be made arbitrarily small for all 1 ≤ ℓ ≤ t, we have

∣∣∣ ϵℓ
x−x1

∣∣∣ < 1, and

thus we can Taylor expand

x− x1
x− x1 − ϵℓ

=
1

1− ϵℓ
x−x1

=
∞∑
j=0

(
ϵℓ

x− x1

)j
.

This means that if |ϵℓ| ≤ ϵ for all 1 ≤ ℓ ≤ t, we have

t∏
ℓ=1

x− x1
x− x1 − ϵℓ

=
t∏

ℓ=1

∞∑
j=0

(
ϵℓ

x− x1

)j
= 1 +

t∑
ℓ=1

ϵℓ
x− x1

+O(ϵ2),

159

so that

max
x∈[−1,1]

∣∣∣∣∣1−
t∏

ℓ=1

x− x1
x− x1 − ϵℓ

∣∣∣∣∣ ≤
∣∣∣∣∣

t∑
ℓ=1

ϵℓ
x− x1

∣∣∣∣∣ ≤ t
ϵ

|x− x1|
.

This indicates that f̃ is an accurate approximation of f . Therefore, we can use

Chebyshev coefficients of f̃(x) to approximate those of f(x). As a result, we

transform the problem back to a function with finitely many simple poles, and

we can use arguments in Section 6.2.1 for this situation.

6.3 Functions regular except at ±1 and with branch points on

the real axis

From the numerators of the terms in (6.5), we can understand that the poles of

an analytic function contribute much to the exponential decay (6.3), and thus

result in compressibility in the coefficient matrix storage. However, this con-

nection is unclear for other types of singularities of an analytic function, such

as irregularity at ±1 and branch points on the real line. To evaluate the Cauchy

integral (6.4) for these types of analytic functions, we need to choose other con-

tours, and thus end up with different formulations for the Chebyshev coeffi-

cients.

We start with functions of the form f(x) = (1−x)ϕg(x), where ϕ > 0 is not an

integer and g(x) is regular at x = 1. From [69, Sec. 6], we obtain approximations

of the Chebyshev coefficients

ak ≈ −21−ϕg(1) sin(πϕ)

πk2ϕ+1
Γ(2ϕ+ 1), (6.8)

for all k > k0, which shows a geometric decay in the Chebyshev coefficients.

Similarly to our strategy in Section 6.2.1, we can express k = (ℓ− 1)k0 + j where

160

j and ℓ are row and column indices of the coefficient matrix A. For special

values of ϕ such as when m = 2ϕ + 1 is an integer, we can obtain a Laurent

series expansion

1

((ℓ− 1)k0 + j)m
=

∞∑
r=0

(−1)r
(
m+ r − 1

r

)
jr

(ℓ− 1)m+rkm+r
0

, (6.9)

at k0 = ∞ as long as
∣∣∣ j
(ℓ−1)k0

∣∣∣ < 1. With a prescribed threshold, we can trun-

cate (6.9) to a finite summation, and obtain the numerical rank of the coefficient

matrix A. Similarly, if f(x) = (1 + x)ψh(x), where ψ > 0 is not an integer and

h(x) is regular at x = −1, we have

ak ≈ −21−ψh(−1) sin(πϕ)

πk2ψ+1
(−1)kΓ(2ψ + 1), (6.10)

and can follow the same process to obtain a low numerical rank approximation

of the coefficient matrix when 2ψ+1 is an integer. Unfortunately, we don’t have

results for other values of ϕ and ψ, so we leave these scenarios as a future target.

The analysis of functions with branch points on the real axis is very similar

to that of functions with irregularity at ±1. To be specific, assuming c > 0 is a

constant, and ϕ, ψ > −1 are any number, we can find that [69, Section. 7]

ak ≈ −2 sin(πϕ)(c2 − 1)ϕ/2g(c)Γ(ϕ+ 1)

πkϕ+1(c+
√
c2 − 1)k

, (6.11)

for all k > k0 if f = (c− x)ϕg(x) and g(x) is regular at x = c, and

ak ≈ −2 sin(πψ)(c2 − 1)ψ/2g(−c)(−1)kΓ(ψ + 1)

πkψ+1(c+
√
c2 − 1)k

, (6.12)

if f = (c + x)ψh(x) and h(x) is regular at x = −c. In both cases, the coefficients

ak contain a geometric decay component and an exponential decay component.

Therefore, in special cases that ϕ and ψ are integers, the coefficient matrix A

can be represented as the Hadamard product of two low rank matrices, one

161

generated from the term k−(ϕ+1) or k−(ψ+1) as in functions irregular at ±1, and

the other generated from the term (c +
√
c2 − 1)−k as in functions with simple

poles. In this way, A is itself a matrix of low numerical rank.

6.4 Entire functions

Finally, we consider functions that do not have singularities throughout the en-

tire complex domain. Since there is no closed-form formula or approximation

for Chebyshev coefficients of any entire function, we cannot conclude that all

entire functions have low QTT rank. However, we show below two examples

whose coefficient matrices are numerically low rank.

We first consider the exponential function f(x) = ex. With some computa-

tions, we find it has a Chebyshev series expansion

f(x) = ex = I0(1)T0(x) + 2
∞∑
k=1

Ik(1)Tk(x),

where Ik(x) is the kth modified Bessel function of the first kind. Since Ik(x)

decays with k for a fixed value of x, we can represent the three-term recurrence

relation [158, (10.29.1)]

Ik−1(x)− Ik+1(x) = (2k/x)Ik(x),

as

0 −1

1 −2/x −1

1 −4/x −1

.

1 −2(N − 1)/x

I0(x)

I1(x)

I2(x)

...

IN−1(x)

=

−I1(x)

0

0

...

0

, (6.13)

162

where the term IN(x) can be omitted for the last relation since it’s very

small. Specifically for x = 1, denoting a =

[
I0(x) · · · IN−1(x)

]T
and b =[

−I1(x) 0 · · · 0

]T
, and assuming N = n1n2, we can rewrite (6.13) into

(In2 ⊗ T +D ⊗ In1)a = b, (6.14)

where T =

0 −1

1 −2 −1

1 −4 −1

.

1 −2(n1 − 1)

andD =

0

−2n1

. . .

−(n2 − 1)n1

.

Then (6.14) can be transformed into a displacement structure for A =

reshape(a, n1, n2) and B = reshape(b, n1, n2):

TA+ AD = B. (6.15)

Since T is skew-symmetric with non-positive elements on the diagonal, all its

eigenvalues are complex with non-positive real parts, which are separated from

the eigenvalues of −D. As B has rank 1, we know from (1.15) that A is numer-

ically low rank. Note that there is a tiny difference between A and the actual

coefficient matrix A′ of f(x) = ex due to the half scaling in the first term, but A′

can still be approximated by a low rank matrix.

The other example that we consider is the trignometric function f(x) =

sin(x) + cos(x), which has a Chebyshev series expansion

f(x) = sin(x) + cos(x) = J0(1)T0(x) + 2
∞∑
k=1

(−1)⌊k/2⌋Jk(1)Tk(x),

where Jk(x) is the kth Bessel function of the first kind. Since we can store the

patterns of the signs separately, we can use the recurrence relation [158, (10.6.1)]

163

to derive a displacement structure for the Bessel functions

T̃ Y + Y D = W, (6.16)

where we consider N = n1n2 Bessel function terms, D is the same as in (6.14),

Y = reshape(

[
J0(x) · · · JN−1(x)

]
, n1, n2),

W = reshape(

[
−J1(x) 0 · · · 0

]
, n1, n2),

and

T̃ =

0 1

1 −2 1

1 −4 1

.

1 −2(n1 − 1)

.

In practice, we find all but one eigenvalues of T̃ are negative, with the positive

eigenvalue around 0.44. As a result, there is an overlap between the interval

I1 that contains the spectra of T̃ and the interval I2 that contains the spectra of

D, but as N gets larger, the length of the overlap becomes comparatively much

smaller than those of I1 and I2. Therefore, we also observe that Y is numerically

low rank, which leads to a low rank approximation of the magnitudes of the

Chebyshev coefficient matrix of f(x) = sin(x) + cos(x).

6.5 Conclusion and future directions

In this chapter, we provide an alternative way that stores Chebyshev coefficients

of a function approximation in the matrix format. Using expressions and ap-

proximations of Chebyshev coefficients through Cauchy integral formula, we

164

provide theoretical guarantees that for different types of univariate analytic

functions, these coefficient matrices are mostly low rank. As a result, this QTT

format of coefficient storage reduce the storage costs in numerical implementa-

tions.

Since the majority of the arguments are constructive, we plan to develop al-

gorithms that directly compute the coefficients in the QTT format. To use the

more efficient Chebyshev interpolants in practice, we will also connect these co-

efficient matrices with QTT format and design practical computing algorithms.

We can then use these algorithms in Chebyshev spectral methods to solve PDEs,

and fast evaluations of convolutions with special functions. Furthermore, with

a better understanding of the geometric decay presented in Section 6.3, we will

study the behaviors of QTT format of Chebyshev coefficients of differentiable

functions, which have a geometric decay rate with respect to total variation and

the smoothness of the function [212, Chpt. 7]. This enables us to further use

QTT Chebyshev approximations in applications.

165

CHAPTER 7

CONCLUSIONS

The original motivation of this thesis was to explore the use of dimensional-

ity reduction to high-dimensional problems. Due to the extensive use of ten-

sors and low rank tensor formats in applications, in Chapter 2 and 3, we study

closely on the compression rate of some tensor formats applied to certain fami-

lies of tensors, and develop alternative decomposition algorithms for these for-

mats. In Chapter 2, we try to answer some challenging yet interesting questions

such as ”Why are so many tensors compressible in computational mathemat-

ics?” and ”What makes these tensors compressible?”. In particular, we examine

tensors that are generated by discretizing smooth functions, and that satisfy a

specific algebraic relation called the displacement structure. We provide bounds

on the compressibility of these tensors, and thus partially explaining the abun-

dance of low rank tensors. In Chapter 3, we attempt to further develop the

low rank TT format as a dimensionality reduction technique by connecting it

with the blossoming field of high-performance computing. We discover the re-

lations between different unfoldings of a tensor, and use this property as the

cornerstone of our parallel TT decomposition algorithms, whose performance

is illustrated by numerical experiments on high-dimensional structured tensors.

When we encountered the QTT tensor format and the Cafarelli–Silvestre ex-

tension for solving fractional PDEs, we realized the effectiveness of using di-

mensionality increase on low-dimensional problems, so we enriched this thesis

to discuss dimensionality manipulations. We wish to offer a perspective that the

dimensionality of a problem is not fixed, and we can often convert the original

problem into one posed in a different dimension that might be more efficient

166

to solve. In this thesis, we explore two dimensionality increase approaches: (1)

conversion of vectors, matrices, and tensors in linear algebra, and (2) change of

domain geometries in solving fractional PDEs. In Chapter 6, we introduce the

QTT format to Chebyshev polynomial approximations of analytic functions, so

that the Chebyshev coefficients are stored in tensors rather than vectors for stor-

age cost reduction. In Chapter 4, we rewrite nonlocal fractional operators on

squares and disks to local operators on hexahedrons and cylinders, and we de-

velop spectral solvers for fractional PDEs using tensor equation solvers.

An important topic that appears throughout this thesis is Sylvester equation

solvers. Dimensionality increase originates from the fact that Sylvester equa-

tions can be treated as a transformation from linear systems to tensor equa-

tions. Sylvester equations normally show up in tensor displacement structures

and discretizations of certain PDEs, but we also find them in computational

quantum chemistry for electron correlation energy computation. This interdis-

ciplinary connection is discussed in Chapter 5, where we use Sylvester equation

solvers and related Kronecker product structures to design algorithms to com-

pute correlation energy in canonical and localized orbital basis. In addition,

dimensionality reduction arises from low rank Sylvester solvers. In Chapter 2

and 3, we extend fADI to solve Sylvester tensor equations in the TT tensor for-

mat. Our new algorithms have an optimal complexity, and illustrate efficiency

when solving Poisson equations on a cube with Dirichlet boundary conditions.

Many challenges remain for tensor formats and Sylvester equations. We are

curious about block low rank tensor formats such as extensions of hierarchical

off-diagonal low rank (HODLR) or hierarchical semiseparable (HSS) structures

for matrices, and wonder if such representations are useful in PDE solvers and

167

other applications. We are also interested in efficient solvers for generalized

Sylvester tensor equations and nonlinear tensor equations such as algebraic Ric-

cati equations. Furthermore, we pose some general yet very challenging ques-

tions with respect to dimensionality manipulations. For example, instead of

case-by-case analysis, we want to find a systematic way to carry out dimension-

ality reduction or increase for any classes of problems. We also want to find

patterns of problems suitable for dimensionality manipulations. All these prob-

lems present tantalizing prospects for future work.

168

BIBLIOGRAPHY

[1] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent
Yener. Multiway analysis of epilepsy tensors. Bioinf., 23(13):i10–i18, 2007.

[2] Evrim Acar, Seyit A Camtepe, Mukkai S Krishnamoorthy, and Bülent
Yener. Modeling and multiway analysis of chatroom tensors. In Int. Conf.
Intell. Secur. Inform., pages 256–268. Springer, 2005.

[3] Mark Ainsworth and Christian Glusa. Hybrid finite element–spectral
method for the fractional Laplacian: Approximation theory and efficient
solver. SIAM J. Sci. Comput., 40(4):A2383–A2405, 2018.

[4] Mark Ainsworth and Zhiping Mao. Analysis and approximation of a
fractional Cahn–Hilliard equation. SIAM J. Numer. Anal., 55(4):1689–1718,
2017.

[5] Naum Il’ich Akhiezer. Elements of the theory of elliptic functions, volume 79.
Amer. Math. Soc., 1990.

[6] Jan Almlöf. Elimination of energy denominators in Møller—Plesset per-
turbation theory by a Laplace transform approach. Chem. Phys. Lett.,
181(4):319–320, 1991.

[7] Harbir Antil and Sören Bartels. Spectral approximation of fractional PDEs
in image processing and phase field modeling. Comput. Methods Appl.
Math., 17(4):661–678, 2017.

[8] Harbir Antil, Zichao Wendy Di, and Ratna Khatri. Bilevel optimization,
deep learning and fractional Laplacian regularization with applications in
tomography. Inverse Probl., 36(6):064001, 2020.

[9] Harbir Antil, Johannes Pfefferer, and Sergejs Rogovs. Fractional opera-
tors with inhomogeneous boundary conditions: Analysis, control, and
discretization. Commun. Math. Sci., 16:1395–1426, 2018.

[10] Athanasios C Antoulas. Approximation of large-scale dynamical systems.
SIAM, 2005.

[11] Woody Austin, Grey Ballard, and Tamara G Kolda. Parallel tensor com-
pression for large-scale scientific data. In 2016 IEEE Int. Parallel Distrib.
Process. Symp., pages 912–922. IEEE, 2016.

169

[12] Philippe Y Ayala and Gustavo E Scuseria. Linear scaling second-order
Møller–Plesset theory in the atomic orbital basis for large molecular sys-
tems. J. Chem. Phys., 110(8):3660–3671, 1999.

[13] Ivo Babuška and BQ Guo. The h, p and hp version of the finite element
method; basis theory and applications. Adv. Eng. Software, 15(3-4):159–
174, 1992.

[14] Brett W Bader and Tamara G Kolda. Efficient MATLAB computations
with sparse and factored tensors. SIAM J. Sci. Comput., 30(1):205–231,
2008.

[15] Jonas Ballani and Lars Grasedyck. A projection method to solve linear
systems in tensor format. Numer. Lin. Alg. Appl., 20(1):27–43, 2013.

[16] Grey Ballard, Alicia Klinvex, and Tamara G Kolda. TuckerMPI: a paral-
lel C++/MPI software package for large-scale data compression via the
Tucker tensor decomposition. ACM Trans. Math. Soft., 46(2):1–31, 2020.

[17] Grey Ballard, Nicholas Knight, and Kathryn Rouse. Communication
lower bounds for matricized tensor times Khatri–Rao product. In 2018
IEEE Int. Parallel Distrib. Process. Symp., pages 557–567. IEEE, May 2018.

[18] Grey Ballard and Kathryn Rouse. General memory-independent lower
bound for MTTKRP. In Proc. 2020 SIAM Conf.Parallel Process. Sci. Comput.,
pages 1–11. SIAM, January 2020.

[19] Lehel Banjai, Jens M Melenk, Ricardo H Nochetto, Enrique Otárola, Ab-
ner J Salgado, and Christoph Schwab. Tensor FEM for spectral fractional
diffusion. Found. Comput. Math., 19(4):901–962, 2019.

[20] Richard H. Bartels and George W Stewart. Solution of the matrix equation
AX +XB = C. Commun. ACM, 15(9):820–826, 1972.

[21] Rodney J Bartlett. Coupled-cluster theory and its equation-of-motion ex-
tensions. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2(1):126–138, 2012.

[22] Rodney J Bartlett and Monika Musiał. Coupled-cluster theory in quantum
chemistry. Rev. Mod. Phys., 79(1):291, 2007.

[23] Kim Batselier, Andrzej Cichocki, and Ngai Wong. Meracle: constructive

170

layer-wise conversion of a tensor train into a mera. Commun. Appl. Math.
Comput., pages 1–23, 2020.

[24] Bernhard Beckermann and Alex Townsend. Bounds on the singular val-
ues of matrices with displacement structure. SIAM Rev., 61(2):319–344,
2019.

[25] Christian F Beckmann and Stephen M Smith. Tensorial extensions of inde-
pendent component analysis for multisubject FMRI analysis. Neuroimage,
25(1):294–311, 2005.

[26] Peter Benner, Sergey Dolgov, Akwum Onwunta, and Martin Stoll. Low-
rank solution of an optimal control problem constrained by random
Navier-Stokes equations. Int. J. Numer. Methods Fluids, 92(11):1653–1678,
2020.

[27] Peter Benner, Ren-Cang Li, and Ninoslav Truhar. On the ADI method for
Sylvester equations. J. Comput. Appl. Math., 233(4):1035–1045, 2009.

[28] Peter Benner and Enrique S Quintana-Ortı́. Solving stable generalized
Lyapunov equations with the matrix sign function. Numerical Algorithms,
20(1):75–100, 1999.

[29] Austin R. Benson, David F. Gleich, and James Demmel. Direct QR factor-
izations for tall-and-skinny matrices in MapReduce architectures. In 2013
IEEE Int. Conf. Big Data, pages 264–272, 2013.

[30] Gregory Beylkin and Martin J Mohlenkamp. Numerical operator calculus
in higher dimensions. Proc. Natl. Acad. Sci., 99(16):10246–10251, 2002.

[31] Gregory Beylkin and Martin J Mohlenkamp. Algorithms for numerical
analysis in high dimensions. SIAM J. Sci. Comput., 26(6):2133–2159, 2005.

[32] Andrea Bonito and Joseph Pasciak. Numerical approximation of frac-
tional powers of elliptic operators. Math. Comp., 84(295):2083–2110, 2015.

[33] SF Boys. Quantum theory of atoms, molecules, and the solid state. Aca-
demic Press, New York, NY, page 253, 1966.

[34] Dietrich Braess. Nonlinear approximation theory, volume 7. Springer Science
& Business Media, 2012.

171

[35] Dietrich Braess and Wolfgang Hackbusch. On the efficient computation of
high-dimensional integrals and the approximation by exponential sums.
In Multiscale, nonlinear and adaptive approximation, pages 39–74. Springer,
2009.

[36] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering gov-
erning equations from data by sparse identification of nonlinear dynami-
cal systems. Proc. Natl. Acad. Sci., 113(15):3932–3937, 2016.

[37] Luis Caffarelli and Luis Silvestre. An extension problem related to the
fractional Laplacian. Comm. Part. Diff. Eqs., 32(8):1245–1260, 2007.

[38] Lynn Elliot Cannon. A cellular computer to implement the Kalman filter algo-
rithm. Montana State University, 1969.

[39] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in
multidimensional scaling via anN -way generalization of “Eckart-Young”
decomposition. Psychometrika, 35(3):283–319, 1970.

[40] Tony F Chan. Rank revealing QR factorizations. Lin. Alg. Appl., 88:67–82,
1987.

[41] Maolin Che and Yimin Wei. Randomized algorithms for the approxima-
tions of Tucker and the tensor train decompositions. Adv. Comput. Math.,
45(1):395–428, 2019.

[42] Sheng Chen and Jie Shen. An efficient and accurate numerical method for
the spectral fractional Laplacian equation. J. Sci. Comput., 82(1):1–25, 2020.

[43] Zhongming Chen, Kim Batselier, Johan AK Suykens, and Ngai Wong. Par-
allelized tensor train learning of polynomial classifiers. IEEE Trans. Neural
Networks Learn. Syst., 29(10):4621–4632, 2017.

[44] Peter A Chew, Brett W Bader, Tamara G Kolda, and Ahmed Abdelali.
Cross-language information retrieval using PARAFAC2. In Proc. 13th
ACM SIGKDD, pages 143–152, 2007.

[45] Jocelyn T. Chi. A scalable algorithm for approximate generalized
eigenspaces of Fock Hamiltonian matrices. Technical report, Lawrence
Berkeley National Lab, 2019.

172

[46] Charles W Clenshaw and Alan R Curtis. A method for numerical integra-
tion on an automatic computer. Numer. Math., 2(1):197–205, 1960.

[47] Peter Constantin and Jiahong Wu. Behavior of solutions of 2D quasi-
geostrophic equations. SIAM J. Math. Anal., 30(5):937–948, 1999.

[48] Eduardo Corona, David Gorsich, Paramsothy Jayakumar, and Shravan
Veerapaneni. Tensor train accelerated solvers for nonsmooth rigid body
dynamics. Appl. Mech. Rev., 71(5), 2019.

[49] Eduardo Corona, Abtin Rahimian, and Denis Zorin. A tensor-train ac-
celerated solver for integral equations in complex geometries. J. Comput.
Phys., 334:145–169, 2017.

[50] Hussam Al Daas, Grey Ballard, and Peter Benner. Parallel algorithms for
tensor train arithmetic. SIAM J. Sci. Comput., 44(1):C25–C53, 2022.

[51] Hussam Al Daas, Grey Ballard, Paul Cazeaux, Eric Hallman, Agnieszka
Miedlar, Mirjeta Pasha, Tim W Reid, and Arvind K Saibaba. Random-
ized algorithms for rounding in the tensor-train format. arXiv preprint
arXiv:2110.04393, 2021.

[52] Lieven De Lathauwer and Bart De Moor. From matrix to tensor: Mul-
tilinear algebra and signal processing. In Institute of mathematics and its
applications conference series, volume 67, pages 1–16. Citeseer, 1998.

[53] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilin-
ear singular value decomposition. SIAM J. Matrix Anal. Appl., 21(4):1253–
1278, 2000.

[54] Lieven De Lathauwer and Joos Vandewalle. Dimensionality reduction
in higher-order signal processing and rank-(R1, R2, . . . , RN) reduction in
multilinear algebra. Lin. Alg. Appl., 391:31–55, 2004.

[55] Arturo de Pablo, Fernando Quirós, Ana Rodrı́guez, and Juan Luis
Vázquez. A fractional porous medium equation. Adv. Math., 226(2):1378–
1409, 2011.

[56] Maarten De Vos, Lieven De Lathauwer, Bart Vanrumste, Sabine Van Huf-
fel, and Wim Van Paesschen. Canonical decomposition of ictal scalp EEG
and accurate source localisation: Principles and simulation study. Comput.
Intell. Neurosci., 2007, 2007.

173

[57] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitch-
hiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–
573, 2012.

[58] Sergey Dolgov and Boris Khoromskij. Two-level QTT-Tucker format for
optimized tensor calculus. SIAM J. Matrix Anal. Appl., 34(2):593–623, 2013.

[59] Sergey Dolgov, Boris Khoromskij, and Dmitry Savostyanov. Super-
fast fourier transform using QTT approximation. J.Fourier Anal. Appl.,
18(5):915–953, 2012.

[60] Sergey Dolgov and Martin Stoll. Low-rank solution to an optimization
problem constrained by the Navier–Stokes equations. SIAM J. Sci. Com-
put., 39(1):A255–A280, 2017.

[61] Sergey V Dolgov. TT-GMRES: solution to a linear system in the structured
tensor format. Russ. J. Numer. Anal. Math. Model., 28(2):149–172, 2013.

[62] Sergey V Dolgov and Dmitry V Savostyanov. Alternating minimal energy
methods for linear systems in higher dimensions. SIAM J. Sci. Comput.,
36(5):A2248–A2271, 2014.

[63] Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide,
2014.

[64] Vladimir Druskin and Valeria Simoncini. Adaptive rational Krylov sub-
spaces for large-scale dynamical systems. Syst. Control Lett., 60(8):546–560,
2011.

[65] Carl Eckart and Gale Young. The approximation of one matrix by another
of lower rank. Psychometrika, 1(3):211–218, 1936.

[66] Virginie Ehrlacher, Laura Grigori, Damiano Lombardi, and Hao Song.
Adaptive hierarchical subtensor partitioning for tensor compression.
SIAM J. Sci. Comput., 43(1):A139–A163, January 2021.

[67] David Elliott. The numerical solution of integral equations using Cheby-
shev polynomials. J. Aust. Math. Soc., 1(3):344–356, 1960.

[68] David Elliott. A Chebyshev series method for the numerical solution of
Fredholm integral equations. Comput. J., 6(1):102–112, 1963.

174

[69] David Elliott. The evaluation and estimation of the coefficients in the
Chebyshev series expansion of a function. Math. Comput., 18(86):274–284,
1964.

[70] Evgeny Epifanovsky, Andrew TB Gilbert, Xintian Feng, Joonho Lee,
Yuezhi Mao, Narbe Mardirossian, Pavel Pokhilko, Alec F White, Marc P
Coons, Adrian L Dempwolff, et al. Software for the frontiers of quantum
chemistry: An overview of developments in the Q-Chem 5 package. J.
Chem. Phys., 155(8):084801, 2021.

[71] JDf Eshelby. Energy relations and the energy-momentum tensor in con-
tinuum mechanics. In Fundamental contributions to the continuum theory of
evolving phase interfaces in solids, pages 82–119. Springer, 1999.

[72] Derry FitzGerald, Matt Cranitch, and Eugene Coyle. Non-negative tensor
factorisation for sound source separation. In IEE Conf. publication, volume
511, page 8. Citeseer, 2005.

[73] Daniel Fortunato, Nicholas Hale, and Alex Townsend. The ultraspherical
spectral element method. J. Comput. Phys., 436:110087, 2021.

[74] Daniel Fortunato and Alex Townsend. Fast Poisson solvers for spectral
methods. IMA J. Numer. Anal., 40(3):1994–2018, 2020.

[75] Leslie Fox and Ian Bax Parker. Chebyshev polynomials in numerical anal-
ysis. Technical report, 1968.

[76] Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Di-
rected hypergraphs and applications. Discrete Appl. Math., 42(2-3):177–
201, 1993.

[77] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and An-
drew G Wilson. GPyTorch: Blackbox Matrix-Matrix Gaussian Process In-
ference with GPU Acceleration. In Advances in Neural Information Process-
ing Systems, pages 7576–7586, 2018.

[78] W Morven Gentleman. Implementing Clenshaw-Curtis quadrature, II
computing the cosine transformation. Commun. ACM, 15(5):343–346, 1972.

[79] Lars Goerigk and Stefan Grimme. Double-hybrid density functionals. Wi-
ley Interdiscip. Rev.: Comput. Mol. Sci., 4(6):576–600, 2014.

175

[80] Matthew Goldey, Anthony Dutoi, and Martin Head-Gordon. Attenuated
second-order Møller–Plesset perturbation theory: performance within the
aug-cc-pVTZ basis. Phys. Chem. Chem. Phys., 15(38):15869–15875, 2013.

[81] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press,
2013.

[82] Andrei Aleksandrovich Gončar. Zolotarev problems connected with ra-
tional functions. Sbornik: Mathematics, 7(4):623–635, 1969.

[83] Lars Grasedyck. Existence and computation of low Kronecker-rank ap-
proximations for large linear systems of tensor product structure. Com-
put., 72(3-4):247–265, 2004.

[84] Lars Grasedyck. Hierarchical singular value decomposition of tensors.
SIAM J. Matrix Anal. Appl., 31(4):2029–2054, 2010.

[85] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature sur-
vey of low-rank tensor approximation techniques. GAMM-Mitteilungen,
36(1):53–78, 2013.

[86] Lars Grasedyck and Christian Löbbert. Parallel algorithms for low rank
tensor arithmetic. In Advances in Mathematical Methods and High Perfor-
mance Computing, pages 271–282. Springer, 2019.

[87] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle sim-
ulations. J. Comput. Phys., 73(2):325–348, 1987.

[88] Victor S Grigorascu and Phillip A Regalia. Tensor displacement structures
and polyspectral matching. In Fast Reliable Algorithms for Matrices with
Structure, pages 245–276. SIAM, 1999.

[89] Laura Grigori and Suraj Kumar. Parallel tensor train through hierarchical
decomposition. 2020.

[90] Serkan Gugercin, Danny C Sorensen, and Athanasios C Antoulas. A mod-
ified low-rank Smith method for large-scale Lyapunov equations. Numer-
ical Algorithms, 32(1):27–55, 2003.

[91] Yang Guo, Christoph Riplinger, Ute Becker, Dimitrios G Liakos, Yury Mi-
nenkov, Luigi Cavallo, and Frank Neese. Communication: An improved
linear scaling perturbative triples correction for the domain based local

176

pair-natural orbital based singles and doubles coupled cluster method
[DLPNO-CCSD(T)]. J. Chem. Phys., 148(1):011101, 2018.

[92] Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Calculus, vol-
ume 42. Springer Science & Business Media, 2012.

[93] Wolfgang Hackbusch, Boris N Khoromskij, and Eugene E Tyrtyshnikov.
Hierarchical Kronecker tensor-product approximations. J. Numer. Math.,
13(2):119–156, 2005.

[94] Diptarka Hait and Martin Head-Gordon. How accurate are static po-
larizability predictions from density functional theory? An assessment
over 132 species at equilibrium geometry. Phys. Chem. Chem. Phys.,
20(30):19800–19810, 2018.

[95] Diptarka Hait and Martin Head-Gordon. How accurate is density func-
tional theory at predicting dipole moments? An assessment using a new
database of 200 benchmark values. J. Chem. Theory Comput., 14(4):1969–
1981, 2018.

[96] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding struc-
ture with randomness: Probabilistic algorithms for constructing approxi-
mate matrix decompositions. SIAM Rev., 53(2):217–288, 2011.

[97] Richard A Harshman et al. Foundations of the PARAFAC procedure:
Models and conditions for an” explanatory” multimodal factor analysis.
1970.

[98] Behnam Hashemi and Lloyd N Trefethen. Chebfun in three dimensions.
SIAM J. Sci. Comput., 39(5):C341–C363, 2017.

[99] Johan Håstad. Tensor rank is NP-complete. J. Algor., 11(4):644–654, 1990.

[100] Tamir Hazan, Simon Polak, and Amnon Shashua. Sparse image coding
using a 3D non-negative tensor factorization. In 10th IEEE Int. Conf. CV,
volume 1, pages 50–57. IEEE, 2005.

[101] Martin Head-Gordon. Quantum chemistry and molecular processes. J.
Phys. Chem., 100(31):13213–13225, 1996.

[102] Martin Head-Gordon, Paul E Maslen, and Christopher A White. A tensor

177

formulation of many-electron theory in a nonorthogonal single-particle
basis. J. Chem. Phys., 108(2):616–625, 1998.

[103] Martin Head-Gordon, John A Pople, and Michael J Frisch. MP2 energy
evaluation by direct methods. Chem. Phys. Lett., 153(6):503–506, 1988.

[104] Trygve Helgaker, Poul Jorgensen, and Jeppe Olsen. Molecular electronic-
structure theory. John Wiley & Sons, 2014.

[105] René Henrion. N -way principal component analysis theory, algorithms
and applications. Chemom. Intell. Lab. Syst., 25(1):1–23, 1994.

[106] David Hilbert. Ein Beitrag zur Theorie des Le’gendre’schen Polynoms.
Acta Math., 18(1):155, 1894.

[107] Egil A Hylleraas. Über den Grundterm der Zweielektronenprobleme von
H−, He, Li+, Be++ usw. Zeitschrift für Physik, 65(3):209–225, 1930.

[108] Ilgis Ibragimov and Sergej Rjasanow. Three way decomposition for the
Boltzmann equation. J. Comput. Math., pages 184–195, 2009.

[109] Oguz Kaya and Bora Uçar. High performance parallel algorithms for the
Tucker decomposition of sparse tensors. In 2016 45th Int. Conf. Parallel
Process., pages 103–112. IEEE, 2016.

[110] Vladimir Kazeev and Christoph Schwab. Quantized tensor-structured
finite elements for second-order elliptic PDEs in two dimensions. Nu-
merische Math., 138(1):133–190, 2018.

[111] Vladimir A Kazeev and Boris N Khoromskij. Low-rank explicit QTT rep-
resentation of the Laplace operator and its inverse. SIAM J. Matrix Anal.
Appl., 33(3):742–758, 2012.

[112] Rick A Kendall and Herbert A Früchtl. The impact of the resolution of
the identity approximate integral method on modern ab initio algorithm
development. Theor. Chem. Acc., 97(1):158–163, 1997.

[113] Boris Khoromskij and Sergey Repin. Rank structured approximation
method for quasi-periodic elliptic problems. Comput. Methods Appl. Math.,
17(3):457–477, 2017.

178

[114] Boris Khoromskij, Stefan Sauter, and Alexander Veit. Fast quadrature
techniques for retarded potentials based on TT/QTT tensor approxima-
tion. Comput. Methods Appl. Math., 11(3):342–362, 2001.

[115] Boris Khoromskij and Alexander Veit. Efficient computation of highly
oscillatory integrals by using QTT tensor approximation. Comput. Methods
Appl. Math., 16(1):145–159, 2016.

[116] Boris N Khoromskij. Tensor-structured preconditioners and approximate
inverse of elliptic operators in Rd. Constr. Approx., 30(3):599, 2009.

[117] Boris N Khoromskij. Fast and accurate tensor approximation of a mul-
tivariate convolution with linear scaling in dimension. J. Comput. Appl.
Math., 234(11):3122–3139, 2010.

[118] Boris N Khoromskij. O(d logN)-quantics approximation of N -d tensors
in high-dimensional numerical modeling. Constr. Approx., 34(2):257–280,
2011.

[119] Boris N Khoromskij. Tensor numerical methods in scientific computing, vol-
ume 19. Walter de Gruyter GmbH & Co KG, 2018.

[120] Boris N Khoromskij, Venera Khoromskaia, and H-J Flad. Numerical solu-
tion of the Hartree–Fock equation in multilevel tensor-structured format.
SIAM J. Sci. Comput., 33(1):45–65, 2011.

[121] Boris N Khoromskij and Christoph Schwab. Tensor-structured Galerkin
approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci.
Comput., 33(1):364–385, 2011.

[122] Tamara G Kolda and Brett W Bader. MATLAB tensor toolbox. Techni-
cal report, Sandia National Laboratories (SNL), Albuquerque, NM, and
Livermore, CA . . . , 2006.

[123] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-
tions. SIAM Rev., 51(3):455–500, 2009.

[124] Tamara Gibson Kolda. Multilinear operators for higher-order decompo-
sitions. Technical report, Sandia National Laboratories, 2006.

[125] Daniel Kressner, Rajesh Kumar, Fabio Nobile, and Christine Tobler. Low-

179

rank tensor approximation for high-order correlation functions of Gaus-
sian random fields. SIAM/ASA J. Uncertainty Quantif., 3(1):393–416, 2015.

[126] Daniel Kressner and Lana Perisa. Recompression of Hadamard products
of tensors in tucker format. SIAM J. Sci. Comput., 39(5):A1879–A1902,
2017.

[127] Daniel Kressner and Christine Tobler. Preconditioned low-rank methods
for high-dimensional elliptic pde eigenvalue problems. Comput. Methods
Appl. Math., 11(3):363–381, 2011.

[128] Daniel Kressner and Christine Tobler. Algorithm 941: Htucker—a MAT-
LAB toolbox for tensors in hierarchical Tucker format. ACM Trans. Math.
Software, 40(3):1–22, 2014.

[129] J. B. Kruskal. Rank decomposition and uniqueness for 3-way and N-way
arrays. In Multiway Data Analysis, pages 7–18. North-Holland, Amster-
dam, 1988.

[130] Nikolai Laskin. Fractional quantum mechanics and Lévy path integrals.
Phys. Let. A, 268(4-6):298–305, 2000.

[131] Joonho Lee and Martin Head-Gordon. Distinguishing artificial and es-
sential symmetry breaking in a single determinant: Approach and ap-
plication to the C60, C36, and C20 fullerenes. Phys. Chem. Chem. Phys.,
21(9):4763–4778, 2019.

[132] Michael S Lee, Paul E Maslen, and Martin Head-Gordon. Closely approx-
imating second-order Møller–Plesset perturbation theory with a local tri-
atomics in molecules model. J. Chem. Phys., 112(8):3592–3601, 2000.

[133] Namgil Lee and Andrzej Cichocki. Fundamental tensor operations for
large-scale data analysis using tensor network formats. Multidimension.
Syst. Signal Process., 29(3):921–960, 2018.

[134] Randall J LeVeque. Finite difference methods for ordinary and partial differen-
tial equations: steady-state and time-dependent problems, volume 98. SIAM,
2007.

[135] Jiajia Li, Jee Choi, Ioakeim Perros, Jimeng Sun, and Richard Vuduc.
Model-driven sparse CP decomposition for higher-order tensors. In 2017
IEEE Int. Parallel Distrib. Process. Symp., pages 1048–1057. IEEE, 2017.

180

[136] Jing-Rebecca Li and Jacob White. Low rank solution of Lyapunov equa-
tions. SIAM J. Matrix Anal. Appl., 24(1):260–280, 2002.

[137] Anna Lischke, Guofei Pang, Mamikon Gulian, Fangying Song, Christian
Glusa, Xiaoning Zheng, Zhiping Mao, Wei Cai, Mark M Meerschaert,
Mark Ainsworth, et al. What is the fractional Laplacian? A comparative
review with new results. J. Comput. Phys., 404:109009, 2020.

[138] Ning Liu, Benyu Zhang, Jun Yan, Zheng Chen, Wenyin Liu, Fengshan
Bai, and Leefeng Chien. Text representation: From vector to tensor. In 5th
IEEE Int. Conf. DM, pages 4–pp. IEEE, 2005.

[139] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopou-
los. A survey of multilinear subspace learning for tensor data. Pattern
Recognit., 44(7):1540–1551, 2011.

[140] Yudell L Luke. Special functions and their approximations, volume 2. Aca-
demic press, 1969.

[141] Linjian Ma and Edgar Solomonik. Fast and accurate random-
ized algorithms for low-rank tensor decompositions. arXiv preprint
arXiv:2104.01101, 2021.

[142] Narbe Mardirossian and Martin Head-Gordon. Survival of the
most transferable at the top of Jacob’s ladder: Defining and test-
ing the ωB97M(2) double hybrid density functional. J. Chem. Phys.,
148(24):241736, 2018.

[143] Jan ML Martin and Golokesh Santra. Empirical double-hybrid density
functional theory: A ‘third way’ in between WFT and DFT. Isr. J. Chem.,
60(8-9):787–804, 2020.

[144] PG Martinsson. The hierarchical Poincaré-Steklov (HPS) solver for elliptic
PDEs: A tutorial. arXiv preprint arXiv:1506.01308, 2015.

[145] John C Mason and David C Handscomb. Chebyshev polynomials. Chapman
and Hall/CRC, 2002.

[146] Stefano Massei, Davide Palitta, and Leonardo Robol. Solving rank-
structured Sylvester and Lyapunov equations. SIAM J. Matrix Anal. Appl.,
39(4):1564–1590, 2018.

181

[147] Jiřı́ Matoušek and Petr Škovroň. Removing degeneracy may require a
large dimension increase. Theory. Compute., 3(1):159–177, 2007.

[148] Joseph E Mayer. Electron correlation. Phys. Rev., 100(6):1579, 1955.

[149] Dominik Meidner, Johannes Pfefferer, Klemens Schürholz, and Boris
Vexler. hp-finite elements for fractional diffusion. SIAM Journal on Nu-
merical Analysis, 56(4):2345–2374, 2018.

[150] Fumikazu Miwakeichi, Eduardo Martınez-Montes, Pedro A Valdés-Sosa,
Nobuaki Nishiyama, Hiroaki Mizuhara, and Yoko Yamaguchi. Decom-
posing EEG data into space–time–frequency components using parallel
factor analysis. Neuroimage, 22(3):1035–1045, 2004.

[151] Martin J Mohlenkamp and Lucas Monzón. Trigonometric identities and
sums of separable functions. Math. Intell., 27(2):65–69, 2005.

[152] Morten Mørup, Lars Kai Hansen, Christoph S Herrmann, Josef Parnas,
and Sidse M Arnfred. Parallel factor analysis as an exploratory tool for
wavelet transformed event-related EEG. Neuroimage, 29(3):938–947, 2006.

[153] Robert S Mulliken. Report on notation for the spectra of polyatomic
molecules. J. Chem. Phys., 23(11):1997–2011, 1955.

[154] Damien Muti and Salah Bourennane. Multidimensional filtering based on
a tensor approach. Signal Process., 85(12):2338–2353, 2005.

[155] James G Nagy and Misha Elena Kilmer. Kronecker product approxima-
tion for preconditioning in three-dimensional imaging applications. IEEE
Trans. Image Process., 15(3):604–613, 2006.

[156] Ricardo H Nochetto, Enrique Otárola, and Abner J Salgado. A PDE ap-
proach to fractional diffusion in general domains: a priori error analysis.
Found. Comput. Math., 15(3):733–791, 2015.

[157] Vadim Olshevsky, Ivan Oseledets, and Eugene Tyrtyshnikov. Superfast in-
version of two-level Toeplitz matrices using Newton iteration and tensor-
displacement structure. In Recent Advances in Matrix and Operator Theory,
pages 229–240. Springer, 2007.

[158] Frank WJ Olver, Daniel W Lozier, Ronald F Boisvert, and Charles W Clark.

182

NIST handbook of mathematical functions hardback and CD-ROM. Cambridge
University Press, 2010.

[159] Sheehan Olver and Alex Townsend. A fast and well-conditioned spectral
method. SIAM Rev., 55(3):462–489, 2013.

[160] IV Oseledets. Constructive representation of functions in low-rank tensor
formats. Constr. Approx., 37(1):1–18, 2013.

[161] Ivan Oseledets, Sergey Dolgov, Vladimir Kazeev, Olga Lebedeva, and
Thomas Mach. MATLAB TT-Toolbox, 2019.

[162] Ivan Oseledets and Eugene Tyrtyshnikov. TT-cross approximation for
multidimensional arrays. Lin. Alg. Appl., 432(1):70–88, 2010.

[163] Ivan V Oseledets. Approximation of 2d× 2d matrices using tensor decom-
position. SIAM J. Matrix Anal. Appl., 31(4):2130–2145, 2010.

[164] Ivan V Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput.,
33(5):2295–2317, 2011.

[165] Ivan V Oseledets and Sergey V Dolgov. Solution of linear systems and ma-
trix inversion in the TT-format. SIAM J. Sci. Comput., 34(5):A2718–A2739,
2012.

[166] Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of di-
mensionality, or how to use SVD in many dimensions. SIAM J. Sci. Com-
put., 31(5):3744–3759, 2009.

[167] Davide Palitta and Valeria Simoncini. Numerical methods for large-scale
Lyapunov equations with symmetric banded data. SIAM J. Sci. Comput.,
40(5):A3581–A3608, 2018.

[168] Thilo Penzl. A cyclic low-rank Smith method for large sparse Lyapunov
equations. SIAM J. Sci. Comput., 21(4):1401–1418, 1999.

[169] David Perez-Garcia, Frank Verstraete, Michael M Wolf, and J Igna-
cio Cirac. Matrix product state representations. arXiv preprint quant-
ph/0608197, 2006.

[170] János Pipek and Paul G Mezey. A fast intrinsic localization procedure

183

applicable for abinitio and semiempirical linear combination of atomic
orbital wave functions. J. Chem. Phys., 90(9):4916–4926, 1989.

[171] John A Pople, J Stephen Binkley, and Rolf Seeger. Theoretical models
incorporating electron correlation. Int. J. Quantum Chem., 10(S10):1–19,
1976.

[172] Michael James David Powell. Approximation theory and methods. Cam-
bridge university press, 1981.

[173] Peter Pulay. Localizability of dynamic electron correlation. Chem. Phys.
Lett., 100(2):151–154, 1983.

[174] Krishnan Raghavachari, Gary W Trucks, John A Pople, and Martin Head-
Gordon. A fifth-order perturbation comparison of electron correlation
theories. Chem. Phys. Lett., 157(6):479–483, 1989.

[175] JB Reade. Eigenvalues of positive definite kernels. SIAM J. Math. Anal.,
14(1):152–157, 1983.

[176] Theodore J Rivlin. Chebyshev polynomials. Courier Dover Publications,
2020.

[177] Youcef Saad. Numerical solution of large lyapunov equations. Technical
report, 1989.

[178] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Compute., 7(3):856–869, 1986.

[179] John Sabino. Solution of large-scale Lyapunov equations via the block
modified Smith methods. Technical report, 2006.

[180] S Saebo and Peter Pulay. Local treatment of electron correlation. Annu.
Rev. Phys. Chem., 44(1):213–236, 1993.

[181] Berkant Savas. Analyses and tests of handwritten digit recognition algo-
rithms. LiTH-MAT-EX-2003-01, Linkˆping University, Department of Mathe-
matics, 2003.

[182] Berkant Savas and Lars Eldén. Handwritten digit classification using

184

higher order singular value decomposition. Pattern Recognit., 40(3):993–
1003, 2007.

[183] Dmitry Savostyanov and Ivan Oseledets. Fast adaptive interpolation of
multi-dimensional arrays in tensor train format. In 2011 Int. Workshop
Multidimens. (nD) Syst., pages 1–8. IEEE, 2011.

[184] Dmitry V Savostyanov, SV Dolgov, JM Werner, and Ilya Kuprov. Exact
NMR simulation of protein-size spin systems using tensor train formal-
ism. Phys. Rev. B: Condens. Matter, 90(8):085139, 2014.

[185] Kathrin Schacke. On the Kronecker product. Master’s thesis, University
of Waterloo, 2004.

[186] Britta Schmitt, Boris N Khoromskij, Venera Khoromskaia, and Volker
Schulz. Tensor method for optimal control problems constrained by frac-
tional three-dimensional elliptic operator with variable coefficients. Nu-
mer. Linear Algebra Appl., page e2404, 2021.

[187] Amnon Shashua and Tamir Hazan. Non-negative tensor factorization
with applications to statistics and computer vision. In Proc. 22nd Int. Conf.
Mach. Learn., pages 792–799, 2005.

[188] James Shee, Matthias Loipersberger, Adam Rettig, Joonho Lee, and Mar-
tin Head-Gordon. Regularized second-order Møller–Plesset theory: A
more accurate alternative to conventional MP2 for noncovalent interac-
tions and transition metal thermochemistry for the same computational
cost. J. Phys. Chem. Lett., 12:12084–12097, 2021.

[189] C David Sherrill. An introduction to Hartree-Fock molecular orbital the-
ory. School of Chemistry and Biochemistry Georgia Institute of Technology,
2000.

[190] Jonathan Richard Shewchuk et al. An introduction to the conjugate gra-
dient method without the agonizing pain, 1994.

[191] Tianyi Shi, Harbir Antil, and Drew P Kouri. Spectral, tensor and domain
decomposition methods for fractional pdes. Comput. Methods Appl. Math.,
2022.

[192] Tianyi Shi, Maximilian Ruth, and Alex Townsend. Parallel algo-

185

rithms for computing the tensor-train decomposition. arXiv preprint
arXiv:2111.10448, 2021.

[193] Tianyi Shi and Alex Townsend. On the compressibility of tensors. SIAM
J. Matrix Anal. Appl., 42(1):275–298, 2021.

[194] Valeria Simoncini. A new iterative method for solving large-scale Lya-
punov matrix equations. SIAM J. Sci. Comput., 29(3):1268–1288, 2007.

[195] Valeria Simoncini. Computational methods for linear matrix equations.
SIAM Rev., 58(3):377–441, 2016.

[196] David W Small and Martin Head-Gordon. Post-modern valence bond
theory for strongly correlated electron spins. Phys. Chem. Chem. Phys.,
13(43):19285–19297, 2011.

[197] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George
Karypis. SPLATT: Efficient and parallel sparse tensor-matrix multiplica-
tion. In 2015 IEEE Int. Parallel Distrib. Process. Symp., pages 61–70. IEEE,
2015.

[198] Edgar Solomonik, Devin Matthews, Jeff R Hammond, John F Stanton,
and James Demmel. A massively parallel tensor contraction framework
for coupled-cluster computations. J. Parallel Distrib. Comput., 74(12):3176–
3190, 2014.

[199] Fangying Song, Chuanju Xu, and George Em Karniadakis. Comput-
ing fractional Laplacians on complex-geometry domains: algorithms and
simulations. SIAM J. Sci. Comput., 39(4):A1320–A1344, 2017.

[200] Gerhard Starke. Near-circularity for the rational Zolotarev problem in the
complex plane. J. Approx. Theory, 70(1):115–130, 1992.

[201] Pablo Raúl Stinga and José Luis Torrea. Extension problem and Har-
nack’s inequality for some fractional operators. Comm. Part. Diff. Eqs.,
35(11):2092–2122, 2010.

[202] Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu, and Zheng Chen.
CubeSVD: a novel approach to personalized web search. In Proc. 14th Int.
Conf. World Wide Web, pages 382–390, 2005.

[203] Jimeng Sun, Spiros Papadimitriou, and S Yu Philip. Window-based tensor

186

analysis on high-dimensional and multi-aspect streams. In 6th Int. Conf.
DM, pages 1076–1080. IEEE, 2006.

[204] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In Proc. 12th ACM SIGKDD, pages 374–
383, 2006.

[205] Yifei Sun and Mrinal Kumar. Numerical solution of high dimensional sta-
tionary Fokker–Planck equations via tensor decomposition and Cheby-
shev spectral differentiation. Comput. Math. Appl., 67(10):1960–1977, 2014.

[206] Yiming Sun, Yang Guo, Charlene Luo, Joel Tropp, and Madeleine Udell.
Low-rank Tucker approximation of a tensor from streaming data. SIAM
J. Math. Data. Sci., 2(4):1123–1150, 2020.

[207] Yiming Sun, Yang Guo, Joel A Tropp, and Madeleine Udell. Tensor ran-
dom projection for low memory dimension reduction. In NeurIPS Work-
shop Relat. Represent. Learn., 2018.

[208] Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction
to advanced electronic structure theory. Courier Corporation, 2012.

[209] Alex Townsend. Computing with Functions in Two Dimensions. PhD thesis,
University of Oxford, 2014.

[210] Alex Townsend and Sheehan Olver. The automatic solution of partial
differential equations using a global spectral method. J. Comput. Phys.,
299:106–123, 2015.

[211] Alex Townsend and Heather Wilber. On the singular values of matrices
with high displacement rank. Lin. Alg. Appl., 548:19–41, 2018.

[212] Lloyd N Trefethen. Approximation Theory and Approximation Practice.
SIAM, 2013.

[213] Lloyd N Trefethen. Cubature, approximation, and isotropy in the hyper-
cube. SIAM Rev., 59(3):469–491, 2017.

[214] R. A. Van De Geijn and J. Watts. SUMMA: scalable universal matrix mul-
tiplication algorithm. Concurrency Pract. Expc., 9(4):255–274, April 1997.

187

[215] M Alex O Vasilescu. Human motion signatures: Analysis, synthesis,
recognition. In 2002 Int. Conf. Pattern Recognit., volume 3, pages 456–460.
IEEE, 2002.

[216] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of
image ensembles: Tensorfaces. In Eur. Conf. Compute. Vision, pages 447–
460. Springer, 2002.

[217] Nico Vervliet, Otto Debals, and Lieven De Lathauwer. Tensorlab 3.0—Nu-
merical optimization strategies for large-scale constrained and coupled
matrix/tensor factorization. In 2016 50th Asilomar Conf. Signal Syst. Com-
put., pages 1733–1738. IEEE, 2016.

[218] Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovic. Face
transfer with multilinear models. In ACM SIGGRAPH 2006 Courses, pages
24–es. 2006.

[219] Hongcheng Wang and Narendra Ahuja. Compact representation of mul-
tidimensional data using tensor rank-one decomposition. Vectors, 1(5),
2004.

[220] Hongcheng Wang et al. Facial expression decomposition. In Proc. 9th IEEE
Int. Conf. Compute. Vision, pages 958–965. IEEE, 2003.

[221] Xiaokang Wang, Laurence T Yang, Yihao Wang, Lei Ren, and M Jamal
Deen. Adtt: A highly efficient distributed tensor-train decomposition
method for IIoT big data. IEEE Trans. Ind. Inf., 17(3):1573–1582, 2020.

[222] Zhenling Wang. personal communication.

[223] Florian Weigend, Marco Häser, Holger Patzelt, and Reinhart Ahlrichs.
RI-MP2: optimized auxiliary basis sets and demonstration of efficiency.
Chem. Phys. Lett., 294(1-3):143–152, 1998.

[224] Florian Weigend, Andreas Köhn, and Christof Hättig. Efficient use of the
correlation consistent basis sets in resolution of the identity MP2 calcula-
tions. J. Chem. Phys., 116(8):3175–3183, 2002.

[225] Chester J Weiss, Bart G van Bloemen Waanders, and Harbir Antil. Frac-
tional operators applied to geophysical electromagnetics. Geophys. J. In-
tern., 220(2):1242–1259, 2020.

188

[226] Hans-Joachim Werner, Frederick R Manby, and Peter J Knowles. Fast lin-
ear scaling second-order Møller-Plesset perturbation theory (MP2) using
local and density fitting approximations. J. Chem. Phys., 118(18):8149–
8160, 2003.

[227] Christopher A White and Martin Head-Gordon. Derivation and efficient
implementation of the fast multipole method. J. Chem. Phys., 101(8):6593–
6605, 1994.

[228] Eugene P Wigner. Application of the Rayleigh-Schrödinger perturbation
theory to the hydrogen atom. Phys. Rev., 94(1):77, 1954.

[229] Eugene P Wigner. On a modification of the Rayleigh-Schrödinger pertur-
bation theory. In Part I: Physical Chemistry. Part II: Solid State Physics, pages
131–136. Springer, 1997.

[230] Heather Wilber, Alex Townsend, and Grady B Wright. Computing with
functions in spherical and polar geometries II. the disk. SIAM J. Sci. Com-
put., 39(3):C238–C262, 2017.

[231] Stephen Wilson. Electron correlation in molecules. Courier Corporation,
2014.

[232] Xin Xing, Hua Huang, and Edmond Chow. A linear scaling hierarchical
block low-rank representation of the electron repulsion integral tensor. J.
Chem. Phys., 153(8):084119, 2020.

[233] Mohsen Zayernouri, Mark Ainsworth, and George Em Karniadakis. A
unified Petrov–Galerkin spectral method for fractional PDEs. Comput.
Methods Appl. Mech. Engrg., 283:1545–1569, 2015.

[234] EI Zolotarev. Application of elliptic functions to questions of functions
deviating least and most from zero. Zap. Imp. Akad. Nauk. St. Petersburg,
30(5):1–59, 1877.

189

	Biographical Sketch
	Dedication
	Acknowledgements
	Contents
	Introduction
	Why are tensors important?
	Data sparse tensor formats
	Tensor-train format
	Quantized tensor-train format
	Orthogonal Tucker format
	Canonical Polyadic format
	Computing with different tensor formats

	Why is dimensionality increase important?
	Sylvester equations and displacement structure
	Direct solvers
	The ADI method
	The fADI method

	On the compressibility of tensors
	Tensors constructed via sampling algebraically structured functions
	Polynomials and algebraic structure
	Other special cases of algebraic structure

	Tensors derived by sampling smooth functions
	Fourier-like function
	A sum of Gaussian bumps

	Tensors with displacement structure
	Zolotarev numbers
	The compressibility of tensors with displacement structure in the tensor-train format
	The compressibility of tensors with displacement structure in the Tucker format

	Worked examples of tensors with displacement structure
	The 3D Hilbert tensor
	Tensor solution of a discretized Poisson equation
	Solving for tensors in compressed formats
	Poisson equation solver

	Parallel Algorithms for computing the tensor-train decomposition
	Parallel TT approximations from other tensor formats
	Parallel TT decomposition with SVD
	Parallel TT Sketching
	Parallel TT and orthogonal Tucker conversion

	Complexity Analysis and Numerical Examples
	Computational Details
	Parallel Tensor Sketching
	Memory Complexity
	Time Complexity
	Communication Cost

	Solve Sylvester tensor equations in TT format

	Spectral, Tensor and Domain Decomposition Methods for Fractional PDEs
	Introduction
	Preliminary results
	Ultraspherical Polynomial Basis and Spectral Methods

	Spectral Discretization for Fractional PDEs on a Disk
	Polynomial Approximation of z1/s
	Piecewise Polynomial Approximation of z1/s

	Spectral Discretization for Fractional PDEs on a Rectangle
	Direct Solver
	Domain Decomposition Solver

	Numerical Example and Application to Optimal Control Problems
	Fractional PDE on the Cube
	Optimal Control Problem

	Conclusions

	Electron correlation energy computation with Sylvester equations
	Introduction
	Mathematical formulation of correlation energy
	Different orbital bases

	Sylvester equation representation
	Canonical representation
	Localized representation

	Low rank method for canonical representation
	Sparsity enforcement method for localized representation
	Removing columns and rows in Kronecker products
	Closed-form expressions of Kronecker product matrices with columns removed
	Orthogonal orbital basis
	Nonorthogonal orbital basis

	Conclusion and future directions

	Chebyshev coefficient approximations with quantized tensor-train format
	Chebyshev polynomial approximation of functions
	Analytic functions with poles
	Functions with finite simple poles
	Functions with infinitely many simple poles
	Functions with repeated poles

	Functions regular except at 1 and with branch points on the real axis
	Entire functions
	Conclusion and future directions

	Conclusions
	Bibliography

