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Earlier Material

Example Banach spaces.

e R"™ and C™ with norm ||z||2
e [P with norm ||z||,
e [°° with norm |[|z|| = sup;ey |@il

e Cla,b] with norm ||z|| = max;e[q 5 [2()]
Example incomplete normed vector spaces.

e Q with norm |z|

e Pla,b] (polynomials) with norm ||z = max;¢(q,p) [2(t)]
e Cla,b] with norm ||z = f; |z(t)|dt

— Completion of this is given by L?[a,b] = {f i a, 0] = R | f: |f(t)]2dt < oo}

Metrics obtained from norms. Must satisfy that d(z + a,y + a) = d(z,y) for all z,y,a € X and
d(az,ay) = |a| - d(x,y) for all z,y € X and a € K.

Section 2.3. Further Properties of Normed Spaces

Theorem (subspace completeness). A subspace Y of a Banach space X is complete if and only if the
set Y is closed in X.

Convergent sequence. z,, — x in X if and oly if ||, — x| — 0 as n 1 .

Convergent series. Let (x,) be a sequence and s, = 21 + -+ + 2. If ||s, — s|| — 0 for some s, then
> oo, @; converges to s.

Absoulte convergence. Series obtained from (z,) absolutely converges if and only if ||z1] + ||z2] + - - -
converges.

Remark. Absolute convergence = convergence if and only if X is Banach.



Completion of Arbitrary Normed Space

Section 2.4. Finite Dimensional Normed Spaces

n 1s a linearly independent set in X, then 3 M, ¢ such that

n n n
cZ|ai| < Zaiei §MZ|0@|
i=1 i=1 i=1

Lemma. If {e;};—1

.....

Proof. Note that if " | |o;| = 0 then this is vacuously satisfied. Assume that Y7, |a;| # 0.
First see that for M = max;=1,. ||e;|| and the triangle inequality that

n n n n
Doaie|| <D el =D il lles| < MY ]
=1 =1 =1 =1

Note that if

— c <

Z"“' : z% Zzl ol

and thus defining 3; = Z" \Ozl we know that Y1 |8;] = 1. Thus we equivalently may show that
>0, Bieill > ¢ > 0 for any {Bz}l 1,...n satisfying >0 |B;| = 1. Let M = {& = (z1,...,2,) € K" | >0, |z| = 1}

For contradiction assume this is not true. That is, there is a sequence {ﬂ(m) }me where 80" = {ﬂ(m)}

satisfying szlzl Bi(m
implies that ‘ Bi(m)‘ < 1lforalli=1,...,n and m € N. Then by the Bolzano-Wieirstrass Theorem we

i1 B(m ’ =1 for all m € N. Note that this last condltlon

have that 8™ has a convergent subsequence S+ — 5 € M (it is in M because M is closed). Thus
Yo, || = 1. But note that

Zﬂi(m)ei —)Z'yei asm T oo and Zﬁgm)ei%OaS m T oo
i=1 i=1 i=1

and this directly implies that ;" ve; =0 = ~; =0 for all i = 1,...,n by the linear independence of
{€i}i=1,....n. This contradicts that fact that > . || = 1.

n
E Q€4

=1

.3 ¢ > 0 such that CZ || <

=1

Q.E.D.

Completeness of Finite Dimensional Normed Vector Spaces

Let X be a finite dimensional subspace of V', a normed vector space. Then X is complete.

Proof. Let dim X =d = X has a Hamel basis {e;};=1,... .a- Notice a priori we have 3 ¢ > 0 such that

d d
el < | S
=1 =1

Va=(q)cK?




Let {@ }nen € X be Cauchy and thus
Ve>0, 3N €N such that ||z, —zm| <e-cif n,m>N

We can write each z,, as

d
Ty = Z a:l(-")el- for some xgn) cK
i=1

Thus
d
|zrn —zm| <€-c = C'Z :1:1(-") —a:gm)’ < Z (171(") —:rz(-m)) el <e-c
i=1 i=1
d
e Sl e <
i=1
and therefore for each i = 1,...,d we have ‘xin) - xgm)‘ < ¢ and therefore each {:an)} N is a Cauchy
ne
sequence in K for all ¢ = 1,...,d and since K is complete, we thus have that each :cgn) — 1n; € K for each
i=1,....d.

We claim that z,, — = = Zle n;€;. See that

Zd: (2 =) e

i=1

lx; — x| = —0 asntToo

d
SM-Z‘IZ(-H)—W
i=1
and this completes the proof.
Q.E.D.

Theorem. If X is a finite dimensional normed vector space with norms || - ||1, || - [|2 and basis {e;}i=1.... .4,
then 3 a,b > 0 such that a - ||z]l2 < ||zl < b ||z]2.

Proof. Note that for all x € X and for K = 1,2 we have 3 M, ¢ > 0 such that

d d
e Y| <D wies
i=1 i=1

llll%

d
< My - Z |4
k i=1

Then
d

c M. d c M
1 2 2 1
el < Mq; 2l < llefle < M2 Y Jail - = < ez

C:
i=1 2

Section 2.5. Compactness and Finite Dimension

Compactness. If Y C (X, d) a metric space, then K compact <= all sequences in K have a convergent
subsequence (in K).

Theorem. In a finite dimsional normed space X, any M C X is compact if and only if M is closed and
bounded.

Proof. “= "Letx € M = 3z, — x. M is compact so it has a convergent subsequence, converging
in M, and thus x € M = M C M and a prior we knew M C M and thus M = M and M is closed. For
contradiction assume M is not bounded. Then 3 (y,,) such that for any fixed b € M we have d(y,,b) > n
for all n € N. But then this could not have a convergent subsequence.



“—~7"Let M C X be closed and bounded. Suppose dim X = n and {e;}i=1,...» is a basis for X. Let (z,)
be a sequence in M and thus for fixed m € N we have that

T =aVer + -+ 2(Me,

and since M is bounded then so is (z,) and thus ||z,,|| < k for some k € K for all m € N. Then by a
previous observation,

S el

i=1

Then for fixed 1, {xgm)} N is bounded in K and thus each xgm’“) — n; as my T oo for fixed i =1,...,n by
me

k2 om| =

ZC-Z‘xEm)‘ VmeN
i=1

the Bolzano-Wieirstrass Theorem. I claim that z,,, — 2z = Z?:l n;e;. See that

n n
§ : (mx)
L, € — Ni€i
i=1 i=1

completing the proof. Further since M is closed and {z,,} C M then z € M.

n

Z (a:z(-mk) — 771-) e;

=1

[€my, — 2]l = =0

< Mi ’a:z(-mk) -
i—1

Q.E.D.

Riesz Lemma

Let Y € X (normed vector space) be a closed subspace. Then V 6 € (0,1), 3 z € S(0,1) C X (unit vector)
such that d(z,Y) > 6.

Proof. Let xg € X — Y. Then
d = inf d(z,y) = d(z0,Y) >0
yey

Note that this must be strictly positive as otherwise we would have inf, ey d(z,y) =0 = I {yn} C Y such
that d(zo, yn) — 0 and then y, — xo but 2o € Y contradicts closedness.

Trivially see that for all 0 < @ < 1 that % > 1 and thus d < %d = infyey d(zo,y) < %d = Jy €Y

such that d < d(zo,y0) < 5d = 0|z — yo| < d.
———

lzo—yoll
Take z = % and let y € Y. Then
Zo — Yo 1
o=l = |2 ] = ol - 0+ oo+ o))
zo — ol lzo — woll
cy
1 ! !
= ———|xo—¥'|| forsomey’ €Y
lzo — voll
1
llzo — yol|
Thus J 0
Az Y) = inf d(zy) > 5 Ollzo = woll _ g

ye ~ llwo—wyoll ~ llwo —woll

Q.E.D.



Applications of Riesz Lemma

First one. X is a normed vector space. B(O, 1) is compact = dim X < occ.

Proof. Assume X is a normed vector space with B(0, 1) compact. Assume for contradiction that dim X = oc.
Let 1 € X, 27 # 0. Then

M; = span{z;} € X is a finite dimensional subspace and thus closed

~ 1
= Jx2€5(0,1) € B(0,1) >d(z2, M) > B by R. Lemma

1
My = span{zi,z2} C X = Fx3 € 5(0,1) >d(zs, Ma) > 3

M, = span{zy,...,2,} T X = ---

Now consider {z,} C §(0,1) € B(0,1) compact = 3 {z,,,} € S(0,1) such that z,, —y € B(0,1). Note
that then {z,,} is Cauchy because it converges and thus

Ve>0, 3N €N such that ||z, — x| <eif n,m > N

WLOG let m > n. Then z,, € M,,—1 = span{z1,...,Tm-1} = ||Tn — zw| > d(zm, Myp_1) > % But
then we have that for all € > 0,
1
3 <@ — zml|| <€
giving our contradiction.
Q.E.D.

Second one. Y C X subspace and 3 0 < r < 1 such that d(z,Y) <r for all z € §(0,1) = Y dense in X

(ie. ¥ = X).

Proof. Suppose for contradiction that Y is not dense in X. That is, Y C X. Using the Riesz lemma with
r=60 = Jxg€ 5(0,1) such that d(zo,Y) > r. But r < d(zg,Y) < d(zg,y) <rforallyeY = r<r
giving our contradiction.

Q.ED.

Section 2.6. Linear Operators

Linear operator. A linear operator T is an operator T': X — Y with respective norms || - || x, || - ||y where
2 +— Tz and assume X and Y have scalar fields. T satisfies T(x +y) = Tz + Ty and T (ax) = oTz. We also
define D(T') to be the domain of T', R(T') to be the range of T', and N (T') denotes the null space of T' given
by N(T) =kerT ={z € X | Tx = 0}.

Examples.
e Identity operator. Ix : X — X defined by Ixx = z.

e Zero operator. 0 : X — Y defined by 0z = x.

e Differentiation operator. Let X be the set of polynomials on [a,b]. Define a linear operator T by
Tx(t)=2'(t), T: X — X.



e Integration operators. A linear operator T : C|a,b] — C[a, b] defined by Tx(t) = ft x(7)dr.

a

e Multiplication by ¢. A linear operator T : Cla, b] — Cla, b] defined by Tz (t) = tx(¢).
Theorem (range and null space). Let T be a linear operator. Then

e The range R(T) is a vector space.
e If dimD(T') = n < oo, then D(T) < n.

e The null space N (T) is a vector space.

Theorem (inverse operator). Let X, Y be vector spaces, both with the same scalar field K. Let T : X —
Y be a linear operator with domain D(T) C X and range R(T") C Y. Then

e The inverse T~ : R(T) — D(T) exists if and only if

I
o

Tx=0 — T

o If T~ exists, it is a linear operator.

e If dimD(T) =n < oo and T~ exists, then dim R(T) = dimD(T).

Section 2.7. Bounded and Continuous Linear Operators

1Tzl
llllx

Norm of linear operator. 7': X — Y has norm given by [|Top. = sup,e x40 < 00.

Bounded linear operator. A bounded linear operator has ||T||op. < oo and further note this directly
implies that [|Tz|ly < c¢-||z||x for some ¢ > 0 (namely ¢ = ||T'|op.)-

Lemma. We may equivalently write ||7']| = sup,¢ x|z =1 [|72|]-

Examples.

e Identity operator I is bounded and have || I|| = 1.
e Zero operator 0 is bounded and has ||0]| = 0.

e Differential operator T' is unbounded (consider polynomials x,, (t) = ¢™.

e Integral operator T is linear and bounded when Tx(t) = fol k(t,m)z(T)dr and |k(t,7)| < ko for all

(t,7) €[0,1] x [0,1] and || T[|op. = Ko.
Matrix operator T : R™ — R" and efined for some r X n matrix A by Tz = Ax is bounded and have

1T]lop. = A/ > i1 Z?:l a’zzj‘

Theorem (finite dimension). If a normed space X is finite dimensional, then every linear operator on X
is bounded.

» and thus for any =z € X we

.....

can write z = Y | ;e;. Then

[T =

.....

n
E xiTei
i=1




We know that

1
= = llel

" 1
D lmil <7
i=1

n
E Li€i
i=1

and therefore
1
el < (4 o el )

C

Q.E.D.

Theorem (continuity and boundedness). Let T : X — Y be a linear operator where X,Y are normed
spaces. Then

e T continuous if and only if T is bounded.

e If T is continuous at a single point then it is continuous everywhere.

Proof. “<—=” Assume T is bounded. Let ¢ > 0 and ||z —z¢|| < oy and thus |Tx—Txzol| < ||T||||x—zol|l <e.

“=— ” Assume T continuous at 9 € X and thus ¥ € > 0, 3 § > 0 such that [|Tz — Txo| < e for all z € X
with ||z — zo|| < §. Take any y € X and let

5 5
r=x0+—y = r—x0=—Yy = |z —x| =9
1yl lyll
Then
| Tz — Tao = ||T(x — z0)|| HT( i y>H 0 Ty
— 0 = — 0 = _— = —
Iyl 1yl

and thus since ”;Z”HTyH = ||Tx — Txol| < e = || Tyl < §llyll and thus T is bounded with ||T'||op. = 5.

Continuity of T at a point implies boundedness of T' by the second part above, implying continuity.
Q.E.D.

Theorem (bounded linear extension). Let T : D(T) — Y be a bounded linear operator, where D(T') C
X (normed space) and Y is Banach space. Then T has an extension

T:D(T)—=Y

where T is a bounded linear operator of norm ||T|| = ||T|.

Proof. Consider x € D(T') = 3 {z,} € D(T) such that x,, — . T is linear and bounded so

| Txy, — T = |T(xn — )l < | T|Xn — zm|l =0 =  {Tz,}nen € R(T) is Cauchy

Since Y complete then T'z,, — y € Y. Thus we have a definition for z € D(T), Tz = y. Is this well-defined?
Let {xn}, {yn} CD (T) such that z,, — = and y, — = and thus we WIS Tz = Ty = lim, o0 T, =
limy, o0 Typn- But Tz, — Ty, =T(xy —yn) > T0=0 = Ta, =Ty, for all n € N.

Next we WTS that 1) T linear, 2) T bounded, 3) T |p(ry= T, 4) ||T|| = ||T||. all are trivial.

Q.E.D.



Section 2.8. Linear Functionals

Section 2.9 Linear Operators and Functionals on Finite Dimensional
Spaces

Unique representation of linear operators. Let T': X — Y where X,Y are normed vector spaces with
respective bases {€;}i=1,...n» C X and {b;}i=1,..» CY. For any x € X we have x = Z?:l z;e; and it has the
imagey =Tz =3, a:lTel and thus see that yr = Te, for i = 1,...,r. Further, we may write each y € Y

asy =,y yib; and thus y = 370, @Te; = 300 wi y 00y miby =300, (3oL, miwi) by

.....

Section 2.10. Normed Spaces of Operators. Dual Space

Space of bounded linear operators. X is a normed vector space, and Y is a Banach space. Then
B(X,Y)={T: X =Y | T bounded and linear} is Banach.

Proof. Let {T)}nex € B(X,Y) be Cauchy. WTS T, L2y 7 ¢ B(X,Y). We have
vV e>0, 3 N. € N such that ||T, T|\Op< it n,m > N

and then for any fixed x € X we can also have

Ve>0, 3 Ny € Nsuch that |1}, — Tinlop. < if n,m > Ny

2H I

and then we have that {T,,2},eny C Y is Cauchy since

| Thx — Tzl < || Th — Tnllop. |2l < ||| = = < eif n,m > Ny .

|
2H I

Then we have that T,,x — Tx € Y as n 1 co. Thus we have a natural definition for Tz = lim,, ,~ T for
all z € X. We want to show T € B(X,Y). Le. we want to show that T is linear and bounded. T is linear
is trivial. We’ll show the boundedness of T'.

See that {T},} Cauchy = {||T%||} C R is Cauchy and thus ||T},,|| — « € R since R is complete. See that
ITuall < ITulllzl]l = lim [T < T [Tallle] = Ta] <l
cont. of |l
showing T is bounded.
Last we must show that T,, — T, that is ||T, — T|| — 0 as n 1 oco. Note that since |7, — T| =

SUp,ex, |zj=1 |Tn® — Tx| and thus it suffices to show that for all ||z[| = 1 we have [T,z — Tz|| — 0.
See that
I Tpz —Tz| = |Twz— lim meH Jim [Ty — T < T ([T = Tonllop. - |12
m—r oo
cont. oj I =1

= lim Ty — Tllep. < lim ~ ifn,m > N,
m— oo m—oo 2
< €

and m > N, trivially since m 1 oo. Thus we have shown that
Ve>0, [|[The—Tx|| <eifn> N,

and thus T;, — T follows.



Dual Spaces (up to isomorphism)

L (7)) =19 for £ +1=1with 1 <p,q < oo

Proof. We will construct an isomorphism
T:17— (lp)/ by Tz = ¢, where ¢, : P = R and ¢, (x lezz

Note that ¢, € (IP)’ since ¢, is trivially a linear functional. So we must show that ¢, is bounded. Use

the Holder inequality:
oo 1/p 0o 1/q
= <Z|xi|p> <Z|Zi|q> = llzllpllzllq

i=1 i=1

|pe(2)] =

oo
E TizZi
i=1

and therefore ||¢.|op. < ||2]|q-

Next we must show that T is bounded, norm-preserving, and bijective.

“T" norm-preserving.” We have that Tz = ¢, so then ||Tz||op. < ||2|lq and we want to show
equality. See that

E TiZi

i=1

||TZ||OP~ = HSDZHOP. = sup gz ()| = sup
z€lP,||z]|=1 z€l? [|z||=1

We want this > ||z][q = (O |zi|q)1/q. This sup must be bigger than the value at any given
z with |lz|, = 1. So it seems a natural selection for z € I is to take x; = sgn(z;) - 297!
but we see that

oo 1/p 00 1/p
]|y = (Z \Sgn(ziﬂzi)q_l\p) = <Z |Zi|q> = ||2[1¢/" < 00
i=1 =1

Nz,
and thus a better selection so that ||z, = 1 is to take z; = 2 nI(IZIII)'lZ'q . Therefore we see
Zllq
that

ITz]lop. = =

Z zizi
This completes the proof.
“T" bounded.” Trivial as || Tz||op. = ||2llq = | T||op. = 1.

“T' surjective.” We want to show that for all f € (I?)’ there is a z € % such that f = Tz(=
). This is the same as showing f(z) = ¢.(z) for all z € [P. Since f(z) = > .2, z;f(e;) and

@ (x) =372, x;z; where {e;} is the Schauder basis on [?. Thus it seems a natural selection
for z is by z; = f(e;). Since f € (IP)’ we have that it is bounded and thus

inf(ei)

By the selection of , = (sgn(f(e1))|f(e1)|?™ ", sgn(f(e2))|f(e2)|77 1, ... sgn(f(en))|f(en)]?71,0,0,...)
and x,, € [P because

n 1/p n 1/p
[@nll, = (Z\Sgn(f(ei))lf(ei)lq1\p> = <Z|f(6i)lq> <oo

=1

X, sgn(zi)|zi ! L
- 1= = ) Hq/pz' el ==l

i=1

= f@)] < 1 llop. [l




and now using the boundedness of f as an operator, we have

n n 1/p
D1 < Ufllop. - lzlly = 11fllop. <Z |f(6i)|">

i=1 i=1
and therefore

n

n 1-1/p 1/q
<Z|f(€i)|q> <N llop. = llzllg = <Z|f(€i)|q> < fllop. < 00

i=1 i=1
and therefore z € [9.
“T" injective.” Suppose T(z1) = T(z2) = T(z1) —T(22) = Opap = T(21 — 22) =
Omap = ||T(21 — 22)llop. = ||Omapllop.- Because T' is norm preserving, then ||z; — 22|y =
IT(z1 = 22)llop. = [0mapllop. = $uP,en o 252 =0 = 21— 25 = 0 by the definition of
a norm and therefore z; = z5. Therefore T is injective.

Q.E.D.

2. (1) =i

Proof. Define an isomorphism
T :1° — (I'Y by Tz = ¢, where @, : I — R defined by ¢, (z) = inzi
i=1

We want to show that T is linear, norm-preserving, injective, and bounded. First we verify that
¢, € (I'Y by showing it is a bounded linear functional. The linearity and functional parts are trivial.
Boundedness follows trivially

oo oo oo
o= (@) = D wizi| < |willz] <D Jailsup |z = |z]lso]l 2]
i—1 i—1 i—1 i€N

and therefore ||Tz[/op. = ||¢:]| < ||2]|oc shows that ¢, is bounded and thus in [*. The fact that T is
linear is trivial. Further, the norm-preserving aspect of T' verifies boundedness.

“T" norm-preserving.” We have that |[|[Tz||op. < ||2]|co s0 it suffices to show ||Tz|op. > ||2]|0o
to show equality. See that

o0
E TizZi

i=1

ITzllop. = lpzllop. = sup  Jp-(z)] =  sup
ael!, [z =1 vel! |lo|=1

If ||2]|oc = sup;en |2i] is actually obtained at zj then taking x; = d;sgn(z) it is clear that
thisis > |zx| = ||z||co. But the sup may not be obtained and thus we can construct a sequence
{in}nen C N of components of z such that z;, — [|z[l« and |z;, | > [|z]lcc — . We choose

() — (0,...,0,sgn(z;,),0,...)
N———

ith guy

and therefore the sum with (™) plugged in for = gives this is > sgn(z;,) 2, = |2i,| = ||2]leo-
Therefore > ||z]|o completes this part of the proof.

“T surjective.” We want to show that for all f € (I')’ there is a z € [*° such that f = Tz(=
¢.). But this is the same as saying f(z) = ¢.(x) for all z € ['. But if there is a Schauder
basis {e;}ien for I* then f(z) = Yoo, z;f(e;) and ¢.(z) = > ;2| @iz indicates a natural
selection for z given by z; = f(e;). We must show that z defined this way is in {*°. That is,

10



we want to show z is a bounded sequence. That is, |z;| < M for some M € R and all i € N.
Since f € (I')', it is bounded and thus for any x € I we have

Z z; f(eq)

Using this we define a sequence z(™ = (0,,...,0,sgnf(e,),0,...) and trivially see that
(|, =1 and 2™ € IP (if f(e,) = O for any e,, in the basis, then it would not be a basis
element). Thus since the left hand side holds for any = € [P we have that for each n € N,

[f(en)| < [[fllop. - 1

and since z, = f(e,) we have shown that |z,| < || f|op. for all n € N and thus sup;¢y |2i| <
I fllop. < oo shows z € I°.
“T" injective.” Suppose T(z1) = T(z2) = T(z1) — T(22) = Omap = T(z — 22) =

= [F @) < [ fllop. 112

Omap = ||T(21 — 22)llop. = ||Omapllop.- Because T' is norm preserving, then ||z; — 22|l =
1T (21 = 22)llop. = [|0mapllop. = SUPLesr 2z0 % =0 = 2 — 22 = 0 by the definition of

a norm and therefore z; = z5. Therefore T is injective.

Q.ED.

3. (co)/ = [! where ¢y C I is sequences converging to 0 and ¢y is a closed subspace and therefore Banach
with the same norm

Proof. ¢y is the space of sequences converging to 0. The dual space of ¢g is ¢f = {f : co = R |
f bounded linear functional}. We want to show that ¢j 2 (! (i.e. the two are isomorphic). Note that
¢p is a closed subspace of [ and since [*° is Banach (complete) and ¢g is closed, then ¢y must also
be Banach (complete) by Theorem 1.4-7. Further, we know that norm on ¢ is induced by [*° as the
sup-norm,

ey = sup ]

€N

For the rest of the problem we will notate this norm by ||z||.. We want to construct an isomorphism
between [! and ¢f. Define

T:1' — ¢ by T(2) = Tz = ¢, where ¢, : co — R defined by ¢, (z) = inzi
i=1

We first must show that ¢, is a bounded linear functional. It is immediate that it is a functional as
the codomain is R.

“p, linear.” This is immediate as:
o p(xty) =22 (@ity)zi = Yooy (Tizityizi) = 2oy TiZit Yoy Yizi = 0= (x)+0=(y)
o0 o0
o p.(ax) =370 (axi)z = ad,n | 1z = aup,(T)
“p, bounded.” We want to show that ||¢.|lop. < c for some constant c¢. Note that this is

equivalent to showing |, (z)| < ¢- ||z, for all z € ¢y by the definition of the operator norm.
See that

pe(2)] =

0o e} 0
=1 =1 =1
[e's) o0
5| (suplent) 1| = 3 el 1
i—1 €N i=1

oo
lzlleo Y 12il = llzllco - I12[12
i=1

IN

and therefore we have shown that |, (x)| < ||z]|1- ]|z for all x € ¢g and therefore it trivially
follows that [|¢z|lop. < |21

11



Now we must show that T is an isomorphism. That is, we need to show that T is linear, bijective, and
norm preserving.

“T linear.” This is immediate as:

o T(z1 4 22) = 2,42, But then for x € ¢,

sz zl—i—zz zixl[ ] i[ —i—:vz (2)}

i=1 i=1

= Z a:l-zi(l) + inzi@) = Z xi(z1); + Z xi(22);
i=1 i=1 i=1 i=1

= o (1) (@) = (21 + 92) (2)

Pz1+z2 (JJ)

and therefore ¢, ., () = (@2, + ¥2,) (z) for all z € ¢y and therefore they must be the
same map. That is, Q. 12, = @2y + Q2.
o T(az) = ¢q,. But then for z € ¢,

Oz (T Z xi(az); leazl =a Z xiz; = ap, () = () (2)

and since @q,(x) = (ap,)(z) for all © € cg, then they are the same map and thus
Paz = OP,.
“T norm preserving.” We want to show that ||Tz|,p. = ||z]}1 for all z € I1. For z = 0, by

the linearity of T, Tz = 0 map = ||T2||lop. = 0 and also ||z||1 = 0 by positive-definiteness.
Therefore when z = 0 clearly this is satisfied. Thus assume z # 0, z € I'. Note from
the boundedness of ¢, we showed that |¢.||op. < ||z]|1 and since Tz = ¢, this shows that
IT2]lop. < |l2]l1- See that

E Tizi

=1

ITzllop. = lpzllop. = sup  |p=(2)| = sup

z€co, ||zl co=1 z€co,||lz|leo=1

and choose =, € ¢y by x, = (sgn(z1),sgn(zz2),...,sgn(2,),0,0,...). Since z # 0, then at
least one component is non-zero. That is, 3 N € N such that zy # 0 = |sgn(zn)| =1
and thus for n > N, ||z, e = sup;ey |:Cz(")| = sup,cy [sgn(z;)| = 1. Therefore each z,, for
n > N satisfies the criteria for taking the sup and thus

n
Z TiZi = Z sgn(zn)z;
i=1 i=1

n

:Z|Zl| YV n>N

i=1

ITzllop. = sup ™z

zEco,||@]loo=1

and therefore

o0
IT=lop. 2 Y l2il = ll=Ils
=1

Thus we have shown that ||Tz||,p. = ||z||1 by showing that || Tz||op. < ||2]|1 and ||Tz||op. >
1]}

“T" injective.” Suppose T(z1) = T(z2) = T(z1) —T(22) = Opap = T(21 — 22) =
Omap = ||IT(#1 — 22)llop. = ||Omapllop.- Because T is norm preserving, then ||z — 22|l =
1T (21 = 22)llop. = 10mapllop. = SUPLecy 220 W =0 = 21 — 22 = 0 by the definition

of a norm and therefore z; = z5. Therefore T is injective.

“T surjective.” We want to show that V f € ¢) 3 z € [! such that Tz = f. But note that
Tz = ¢, and thus we want to show that ¢, = f. But this simply means that we want to
show that ¢, (z) = f(z) for all z € ¢y. But note that if we have a Schauder basis on ¢g, then
we can write f(z) =Y o, z; f(e;) and we knew a priori that ¢, (z) = > .2 ;2;. Therefore,

12



we see the natural selection of z; = f(e;) to satisfy this surjectivity. Therefore we must show
the following: ¢y has a Schauder basis, construct a Schauder basis and show that any = € ¢g
can be written as infinite sum of this Schauder basis’ elements, and show that z € I! by our
definition.

“co has S. basis € construction of S. basis.” Define
e; = (0,0,...,0,0, 1 ,0,0,...)

——
ith component

which is clearly in ¢y by construction. Therefore, {e;};en C ¢p. In order to show this is a
Schauder basis for ¢, we must show that V 2 € ¢o 3! {z;} C R such that = Y .2, xe;.
That is, ., xie; — x as n 1 co. This is easy to show as:

n
inei—x = |[(z1,22,...,20,0,0,...) — (21, 22,...)]
i=1
= [|(0,0,...,0,Zpt1,Tnt2,...)|| = sup |z
i>n+1

which converges to 0 as n 1 oo since x € ¢g. Then [|>°1 | z;e; — z|| — 0 as n 1 oo and thus
Z?:l xie; — x as n T co. Therefore, each x € ¢y can be written as an infinite combination
of this Schauder basis we have constructed.

“2 € 11.” We naturally define z by z; = f(e;) where e; is defined as above. We want to
show that z € [*. That is, we want to show that ||z||; < oo which is the same as showing
Yoo 1f(ei)] < oo. Note that since f € ¢, then f is a bounded linear functional and therefore

Z i f(ei)
i=1

Since this holds for all x € ¢, if we choose z,, = (sgn(f(e1)),sgn(f(e2)),...,sgn(f(en)),0,0,...),
then clearly x,, € ¢y and further ||z, |lcc = 1. Then

Yowif(e)] = D2l fler)
=1 =1

and then we have that

= [f@ < fllop. - [2lloc V2 €co

>

ngn(f(ei))f(ei) =

n

Do Ife)] <

=1

Z v f(e:)

=1

<[ fllop. - 1 VneN

and thus .
Z If(e)] < [|f]lop. < oc since f € ¢

=1

Therefore we have shown what we wanted and thus z € [*.

Q.E.D.
Section 3.1. Inner Product Space. Hilbert Space

Inner product space/inner product. X is an inner product space if X is a normed vector space with
norm induced from an inner product. An inner product satisfies {-,-) : X x X - K

13



1. Bilinear (with respect to conjugacy). That is,

<OZZE1 +O[I2,y> = O[<Ilay> +B<I27y>
(T, oy + By2) = alz,y1) + B(x, y2)
2. Conjugate-symmetric
(z,y) = (y,z)

3. Positive-definite
(,z) >0and (z,2) =0 < =0
Norm induced by inner product. ||z| = /(z, z)
Property. Any norm induced from an inner product satisfies ||z + y||* + [z — y[> = 2 (||z[|* + [l¥]?).

Not an inner product space. C[a,b] with || f[| = sup,c(, ) | f(t)] needs to satisfy ||f + gl|* +[|f — g[|* =
2 (IIf1* + lgll?). Can construct functions making this false.

Hilbert space. Complete inner product space.

Orthogonal. z L y <= (z,y) =0

Section 3.2. Further Properties of Inner Product Spaces

Cauchy-Schwartz inequality. |(x,y)| < ||z| - ||y|| and equality holds only if y = ¢ - « for some ¢ € R.

Proof. See that
(x4 oy, x4+ ay) = ||lz|* + a(z,y) + afz,y) + |a?[ly?

for any a € K. By positive-definiteness we have that this quantity must be non-negative. Choose o« = t-{x, y)
and thus this become
= Jlz)|® + 2t |z, )] + [ (2, y) Plly |

which is quadratic in t. Since this quantity is non-negative then there are 0 or 1 roots and so we have the
coefficients b2 — 4ac < 0. Thus,

4% (z, y)| " =4l )" @, ) Pllyl* < 0 = 4%, y)* (|2, 9)]* = [2*[lyl]*) <0 <= (@, y)=[=[*[y]* <0

and the inequality immediately follows.

Q.E.D.
Continuity of inner product. =, — z and y, =y = (zp,yn) — (z,9).
Proof. See that
|<$n7yn> - <$/y>| = |<xn7yn> - <xny> + <xn7y> - <:E7y>|
2, Yn — y) — ({20 — 2, 9))]
< N@nsyn — )|+ (2w — 2, 9)]
< ||| yn =yl + llzn — 2| [y
—— —~—
bounded b/c x, conv. fized
— Oasntoo
Q.E.D.
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Completion of Inner Product Spaces

Completion of metric spaces. Recall X is a metric space = 3! X complete metric space such that
I W C X dense and W = X (isometric, i.e. 3T : W — X isometric (bijective, metric preserving)).

Theorem for inner products. X is an inner product space = 3! H Hilbert space such that 3 W C H
and W = X (isomorphic, i.e. 3T : W fL) X that preserves inner product).
Proof. Define ( & , ¢ )g =limyoo(@n,yn) on H = {Z = [{z,}] | {zn} Cauchy in X} with equiva-
~ =~

=[zn}] =[{y.}]
lency classes [{x,}] structured by equivalence relation {x,} ~ {yn} < d(zn,yn) = 0 where d induced by
norm induced by inner product. We must show this.
We must show that 1) (-, )z is well-defined, 2) the limit exists, 3) it defines an inner product, and 4) (-, ") g

induces d.

1. Suppose {x,},{z),} € & and {yn},{y.,} € §. Note a prior that {z,} ~{ «},} and {y,} ~ {y,}. We
WTS limy, 00 (Tns Yn) = limy, oo (2),, 4, ). See that

(@, yn) — (@ yn) | < Nl — 2]l vl + 2n - 1y =yl — 0
since both ||y’ || and ||z’ || are bounded (since {z’ "1 converge).
yn n nlo y’ﬂ, g

2. Note that (z,, yn) is a sequence in K (R or C, both complete) and thus if it is Cauchy then it converges.
We'll show it is Cauchy. See that

Zns Yn) = (Tm, ¥m)|l = KTn = Ty Yn) + (T Un — Ym)| < KT — Zons Yn )|+ [Ty Yo — Ym) |
|20 — zm |l ynll + [|2all - lyn — ymll — 0O

IN

since {||yn|l}, {||zx||} are both bounded sequences.

3. Only difficult thing to check is positive definiteness:

=0 < {z,} ~{(0,0,...)} <= lim d(z,,0)=0 < lim (z,,2,) =0 < lim (Z,3)g =0

n—oo n—oo n—oo
4. Does this inner product induce d?
diy(@,9) = &=l = V(& §)m =/ i (2 = yn, 2n = yn) = lim /{@n =y, 20 — yn)
= lim g —yall = lim d(zn,yn) = d(2,9)

Last we need to show that there is an isomorphism 7' : X — W C H. Construct it by Tz = [(z,z,...)].
Bijective? by metric space completion. Linear? by metric space completion. Need to check norm preserving,
easy:
<Tx7Ty>H = lim <Iay>X = <Iay>X
n—oo

Q.E.D.
Theorem (subspace). Let Y be a subspace of a Hilbert space H. Then:

e Y complete <= Y closed in H
e dimY < oo = Y complete

e H separable =— Y separable
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Section 3.3. Orthogonal Complements and Direct Sums

Optimization theorem. Let X be an inner product space and M C X closed and complete. Then
Vxe X, 3 ye M such that d(z, M) = d(x,y).

Proof. Let z € X and § = d(x, M) = inf,cpr d(z,2). If § = 0 then trivial because then we would have a
sequence {z,} C M such that z, — y with y satisfying d(z,y) = 0. But then y € M because M closed.

Assume 6 > 0. Then 3 {y,} C M such that d(x,y,) = d as n T co. We WTS {y,} is Cauchy (and since M
is complete, then y,, — y € Y'). Since X is an inner product space we have for A, B € X

IA+ BII? +[|A = BII* = 2 (JIAI* + | B]|*)

and taking A =z — y, and B = & — y,,. (Note that trivially ||z — y,|| — 0 and ||z — ym| — ¢.) Then

Yn T Y
o =l + 4o = 22522 =2 (= gl + o = )
and thus
Yn Ty
o =l =2 (= gl + o = yl?) = o = 2252

Since ||z — yn|| — 9, the
Ve>0, 3N; € N such that H|:C—yn||2—52}<§ifn2N1
= ||:v—yn|\2<62+§ifn2Nl

Noting that W‘% is in M since it is a convex combination of two elements of M and M is convex, then

2 2 zEM 2

Thus,

lyn = yml® < 20z =yl + 2]l — yum|* — 462

< 2(§+52)+2(§+62)—462

€
= §<eifn,m2N1

Therefore {y,} is Cauchy and converges to a y € M.
Uniqueness? Assume that 3 y1,y2 € M such that d(z,y1) = d(x, y2) = §. By the paralellogram identity,

2

g YntYm < 462452 =0

2

Y1+ Y2
ly1—y2||+4 -

H 2 (o= gl + o = gol®) — lr—sall? =462—4Hw

Q.ED.

Corollary. Y C X is complete subspace by the above givesusV z € X, 3!y € Y such that ||z—y| = d(z,Y).
Then x —y LY.

Proof. Assume for contradiction that z —y £ Y. That is, 3 y; € Y such that (x —y,y1) # 0. Let u = z —y.
Then (u,u) = ||z — y||>. Note that since y was the mimizer for the distance between x and M that if we can
find a z € Y such that ||z — 2||? < ||z — y||* we have a contradiction. We take a z € Y of the form y + oy
for some o € K. Then

I? I

lz = (5 + ay)II* = lu — agn|* = (u— ayr,u— ayn) = [|ull® — &u,51) — ofu,y1) + ol
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and if we take o = $&¥1) — 5 — <uy”12> then the above is

Iyl Ty
H'r _ y||2 _ |<u7y1>|2
l[ya[?
>0 by hyp.
< o —yl?

giving a contradiction.
Q.E.D.

Direct sum corollary. If H is Hilbert, then Y C H closed subspace ( = complete) = H =Y @Y+
where Y+ = othogonal complement of Y = {z € H |z L Y}.

Claim. Such a decomposition of any element in H is unique.
Theorem. Y is a closed subspace of a Hilbert space H <= Y =YL

Proof. “ = ” Suppose Y is a closed in H. See that Y C Y1+ becausey € Y = y L Y+ = y e (Y1),
Thus we will show Y O Y1+, Let € Y-+, Then since € H we have by Theorem 3.4-4 that z =y + 2
for y € Y C Y1+ and for some 2z € Y (since H =Y ® Y1), Since Y1+ is a vector space and x € Y1+
then z = 2 —y € Y+ since both z and y are in Y+ and thus using previously that z € Y, we must
have that z L 2 = (z,2) =0 = z = 0 by the positive-definiteness of the inner product on H. Then
r=y = €Y. Thus Y D Y and therefore Y = YLt

“e—=7” Suppose Y = Y+ We will use Theorem 3.2-4, that a subspace Y of H is complete if and only
if it is closed in H. Suppose {x,}nen C Y is a Cauchy sequence in Y. Then it is a Cauchy sequence in
H since Y C H and therefore it converges. Thus z, — = € H. But since {z,}ney C Y = Y11 then
r, LYt = (2,,y)=0foralln € Nand y € Y'. We want to show that = L Y, which would directly
imply that z € Y+ =Y and show the completeness of Y. See that for arbitrary y € Y,

(o) =(lim wny) = lim (way) = lim 0=0

n—o00 n— 00 n— 00
cont. of in. pd.

This shows that L Y+ = z € Y+ =Y. Therefore, any Cauchy sequence in Y converges in Y and
thus Y is complete. Since it is a subspace of a Hilbert space then it must be closed.

Q.E.D.

Lemma. Let M C H be nonempty and H be Hilbert. spanM = H <= M* = {0}.
Proof. Suppose M C H is nonempty and H is Hilbert.

“ = 7 Assume spanM = H. Let x € M+ and since M+ C H = spanM = 3 {y,} C spanM such that
Yn —> T.

dim M o dim M =
z,z) = lim (x,y,) = lim ( x, a;m; ) = lim ;" (z,m;) =0
o) = fm o) = i (3 o) 3 o e

n—o00 n— o0
=0

and therefore z = 0 = M+ = {0}.

“<="Let Y =spanM C H which is a closed subspace. Then H =Y &Y+ = (spanM) & (spanM)L. Then
x € H can be written as * = y + z where y € Y and z € Y. We want to show that z = 0 in order to show
that z =y €Y = x €Y and then H CY. See that M CY = Y+ C M+ = {0} and thus z = 0.

Q.ED.
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Section 3.4. Orthonormal Sets and Sequences

Orthogonal set. {x,}qaer is orthogonal <= z, L zg forall a,f € I,a # 8
Orthonormal set. {z,}acr is orthonormal <= z, L zg for all a, 8 € I,a # B and (zq,z8) = dap.

Pythagorean relation. If z and y are orthonormal elements then trivially (z,y) = 0 and further ||z +y||*> =
2] + llyll*.

Lemma (linear independence). An orthonormal set is linearly independent.

Proof. Consider
arer + -+ ane, =0

and then take ()", awer,e;) =, ar(er, e;) = a; =0.
Q.E.D.

Representation of elements. If {e;};=1,. , is an orthonormal set in X then for any z € X we already
knew we could write X as a linear combination of these elements, but we further obtain

Bessel’s inequality. For any x € X,
n

> lwen < l=)?
i=1
Proof. If y € Y,, = = —y L y and thus
l2]* = llyll* + l|l= — yI?

and using y = Y1, (z,e;)e;. Y, =span{es, ..., en}.

Gram-Schmidt Process

Can we construct an orthonormal set from a linearly independent set? Let {x;};=1,...» be linearly indepen-

dent.

.....

Z1
€1 =
[[1]]
Psp(zl)wz
—_———
T2 — <$27€1>€1
€y =
22 — (22, €1)en]
zp — 0 g, e)es
CL =

| = S e
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