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Earlier Material

Example Banach spaces.

• Rn and Cn with norm ‖x‖2

• lp with norm ‖x‖p

• l∞ with norm ‖x‖ = supi∈N |xi|

• C[a, b] with norm ‖x‖ = maxt∈[a,b] |x(t)|

Example incomplete normed vector spaces.

• Q with norm |x|

• P[a, b] (polynomials) with norm ‖x‖ = maxt∈[a,b] |x(t)|

• C[a, b] with norm ‖x‖ =
´ b
a |x(t)|dt

– Completion of this is given by L2[a, b] =
{

f : [a, b] → R |
´ b
a |f(t)|2dt < ∞

}

Metrics obtained from norms. Must satisfy that d(x + a, y + a) = d(x, y) for all x, y, a ∈ X and
d(αx, αy) = |α| · d(x, y) for all x, y ∈ X and α ∈ K.

Section 2.3. Further Properties of Normed Spaces

Theorem (subspace completeness). A subspace Y of a Banach space X is complete if and only if the
set Y is closed in X .

Convergent sequence. xn → x in X if and oly if ‖xn − x‖ → 0 as n ↑ ∞.

Convergent series. Let (xn) be a sequence and sn = x1 + · · · + xn. If ‖sn − s‖ → 0 for some s, then
∑∞

i=1 xi converges to s.

Absoulte convergence. Series obtained from (xn) absolutely converges if and only if ‖x1‖ + ‖x2‖ + · · ·
converges.

Remark. Absolute convergence =⇒ convergence if and only if X is Banach.
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Completion of Arbitrary Normed Space

Section 2.4. Finite Dimensional Normed Spaces

Lemma. If {ei}i=1,...,n is a linearly independent set in X , then ∃ M, c such that

c

n
∑

i=1

|αi| ≤

∥
∥
∥
∥
∥

n
∑

i=1

αiei

∥
∥
∥
∥
∥
≤ M

n
∑

i=1

|αi|

Proof. Note that if
∑n

i=1 |αi| = 0 then this is vacuously satisfied. Assume that
∑n

i=1 |αi| *= 0.

First see that for M = maxi=1,...,n ‖ei‖ and the triangle inequality that

∥
∥
∥
∥
∥

n
∑

i=1

αiei

∥
∥
∥
∥
∥
≤

n
∑

i=1

‖αiei‖ =
n
∑

i=1

|αi| ‖ei‖ ≤ M

n
∑

i=1

|αi|

Note that if

c

n
∑

i=1

|αi| ≤

∥
∥
∥
∥
∥

n
∑

i=1

αiei

∥
∥
∥
∥
∥

=⇒ c ≤

∥
∥
∥
∥
∥

n
∑

i=1

αi
∑n

i=1 |αi|
ei

∥
∥
∥
∥
∥

and thus defining βi = αi∑n
i=1 |αi|

we know that
∑n

i=1 |βi| = 1. Thus we equivalently may show that

‖
∑n

i=1 βiei‖ ≥ c > 0 for any {βi}i=1,...,n satisfying
∑n

i=1 |βi| = 1. Let M = {x = (x1, . . . , xn) ∈ Kn |
∑n

i=1 |xi| = 1}.

For contradiction assume this is not true. That is, there is a sequence
{

β(m)
}

m∈N
where β(m) =

{

β
(m)
i

}

i=1,...,n

satisfying
∥
∥
∥

∑n
i=1 β

(m)
i ei

∥
∥
∥ → 0 as m ↑ ∞ with

∑n
i=1

∣
∣
∣β

(m)
i

∣
∣
∣ = 1 for all m ∈ N. Note that this last condition

implies that
∣
∣
∣β

(m)
i

∣
∣
∣ ≤ 1 for all i = 1, . . . , n and m ∈ N. Then by the Bolzano-Wieirstrass Theorem we

have that β(m) has a convergent subsequence β(mk) → γ ∈ M (it is in M because M is closed). Thus
∑n

i=1 |γi| = 1. But note that

n
∑

i=1

β
(m)
i ei →

n
∑

i=1

γei as m ↑ ∞ and
n
∑

i=1

β
(m)
i ei → 0 as m ↑ ∞

and this directly implies that
∑n

i=1 γei = 0 =⇒ γi = 0 for all i = 1, . . . , n by the linear independence of
{ei}i=1,...,n. This contradicts that fact that

∑n
i=1 |γi| = 1.

∴ ∃ c > 0 such that c
n
∑

i=1

|αi| ≤

∥
∥
∥
∥
∥

n
∑

i=1

αiei

∥
∥
∥
∥
∥

Q.E.D.

Completeness of Finite Dimensional Normed Vector Spaces

Let X be a finite dimensional subspace of V , a normed vector space. Then X is complete.

Proof. Let dimX = d =⇒ X has a Hamel basis {ei}i=1,...,d. Notice a priori we have ∃ c > 0 such that

c

d
∑

i=1

|αi| ≤

∥
∥
∥
∥
∥

d
∑

i=1

αiei

∥
∥
∥
∥
∥

∀ α = (αi) ∈ Kd
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Let {xn}n∈N ⊆ X be Cauchy and thus

∀ ε > 0, ∃ N ∈ N such that ‖xn − xm‖ < ε · c if n,m ≥ N

We can write each xn as

xn =
d∑

i=1

x
(n)
i ei for some x

(n)
i ∈ K

Thus

‖xn − xm‖ < ε · c =⇒ c ·
d

∑

i=1

∣
∣
∣x

(n)
i − x

(m)
i

∣
∣
∣ ≤

∥
∥
∥
∥
∥

d
∑

i=1

(

x
(n)
i − x

(m)
i

)

ei

∥
∥
∥
∥
∥
< ε · c

=⇒
d

∑

i=1

∣
∣
∣x

(n)
i − x

(m)
i

∣
∣
∣ < ε

and therefore for each i = 1, . . . , d we have
∣
∣
∣x

(n)
i − x

(m)
i

∣
∣
∣ < ε and therefore each

{

x
(n)
i

}

n∈N

is a Cauchy

sequence in K for all i = 1, . . . , d and since K is complete, we thus have that each x
(n)
i → ηi ∈ K for each

i = 1, . . . , d.

We claim that xn → x =
∑d

i=1 ηiei. See that

‖xi − x‖ =

∥
∥
∥
∥
∥

d
∑

i=1

(

x
(n)
i − ηi

)

ei

∥
∥
∥
∥
∥
≤ M ·

d
∑

i=1

∣
∣
∣x

(n)
i − ηi

∣
∣
∣ → 0 as n ↑ ∞

and this completes the proof.

Q.E.D.

Theorem. If X is a finite dimensional normed vector space with norms ‖ · ‖1, ‖ · ‖2 and basis {ei}i=1,...,d,
then ∃ a, b ≥ 0 such that a · ‖x‖2 ≤ ‖x‖1 ≤ b · ‖x‖2.

Proof. Note that for all x ∈ X and for k = 1, 2 we have ∃ M, c > 0 such that

ck ·
d

∑

i=1

|xi| ≤

∥
∥
∥
∥
∥

d
∑

i=1

xiei

∥
∥
∥
∥
∥
k

︸ ︷︷ ︸

‖x‖k

≤ Mk ·
d

∑

i=1

|xi|

Then
c1
M2

‖x‖2 ≤
M2

M2
c1

d
∑

i=1

|xi| ≤ ‖x‖1 ≤ M1

d
∑

i=1

|xi| ·
c2
c2

≤
M1

c2
‖x‖2

Section 2.5. Compactness and Finite Dimension

Compactness. If Y ⊆ (X, d) a metric space, then K compact ⇐⇒ all sequences in K have a convergent
subsequence (in K).

Theorem. In a finite dimsional normed space X , any M ⊆ X is compact if and only if M is closed and
bounded.

Proof. “ =⇒ ” Let x ∈ M̄ =⇒ ∃ xn → x. M is compact so it has a convergent subsequence, converging
in M , and thus x ∈ M =⇒ M̄ ⊆ M and a prior we knew M ⊆ M̄ and thus M = M̄ and M is closed. For
contradiction assume M is not bounded. Then ∃ (yn) such that for any fixed b ∈ M we have d(yn, b) > n
for all n ∈ N. But then this could not have a convergent subsequence.
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“⇐=” Let M ⊆ X be closed and bounded. Suppose dimX = n and {ei}i=1,...,n is a basis for X . Let (xm)
be a sequence in M and thus for fixed m ∈ N we have that

xm = x
(m)
1 e1 + · · ·+ x(m)

n en

and since M is bounded then so is (xm) and thus ‖xm‖ ≤ k for some k ∈ K for all m ∈ N. Then by a
previous observation,

k ≥ ‖xm‖ =

∥
∥
∥
∥
∥

n
∑

i=1

x
(m)
i ei

∥
∥
∥
∥
∥
≥ c ·

n
∑

i=1

∣
∣
∣x

(m)
i

∣
∣
∣ ∀ m ∈ N

Then for fixed i,
{

x
(m)
i

}

m∈N

is bounded in K and thus each x
(mk)
i → ηi as mk ↑ ∞ for fixed i = 1, . . . , n by

the Bolzano-Wieirstrass Theorem. I claim that xmk → z =
∑n

i=1 ηiei. See that

‖xmk − z‖ =

∥
∥
∥
∥
∥

n
∑

i=1

x
(mk)
i ei −

n
∑

i=1

ηiei

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

n
∑

i=1

(

x
(mk)
i − ηi

)

ei

∥
∥
∥
∥
∥
≤ M

n
∑

i=1

∣
∣
∣x

(mk)
i − ηi

∣
∣
∣ → 0

completing the proof. Further since M is closed and {xmk} ⊆ M then z ∈ M .

Q.E.D.

Riesz Lemma

Let Y ! X (normed vector space) be a closed subspace. Then ∀ θ ∈ (0, 1), ∃ z ∈ S(0, 1) ⊆ X (unit vector)
such that d(z, Y ) > θ.

Proof. Let x0 ∈ X − Y . Then
d = inf

y∈Y
d(z, y) = d(x0, Y ) > 0

Note that this must be strictly positive as otherwise we would have infy∈Y d(z, y) = 0 =⇒ ∃ {yn} ⊆ Y such
that d(x0, yn) → 0 and then yn → x0 but x0 *∈ Y contradicts closedness.

Trivially see that for all 0 < θ < 1 that 1
θ > 1 and thus d < 1

θd =⇒ infy∈Y d(x0, y) <
1
θd =⇒ ∃y0 ∈ Y

such that d < d(x0, y0)
︸ ︷︷ ︸

‖x0−y0‖

< 1
θd =⇒ θ‖x0 − y0‖ < d.

Take z = x0−y0

‖x0−y0‖
and let y ∈ Y . Then

‖z − y‖ =

∥
∥
∥
∥

x0 − y0
‖x0 − y0‖

− y

∥
∥
∥
∥
=

1

‖x0 − y0‖
‖x0 − (y0 + y‖x0 + y0‖)

︸ ︷︷ ︸

∈Y

‖

=
1

‖x0 − y0‖
‖x0 − y′‖ for some y′ ∈ Y

≥
1

‖x0 − y0‖
d

Thus

d(z, Y ) = inf
y∈Y

d(z, y) ≥
d

‖x0 − y0‖
>

θ‖x0 − y0‖

‖x0 − y0‖
= θ

Q.E.D.
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Applications of Riesz Lemma

First one. X is a normed vector space. B̃(0, 1) is compact =⇒ dimX < ∞.

Proof. Assume X is a normed vector space with B̃(0, 1) compact. Assume for contradiction that dimX = ∞.
Let x1 ∈ X, x1 *= 0. Then

M1 = span{x1} ! X is a finite dimensional subspace and thus closed

=⇒ ∃ x2 ∈ S(0, 1) ! B̃(0, 1) " d(x2,M1) >
1

2
by R. Lemma

M2 = span{x1, x2} ! X =⇒ ∃ x3 ∈ S(0, 1) " d(x3,M2) >
1

2
...

Mn = span{x1, . . . , xn} ! X =⇒ · · ·
...

Now consider {xn} ⊆ S(0, 1) ! B̃(0, 1) compact =⇒ ∃ {xnk} ⊆ S(0, 1) such that xnk → y ∈ B̃(0, 1). Note
that then {xnk} is Cauchy because it converges and thus

∀ ε > 0, ∃ N ∈ N such that ‖xn − xm‖ < ε if n,m ≥ N

WLOG let m > n. Then xn ∈ Mm−1 = span{x1, . . . , xm−1} =⇒ ‖xn − xm‖ ≥ d(xm,Mm−1) > 1
2 . But

then we have that for all ε > 0,
1

2
< ‖xn − xm‖ < ε

giving our contradiction.

Q.E.D.

Second one. Y ! X subspace and ∃ 0 < r < 1 such that d(x, Y ) < r for all x ∈ S(0, 1) =⇒ Y dense in X
(i.e. Ȳ = X).

Proof. Suppose for contradiction that Y is not dense in X . That is, Ȳ ! X . Using the Riesz lemma with
r = θ =⇒ ∃ x0 ∈ S(0, 1) such that d(x0, Ȳ ) > r. But r < d(x0, Ȳ ) ≤ d(x0, y) < r for all y ∈ Y =⇒ r < r
giving our contradiction.

Q.E.D.

Section 2.6. Linear Operators

Linear operator. A linear operator T is an operator T : X → Y with respective norms ‖ · ‖X , ‖ · ‖Y where
x /→ Tx and assume X and Y have scalar fields. T satisfies T (x+ y) = Tx+Ty and T (αx) = αTx. We also
define D(T ) to be the domain of T , R(T ) to be the range of T , and N (T ) denotes the null space of T given
by N (T ) = kerT = {x ∈ X | Tx = 0}.

Examples.

• Identity operator. IX : X → X defined by IXx = x.

• Zero operator. 0 : X → Y defined by 0x = x.

• Differentiation operator. Let X be the set of polynomials on [a, b]. Define a linear operator T by
Tx(t) = x′(t), T : X → X .
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• Integration operators. A linear operator T : C[a, b] → C[a, b] defined by Tx(t) =
´ t
a x(τ)dτ .

• Multiplication by t. A linear operator T : C[a, b] → C[a, b] defined by Tx(t) = tx(t).

Theorem (range and null space). Let T be a linear operator. Then

• The range R(T ) is a vector space.

• If dimD(T ) = n < ∞, then D(T ) ≤ n.

• The null space N (T ) is a vector space.

Theorem (inverse operator). Let X,Y be vector spaces, both with the same scalar field K. Let T : X →
Y be a linear operator with domain D(T ) ⊆ X and range R(T ) ⊆ Y . Then

• The inverse T−1 : R(T ) → D(T ) exists if and only if

Tx = 0 =⇒ x = 0

• If T−1 exists, it is a linear operator.

• If dimD(T ) = n < ∞ and T−1 exists, then dimR(T ) = dimD(T ).

Section 2.7. Bounded and Continuous Linear Operators

Norm of linear operator. T : X → Y has norm given by ‖T ‖op. = supx∈X,x &=0
‖Tx‖Y

‖x‖X
< ∞.

Bounded linear operator. A bounded linear operator has ‖T ‖op. < ∞ and further note this directly
implies that ‖Tx‖Y ≤ c · ‖x‖X for some c ≥ 0 (namely c = ‖T ‖op.).

Lemma. We may equivalently write ‖T ‖ = supx∈X,‖x‖=1 ‖Tx‖.

Examples.

• Identity operator I is bounded and have ‖I‖ = 1.

• Zero operator 0 is bounded and has ‖0‖ = 0.

• Differential operator T is unbounded (consider polynomials xn(t) = tn.

• Integral operator T is linear and bounded when Tx(t) =
´ 1
0 k(t, τ)x(τ)dτ and |k(t, τ)| ≤ k0 for all

(t, τ) ∈ [0, 1]× [0, 1] and ‖T ‖op. = k0.

• Matrix operator T : Rn → Rr and efined for some r × n matrix A by Tx = Ax is bounded and have

‖T ‖op. =
√
∑r

i=1

∑n
j=1 a

2
ij .

Theorem (finite dimension). If a normed space X is finite dimensional, then every linear operator on X
is bounded.

Proof. Suppose dimX = n and thus X has Hamel basis given by {ei}i=1,...,n and thus for any x ∈ X we
can write x =

∑n
i=1 xiei. Then

‖Tx‖ =

∥
∥
∥
∥
∥

n
∑

i=1

xiTei

∥
∥
∥
∥
∥
≤

n
∑

i=1

|xi|‖Tei‖ ≤ max
i=1,...,n

‖Tei‖
n
∑

i=1

|xi|
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We know that
n
∑

i=1

|xi| ≤
1

c

∥
∥
∥
∥
∥

n
∑

i=1

xiei

∥
∥
∥
∥
∥
=

1

c
‖x‖

and therefore

‖Tx‖ ≤

(
1

c
max

i=1,...,n
‖Tei‖

)

‖x‖

Q.E.D.

Theorem (continuity and boundedness). Let T : X → Y be a linear operator where X,Y are normed
spaces. Then

• T continuous if and only if T is bounded.

• If T is continuous at a single point then it is continuous everywhere.

Proof. “⇐=” Assume T is bounded. Let ε > 0 and ‖x−x0‖ < ε
‖T‖ and thus ‖Tx−Tx0‖ ≤ ‖T ‖‖x−x0‖ < ε.

“ =⇒ ” Assume T continuous at x0 ∈ X and thus ∀ ε > 0, ∃ δ > 0 such that ‖Tx− Tx0‖ ≤ ε for all x ∈ X
with ‖x− x0‖ ≤ δ. Take any y ∈ X and let

x = x0 +
δ

‖y‖
y =⇒ x− x0 =

δ

‖y‖
y =⇒ ‖x− x0‖ = δ

Then

‖Tx− Tx0‖ = ‖T (x− x0)‖ =

∥
∥
∥
∥
T

(
δ

‖y‖
y

)∥
∥
∥
∥
=

δ

‖y‖
‖Ty‖

and thus since δ
‖y‖‖Ty‖ = ‖Tx− Tx0‖ ≤ ε =⇒ ‖Ty‖ ≤ ε

δ‖y‖ and thus T is bounded with ‖T ‖op. = ε
δ .

Continuity of T at a point implies boundedness of T by the second part above, implying continuity.

Q.E.D.

Theorem (bounded linear extension). Let T : D(T ) → Y be a bounded linear operator, where D(T ) ⊆
X (normed space) and Y is Banach space. Then T has an extension

T̄ : D(T ) → Y

where T̄ is a bounded linear operator of norm ‖T̄‖ = ‖T ‖.

Proof. Consider x ∈ D(T ) =⇒ ∃ {xn} ⊆ D(T ) such that xn → x. T is linear and bounded so

‖Txn − Txm‖ = ‖T (xn − xm)‖ ≤ ‖T ‖‖xn − xm‖ → 0 =⇒ {Txn}n∈N ⊆ R(T ) is Cauchy

Since Y complete then Txn → y ∈ Y . Thus we have a definition for x ∈ D(T ), T̄ x = y. Is this well-defined?
Let {xn}, {yn} ⊆D (T ) such that xn → x and yn → x and thus we WTS Tx = Ty =⇒ limn→∞ Txn =
limn→∞ Tyn. But Txn − Tyn = T (xn − yn) → T 0 = 0 =⇒ Txn = Tyn for all n ∈ N.

Next we WTS that 1) T̄ linear, 2) T̄ bounded, 3) T̄ |D(T )= T , 4) ‖T̄‖ = ‖T ‖. all are trivial.

Q.E.D.
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Section 2.8. Linear Functionals

Section 2.9 Linear Operators and Functionals on Finite Dimensional

Spaces

Unique representation of linear operators. Let T : X → Y where X,Y are normed vector spaces with
respective bases {ei}i=1,...,n ⊆ X and {bi}i=1,...,r ⊆ Y . For any x ∈ X we have x =

∑n
i=1 xiei and it has the

image y = Tx =
∑n

i=1 xiTei and thus see that yk = Tek for i = 1, . . . , r. Further, we may write each y ∈ Y
as y =

∑r
i=1 yibj and thus y =

∑n
i=1 xiTei =

∑n
i=1 xi

∑r
j=1 τjibj =

∑r
j=1 (

∑n
i=1 τjixi) bj .

Section 2.10. Normed Spaces of Operators. Dual Space

Space of bounded linear operators. X is a normed vector space, and Y is a Banach space. Then
B(X,Y ) = {T : X → Y | T bounded and linear} is Banach.

Proof. Let {Tn}n∈N ⊆ B(X,Y ) be Cauchy. WTS Tn
‖·‖op.
−−−−→ T ∈ B(X,Y ). We have

∀ ε > 0, ∃ Nε ∈ N such that ‖Tn − Tm‖op. <
ε

2
if n,m ≥ Nε

and then for any fixed x ∈ X we can also have

∀ ε > 0, ∃ Nx,ε ∈ N such that ‖Tn − Tm‖op. <
ε

2‖x‖
if n,m ≥ Nx,ε

and then we have that {Tnx}n∈N ⊆ Y is Cauchy since

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖op.‖x‖ <
ε

2‖x‖
‖x‖ =

ε

2
< ε if n,m ≥ Nx,ε

Then we have that Tnx → Tx ∈ Y as n ↑ ∞. Thus we have a natural definition for Tx = limn→∞ Tnx for
all x ∈ X . We want to show T ∈ B(X,Y ). I.e. we want to show that T is linear and bounded. T is linear
is trivial. We’ll show the boundedness of T .

See that {Tn} Cauchy =⇒ {‖Tn‖} ⊆ R is Cauchy and thus ‖Tn‖ → α ∈ R since R is complete. See that

‖Tnx‖ ≤ ‖Tn‖‖x‖ =⇒ lim
n→∞

‖Tnx‖ ≤ lim
n→∞

‖Tn‖‖x‖ =⇒
︸ ︷︷ ︸

cont. of ‖·‖

‖Tx‖ ≤ α‖x‖

showing T is bounded.

Last we must show that Tn → T , that is ‖Tn − T ‖ → 0 as n ↑ ∞. Note that since ‖Tn − T ‖ =
supx∈X,‖x‖=1 ‖Tnx − Tx‖ and thus it suffices to show that for all ‖x‖ = 1 we have ‖Tnx − Tx‖ → 0.
See that

‖Tnx− Tx‖ =
∥
∥
∥Tnx− lim

m→∞
Tmx

∥
∥
∥ =

︸︷︷︸

cont. of ‖·‖

lim
m→∞

‖Tnx− Tmx‖ ≤ lim
m→∞

‖Tn − Tm‖op. · ‖x‖
︸︷︷︸

=1

= lim
m→∞

‖Tn − Tm‖op. < lim
m→∞

ε

2
if n,m ≥ Nε

< ε

and m ≥ Nε trivially since m ↑ ∞. Thus we have shown that

∀ ε > 0, ‖Tnx− Tx‖ < ε if n ≥ Nε

and thus Tn → T follows.
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Dual Spaces (up to isomorphism)

1. (lp)′ ∼= lq for 1
p + 1

q = 1 with 1 < p, q < ∞

Proof. We will construct an isomorphism

T : lq → (lp)′ by Tz = ϕz where ϕz : lp → R and ϕz(x) =
∞
∑

i=1

xizi

Note that ϕz ∈ (lp)′ since ϕz is trivially a linear functional. So we must show that ϕz is bounded. Use
the Holder inequality:

|ϕz(x)| =

∣
∣
∣
∣
∣

∞
∑

i=1

xizi

∣
∣
∣
∣
∣
≤

(
∞
∑

i=1

|xi|
p

)1/p ( ∞
∑

i=1

|zi|
q

)1/q

= ‖x‖p‖z‖q

and therefore ‖ϕz‖op. ≤ ‖z‖q.

Next we must show that T is bounded, norm-preserving, and bijective.

“T norm-preserving.” We have that Tz = ϕz so then ‖Tz‖op. ≤ ‖z‖q and we want to show
equality. See that

‖Tz‖op. = ‖ϕz‖op. = sup
x∈lp,‖x‖=1

|ϕz(x)| = sup
x∈lp,‖x‖=1

∣
∣
∣
∣
∣

∞
∑

i=1

xizi

∣
∣
∣
∣
∣

We want this ≥ ‖z‖q = (
∑∞

i=1 |zi|
q)

1/q
. This sup must be bigger than the value at any given

x with ‖x‖p = 1. So it seems a natural selection for x ∈ lp is to take xi = sgn(zi) · |zi|q−1

but we see that

‖x‖p =

(
∞∑

i=1

∣
∣sgn(zi)|zi)

q−1
∣
∣
p

)1/p

=

(
∞∑

i=1

|zi|
q

)1/p

= ‖z‖q/pq < ∞

and thus a better selection so that ‖x‖p = 1 is to take xi =
sgn(zi)|zi|

q−1

‖z‖q/p
q

. Therefore we see

that

‖Tz‖op. ≥

∣
∣
∣
∣
∣

∞
∑

i=1

xizi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞
∑

i=1

sgn(zi)|zi|q−1

‖z‖q/pq

zi

∣
∣
∣
∣
∣
=

1

‖z‖q/pq

∞
∑

i=1

|zi|
q =

‖z‖qq

‖z‖q/pq

= ‖z‖q

This completes the proof.

“T bounded.” Trivial as ‖Tz‖op. = ‖z‖q =⇒ ‖T ‖op. = 1.

“T surjective.” We want to show that for all f ∈ (lp)′ there is a z ∈ lq such that f = Tz(=
ϕz). This is the same as showing f(x) = ϕz(x) for all x ∈ lp. Since f(x) =

∑∞
i=1 xif(ei) and

ϕz(x) =
∑∞

i=1 xizi where {ei} is the Schauder basis on lp. Thus it seems a natural selection
for z is by zi = f(ei). Since f ∈ (lp)′ we have that it is bounded and thus

∣
∣
∣
∣
∣

∞
∑

i=1

xif(ei)

∣
∣
∣
∣
∣
= |f(x)| ≤ ‖f‖op.‖x‖p

By the selection of xn =
(

sgn(f(e1))|f(e1)|q−1, sgn(f(e2))|f(e2)|q−1, . . . , sgn(f(en))|f(en)|q−1, 0, 0, . . .
)

and xn ∈ lp because

‖xn‖p =

(
n
∑

i=1

∣
∣sgn(f(ei))|f(ei)|

q−1
∣
∣
p

)1/p

=

(
n
∑

i=1

|f(ei)|
q

)1/p

< ∞
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and now using the boundedness of f as an operator, we have

n
∑

i=1

|f(ei)|
q ≤ ‖f‖op. · ‖x‖p = ‖f‖op.

(
n
∑

i=1

|f(ei)|
q

)1/p

and therefore

(
n
∑

i=1

|f(ei)|
q

)1−1/p

≤ ‖f‖op. =⇒ ‖z‖q =

(
n
∑

i=1

|f(ei)|
q

)1/q

≤ ‖f‖op. < ∞

and therefore z ∈ lq.

“T injective.” Suppose T (z1) = T (z2) =⇒ T (z1) − T (z2) = 0map =⇒ T (z1 − z2) =
0map =⇒ ‖T (z1 − z2)‖op. = ‖0map‖op.. Because T is norm preserving, then ‖z1 − z2‖q =

‖T (z1 − z2)‖op. = ‖0map‖op. = supx∈lp,x &=0
|0map(x)|

‖x‖p
= 0 =⇒ z1 − z2 = 0 by the definition of

a norm and therefore z1 = z2. Therefore T is injective.

Q.E.D.

2.
(

l1
)′ ∼= l∞

Proof. Define an isomorphism

T : l∞ → (l1)′ by Tz = ϕz where ϕz : l1 → R defined by ϕz(x) =
∞
∑

i=1

xizi

We want to show that T is linear, norm-preserving, injective, and bounded. First we verify that
ϕz ∈ (l1)′ by showing it is a bounded linear functional. The linearity and functional parts are trivial.
Boundedness follows trivially

|ϕz(x)| =

∣
∣
∣
∣
∣

∞∑

i=1

xizi

∣
∣
∣
∣
∣
≤

∞∑

i=1

|xi||zi| ≤
∞∑

i=1

|xi| sup
i∈N

|zi| = ‖z‖∞‖x‖1

and therefore ‖Tz‖op. = ‖ϕz‖ ≤ ‖z‖∞ shows that ϕz is bounded and thus in l1. The fact that T is
linear is trivial. Further, the norm-preserving aspect of T verifies boundedness.

“T norm-preserving.” We have that ‖Tz‖op. ≤ ‖z‖∞ so it suffices to show ‖Tz‖op. ≥ ‖z‖∞
to show equality. See that

‖Tz‖op. = ‖ϕz‖op. = sup
x∈l1,‖x‖=1

|ϕz(x)| = sup
x∈l1,‖x‖=1

∣
∣
∣
∣
∣

∞
∑

i=1

xizi

∣
∣
∣
∣
∣

If ‖z‖∞ = supi∈N |zi| is actually obtained at zk then taking xi = δiksgn(zk) it is clear that
this is ≥ |zk| = ‖z‖∞. But the sup may not be obtained and thus we can construct a sequence
{in}n∈N ⊆ N of components of z such that zin → ‖z‖∞ and |zin | ≥ ‖z‖∞ − 1

n . We choose

x(n) = (0, . . . , 0, sgn(zin)
︸ ︷︷ ︸

ithn guy

, 0, . . .)

and therefore the sum with x(n) plugged in for x gives this is ≥ sgn(zin) ·zin = |zin | → ‖z‖∞.
Therefore ≥ ‖z‖∞ completes this part of the proof.

“T surjective.” We want to show that for all f ∈ (l1)′ there is a z ∈ l∞ such that f = Tz(=
ϕz). But this is the same as saying f(x) = ϕz(x) for all x ∈ l1. But if there is a Schauder
basis {ei}i∈N for l1 then f(x) =

∑∞
i=1 xif(ei) and ϕz(x) =

∑∞
i=1 xizi indicates a natural

selection for z given by zi = f(ei). We must show that z defined this way is in l∞. That is,
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we want to show z is a bounded sequence. That is, |zi| < M for some M ∈ R and all i ∈ N.
Since f ∈ (l1)′, it is bounded and thus for any x ∈ l1 we have

∣
∣
∣
∣
∣

∞
∑

i=1

xif(ei)

∣
∣
∣
∣
∣
= |f(x)| ≤ ‖f‖op.‖x‖1

Using this we define a sequence x(n) = (0, , . . . , 0, sgnf(en), 0, . . .) and trivially see that
‖x(n)‖1 = 1 and x(n) ∈ lp (if f(en) = 0 for any en in the basis, then it would not be a basis
element). Thus since the left hand side holds for any x ∈ lp we have that for each n ∈ N,

|f(en)| ≤ ‖f‖op. · 1

and since zn = f(en) we have shown that |zn| ≤ ‖f‖op. for all n ∈ N and thus supi∈N |zi| ≤
‖f‖op. < ∞ shows z ∈ l∞.
“T injective.” Suppose T (z1) = T (z2) =⇒ T (z1) − T (z2) = 0map =⇒ T (z1 − z2) =
0map =⇒ ‖T (z1 − z2)‖op. = ‖0map‖op.. Because T is norm preserving, then ‖z1 − z2‖1 =

‖T (z1 − z2)‖op. = ‖0map‖op. = supx∈l1,x &=0
|0map(x)|

‖x‖1
= 0 =⇒ z1 − z2 = 0 by the definition of

a norm and therefore z1 = z2. Therefore T is injective.

Q.E.D.

3. (c0)
′ ∼= l1 where c0 ! l∞ is sequences converging to 0 and c0 is a closed subspace and therefore Banach

with the same norm

Proof. c0 is the space of sequences converging to 0. The dual space of c0 is c′0 = {f : c0 → R |
f bounded linear functional}. We want to show that c′0

∼= l1 (i.e. the two are isomorphic). Note that
c0 is a closed subspace of l∞ and since l∞ is Banach (complete) and c0 is closed, then c0 must also
be Banach (complete) by Theorem 1.4-7. Further, we know that norm on c0 is induced by l∞ as the
sup-norm,

‖x‖c0 = sup
i∈N

|xi|

For the rest of the problem we will notate this norm by ‖x‖∞. We want to construct an isomorphism
between l1 and c′0. Define

T : l1 → c′0 by T (z) = Tz = ϕz where ϕz : c0 → R defined by ϕz(x) =
∞
∑

i=1

xizi

We first must show that ϕz is a bounded linear functional. It is immediate that it is a functional as
the codomain is R.

“ϕz linear.” This is immediate as:

• ϕz(x+y) =
∑∞

i=1(xi+yi)zi =
∑∞

i=1(xizi+yizi) =
∑∞

i=1 xizi+
∑∞

i=1 yizi = ϕz(x)+ϕz(y)

• ϕz(αx) =
∑∞

i=1(αxi)zi = α
∑∞

i=1 xizi = αϕz(x)

“ϕz bounded.” We want to show that ‖ϕz‖op. ≤ c for some constant c. Note that this is
equivalent to showing |ϕz(x)| ≤ c · ‖x‖c0 for all x ∈ c0 by the definition of the operator norm.
See that

|ϕz(x)| =

∣
∣
∣
∣
∣

∞
∑

i=1

xizi

∣
∣
∣
∣
∣
≤

∞
∑

i=1

|xizi| =
∞
∑

i=1

|xi||zi|

≤
∞∑

i=1

[(

sup
i∈N

|xi|

)

· |zi|

]

=
∞∑

i=1

‖x‖c0 · |zi|

= ‖x‖c0

∞
∑

i=1

|zi| = ‖x‖c0 · ‖z‖1

and therefore we have shown that |ϕz(x)| ≤ ‖z‖1 ·‖x‖c0 for all x ∈ c0 and therefore it trivially
follows that ‖ϕz‖op. ≤ ‖z‖1.
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Now we must show that T is an isomorphism. That is, we need to show that T is linear, bijective, and
norm preserving.

“T linear.” This is immediate as:

• T (z1 + z2) = ϕz1+z2 . But then for x ∈ c0,

ϕz1+z2(x) =
∞∑

i=1

xi(z1 + z2)i =
∞∑

i=1

xi

[

z
(1)
i + z

(2)
i

]

=
∞∑

i=1

[

xiz
(1)
i + xiz

(2)
i

]

=
∞
∑

i=1

xiz
(1)
i +

∞
∑

i=1

xiz
(2)
i =

∞
∑

i=1

xi(z1)i +
∞
∑

i=1

xi(z2)i

= ϕz1(x) + ϕz2(x) = (ϕz1 + ϕz2) (x)

and therefore ϕz1+z2(x) = (ϕz1 + ϕz2) (x) for all x ∈ c0 and therefore they must be the
same map. That is, ϕz1+z2 = ϕz1 + ϕz2 .

• T (αz) = ϕαz . But then for x ∈ c0,

ϕαz(x) =
∞
∑

i=1

xi(αz)i =
∞
∑

i=1

xiαzi = α

∞
∑

i=1

xizi = αϕz(x) = (αϕz)(x)

and since ϕαz(x) = (αϕz)(x) for all x ∈ c0, then they are the same map and thus
ϕαz = αϕz .

“T norm preserving.” We want to show that ‖Tz‖op. = ‖z‖1 for all z ∈ l1. For z = 0, by
the linearity of T , Tz = 0 map =⇒ ‖Tz‖op. = 0 and also ‖z‖1 = 0 by positive-definiteness.
Therefore when z = 0 clearly this is satisfied. Thus assume z *= 0, z ∈ l1. Note from
the boundedness of ϕz we showed that ‖ϕz‖op. ≤ ‖z‖1 and since Tz = ϕz , this shows that
‖Tz‖op. ≤ ‖z‖1. See that

‖Tz‖op. = ‖ϕz‖op. = sup
x∈c0,‖x‖∞=1

|ϕz(x)| = sup
x∈c0,‖x‖∞=1

∣
∣
∣
∣
∣

∞
∑

i=1

xizi

∣
∣
∣
∣
∣

and choose xn ∈ c0 by xn = (sgn(z1), sgn(z2), . . . , sgn(zn), 0, 0, . . .). Since z *= 0, then at
least one component is non-zero. That is, ∃ N ∈ N such that zN *= 0 =⇒ |sgn(zN)| = 1

and thus for n ≥ N , ‖xn‖∞ = supi∈N |x(n)
i | = supi∈N |sgn(zi)| = 1. Therefore each xn for

n ≥ N satisfies the criteria for taking the sup and thus

‖Tz‖op. = sup
x∈c0,‖x‖∞=1

∣
∣
∣
∣
∣

∞
∑

i=1

xizi

∣
∣
∣
∣
∣
≥

∣
∣
∣
∣
∣

∞
∑

i=1

x
(n)
i zi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n
∑

i=1

sgn(zn)zi

∣
∣
∣
∣
∣
=

n
∑

i=1

|zi| ∀ n ≥ N

and therefore

‖Tz‖op. ≥
∞
∑

i=1

|zi| = ‖z‖1

Thus we have shown that ‖Tz‖op. = ‖z‖1 by showing that ‖Tz‖op. ≤ ‖z‖1 and ‖Tz‖op. ≥
‖z‖1.

“T injective.” Suppose T (z1) = T (z2) =⇒ T (z1) − T (z2) = 0map =⇒ T (z1 − z2) =
0map =⇒ ‖T (z1 − z2)‖op. = ‖0map‖op.. Because T is norm preserving, then ‖z1 − z2‖1 =

‖T (z1 − z2)‖op. = ‖0map‖op. = supx∈c0,x &=0
|0map(x)|
‖x‖∞

= 0 =⇒ z1 − z2 = 0 by the definition
of a norm and therefore z1 = z2. Therefore T is injective.

“T surjective.” We want to show that ∀ f ∈ c′0 ∃ z ∈ l1 such that Tz = f . But note that
Tz = ϕz and thus we want to show that ϕz = f . But this simply means that we want to
show that ϕz(x) = f(x) for all x ∈ c0. But note that if we have a Schauder basis on c0, then
we can write f(x) =

∑∞
i=1 xif(ei) and we knew a priori that ϕz(x) =

∑∞
i=1 xizi. Therefore,
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we see the natural selection of zi = f(ei) to satisfy this surjectivity. Therefore we must show
the following: c0 has a Schauder basis, construct a Schauder basis and show that any x ∈ c0
can be written as infinite sum of this Schauder basis’ elements, and show that z ∈ l1 by our
definition.

“c0 has S. basis & construction of S. basis.” Define

ei = (0, 0, . . . , 0, 0, 1
︸ ︷︷ ︸

ith component

, 0, 0, . . .)

which is clearly in c0 by construction. Therefore, {ei}i∈N ⊆ c0. In order to show this is a
Schauder basis for c0, we must show that ∀ x ∈ c0 ∃! {xi} ⊆ R such that x =

∑∞
i=1 xiei.

That is,
∑n

i=1 xiei → x as n ↑ ∞. This is easy to show as:

∥
∥
∥
∥
∥

n
∑

i=1

xiei − x

∥
∥
∥
∥
∥

= ‖(x1, x2, . . . , xn, 0, 0, . . .)− (x1, x2, . . .)‖

= ‖(0, 0, . . . , 0, xn+1, xn+2, . . .)‖ = sup
i≥n+1

|xi|

which converges to 0 as n ↑ ∞ since x ∈ c0. Then ‖
∑n

i=1 xiei − x‖ → 0 as n ↑ ∞ and thus
∑n

i=1 xiei → x as n ↑ ∞. Therefore, each x ∈ c0 can be written as an infinite combination
of this Schauder basis we have constructed.

“z ∈ l1.” We naturally define z by zi = f(ei) where ei is defined as above. We want to
show that z ∈ l1. That is, we want to show that ‖z‖1 < ∞ which is the same as showing
∑∞

i=1 |f(ei)| < ∞. Note that since f ∈ c′0, then f is a bounded linear functional and therefore

∣
∣
∣
∣
∣

∞
∑

i=1

xif(ei)

∣
∣
∣
∣
∣
= |f(x)| ≤ ‖f‖op. · ‖x‖∞ ∀ x ∈ c0

Since this holds for all x ∈ c0, if we choose xn = (sgn(f(e1)), sgn(f(e2)), . . . , sgn(f(en)), 0, 0, . . .),
then clearly xn ∈ c0 and further ‖xn‖∞ = 1. Then

∣
∣
∣
∣
∣

∞
∑

i=1

xif(ei)

∣
∣
∣
∣
∣
≥

∣
∣
∣
∣
∣

∞
∑

i=1

x
(n)
i f(ei)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n
∑

i=1

sgn(f(ei))f(ei)

∣
∣
∣
∣
∣
=

n
∑

i=1

|f(ei)|

and then we have that

n
∑

i=1

|f(ei)| ≤

∣
∣
∣
∣
∣

∞
∑

i=1

xif(ei)

∣
∣
∣
∣
∣
≤ ‖f‖op. · 1 ∀ n ∈ N

and thus
∞
∑

i=1

|f(ei)| ≤ ‖f‖op. < ∞ since f ∈ c′0

Therefore we have shown what we wanted and thus z ∈ l1.

Q.E.D.

Section 3.1. Inner Product Space. Hilbert Space

Inner product space/inner product. X is an inner product space if X is a normed vector space with
norm induced from an inner product. An inner product satisfies 〈·, ·〉 : X ×X → K
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1. Bilinear (with respect to conjugacy). That is,

〈αx1 + αx2, y〉 = α〈x1, y〉+ β〈x2, y〉

〈x, αy1 + βy2〉 = ᾱ〈x, y1〉+ β̄〈x, y2〉

2. Conjugate-symmetric
〈x, y〉 = 〈y, x〉

3. Positive-definite
〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0

Norm induced by inner product. ‖x‖ =
√

〈x, x〉

Property. Any norm induced from an inner product satisfies ‖x+ y‖2 + ‖x− y‖2 = 2
(

‖x‖2 + ‖y‖2
)

.

Not an inner product space. C[a, b] with ‖f‖ = supt∈[a,b] |f(t)| needs to satisfy ‖f + g‖2 + ‖f − g‖2 =

2
(

‖f‖2 + ‖g‖2
)

. Can construct functions making this false.

Hilbert space. Complete inner product space.

Orthogonal. x ⊥ y ⇐⇒ 〈x, y〉 = 0

Section 3.2. Further Properties of Inner Product Spaces

Cauchy-Schwartz inequality. |〈x, y〉| ≤ ‖x‖ · ‖y‖ and equality holds only if y = c · x for some c ∈ R.

Proof. See that
〈x + αy, x+ αy〉 = ‖x‖2 + ᾱ〈x, y〉+ α〈x, y〉 + |α|2‖y‖2

for any α ∈ K. By positive-definiteness we have that this quantity must be non-negative. Choose α = t·〈x, y〉
and thus this become

= ‖x‖2 + 2t|〈x, y〉|2 + t2|〈x, y〉|2‖y‖2

which is quadratic in t. Since this quantity is non-negative then there are 0 or 1 roots and so we have the
coefficients b2 − 4ac ≤ 0. Thus,

4t2|〈x, y〉|4−4‖x‖2t2|〈x, y〉|2‖y‖2 ≤ 0 ⇐⇒ 4t2|〈x, y〉|2
(

|〈x, y〉|2 − ‖x‖2‖y‖2
)

≤ 0 ⇐⇒ |〈x, y〉|2−‖x‖2‖y‖2 ≤ 0

and the inequality immediately follows.

Q.E.D.

Continuity of inner product. xn → x and yn → y =⇒ 〈xn, yn〉 → 〈x, y〉.

Proof. See that

|〈xn, yn〉 − 〈x, y〉| = |〈xn, yn〉 − 〈xny〉+ 〈xn, y〉 − 〈x, y〉|

= |〈xn, yn − y〉 − (〈xn − x, y〉)|

≤ |〈xn, yn − y〉|+ |〈xn − x, y〉|

≤ ‖xn‖
︸ ︷︷ ︸

bounded b/c xn conv.

‖yn − y‖+ ‖xn − x‖ ‖y‖
︸︷︷︸

fixed

→ 0 as n ↑ ∞

Q.E.D.
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Completion of Inner Product Spaces

Completion of metric spaces. Recall X is a metric space =⇒ ∃! X̂ complete metric space such that
∃ W ⊆ X̂ dense and W ∼= X (isometric, i.e. ∃ T : W → X isometric (bijective, metric preserving)).

Theorem for inner products. X is an inner product space =⇒ ∃! H Hilbert space such that ∃ W ⊆ H

and W ∼= X (isomorphic, i.e. ∃ T : W
bij.

−−−−→
linear

X that preserves inner product).

Proof. Define 〈 x̂
︸︷︷︸

=[{xn}]

, ŷ
︸︷︷︸

=[{yn}]

〉H = limn→∞〈xn, yn〉 on H = {x̂ = [{xn}] | {xn} Cauchy in X} with equiva-

lency classes [{xn}] structured by equivalence relation {xn} ∼ {yn} ⇐⇒ d(xn, yn) = 0 where d induced by
norm induced by inner product. We must show this.

We must show that 1) 〈·, ·〉H is well-defined, 2) the limit exists, 3) it defines an inner product, and 4) 〈·, ·〉H
induces d̂.

1. Suppose {xn}, {x′
n} ∈ x̂ and {yn}, {y′n} ∈ ŷ. Note a prior that {xn} ∼{ x′

n} and {yn} ∼ {y′n}. We
WTS limn→∞〈xn, yn〉 = limn→∞〈x′

n, y
′
n〉. See that

|〈xn, yn〉 − 〈x′
n, y

′
n〉| ≤ ‖xn − x′

n‖ · ‖y
′
n‖+ ‖x′

n‖ · ‖yn − y′n‖ → 0

since both ‖y′n‖ and ‖x′
n‖ are bounded (since {x′

n}, {y
′
n} converge).

2. Note that 〈xn, yn〉 is a sequence in K (R or C, both complete) and thus if it is Cauchy then it converges.
We’ll show it is Cauchy. See that

|〈xn, yn〉 − 〈xm, ym〉| = |〈xn − xm, yn〉+ 〈xm, yn − ym〉| ≤ |〈xn − xm, yn〉|+ |〈xm, yn − ym〉|

≤ ‖xn − xm‖ · ‖yn‖+ ‖xn‖ · ‖yn − ym‖ → 0

since {‖yn‖} , {‖xn‖} are both bounded sequences.

3. Only difficult thing to check is positive definiteness:

x̂ = 0 ⇐⇒ {xn} ∼ {(0, 0, . . .)} ⇐⇒ lim
n→∞

d(xn, 0) = 0 ⇐⇒ lim
n→∞

〈xn, xn〉 = 0 ⇐⇒ lim
n→∞

〈x̂, x̂〉H = 0

4. Does this inner product induce d̂?

d〈·,·〉H (x̂, ŷ) = ‖x̂− ŷ‖ =
√

〈x̂, ŷ〉H =
√

lim
n→∞

〈xn − yn, xn − yn〉 = lim
n→∞

√

〈xn − yn, xn − yn〉

= lim
n→∞

‖xn − yn‖ = lim
n→∞

d(xn, yn) = d̂(x̂, ŷ)

Last we need to show that there is an isomorphism T : X → W ⊆ H . Construct it by Tx = [(x, x, . . .)].
Bijective? by metric space completion. Linear? by metric space completion. Need to check norm preserving,
easy:

〈Tx, T y〉H = lim
n→∞

〈x, y〉X = 〈x, y〉X

Q.E.D.

Theorem (subspace). Let Y be a subspace of a Hilbert space H . Then:

• Y complete ⇐⇒ Y closed in H

• dimY < ∞ =⇒ Y complete

• H separable =⇒ Y separable
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Section 3.3. Orthogonal Complements and Direct Sums

Optimization theorem. Let X be an inner product space and M ⊆ X closed and complete. Then
∀ x ∈ X, ∃! y ∈ M such that d(x,M) = d(x, y).

Proof. Let x ∈ X and δ = d(x,M) = infz∈M d(x, z). If δ = 0 then trivial because then we would have a
sequence {zn} ⊆ M such that zn → y with y satisfying d(x, y) = 0. But then y ∈ M because M closed.

Assume δ > 0. Then ∃ {yn} ⊆ M such that d(x, yn) → δ as n ↑ ∞. We WTS {yn} is Cauchy (and since M
is complete, then yn → y ∈ Y ). Since X is an inner product space we have for A,B ∈ X

‖A+B‖2 + ‖A−B‖2 = 2
(

‖A‖2 + ‖B‖2
)

and taking A = x− yn and B = x− ym. (Note that trivially ‖x− yn‖ → δ and ‖x− ym‖ → δ.) Then

‖yn − ym‖2 + 4

∥
∥
∥
∥
x−

yn + ym
2

∥
∥
∥
∥
= 2

(

‖x− yn‖
2 + ‖x− ym‖2

)

and thus

‖yn − ym‖2 = 2
(

‖x− yn‖
2 + ‖x− ym‖2

)

− 4

∥
∥
∥
∥
x−

yn + ym
2

∥
∥
∥
∥

Since ‖x− yn‖ → δ, the

∀ ε > 0, ∃ N1 ∈ N such that
∣
∣‖x− yn‖

2 − δ2
∣
∣ <

ε

8
if n ≥ N1

=⇒ ‖x− yn‖
2 < δ2 +

ε

8
if n ≥ N1

Noting that yn+ym

2 is in M since it is a convex combination of two elements of M and M is convex, then

∥
∥
∥
∥
x−

yn + ym
2

∥
∥
∥
∥
= d

(

x,
yn + ym

2

)

≥ inf
z∈M

d(x,M) = δ =⇒ −4

∥
∥
∥
∥
x−

yn + ym
2

∥
∥
∥
∥
≤ −4δ2

Thus,

‖yn − ym‖2 ≤ 2‖x− yn‖
2 + 2‖x− ym‖2 − 4δ2

< 2
( ε

8
+ δ2

)

+ 2
( ε

8
+ δ2

)

− 4δ2

=
ε

2
< ε if n,m ≥ N1

Therefore {yn} is Cauchy and converges to a y ∈ M .

Uniqueness? Assume that ∃ y1, y2 ∈ M such that d(x, y1) = d(x, y2) = δ. By the paralellogram identity,

‖y1−y2‖+4

∥
∥
∥
∥
x−

yn + ym
2

∥
∥
∥
∥
= 2

(

‖x− yn‖
2 + ‖x− ym‖2

)

=⇒ ‖y1−y2‖
2 = 4δ2−4

∥
∥
∥
∥
x−

y1 + y2
2

∥
∥
∥
∥

2

≤ 4δ2−4δ2 = 0

Q.E.D.

Corollary. Y ⊆ X is complete subspace by the above gives us ∀ x ∈ X, ∃! y ∈ Y such that ‖x−y‖ = d(x, Y ).
Then x− y ⊥ Y .

Proof. Assume for contradiction that x− y *⊥ Y . That is, ∃ y1 ∈ Y such that 〈x− y, y1〉 *= 0. Let u = x− y.
Then 〈u, u〉 = ‖x− y‖2. Note that since y was the mimizer for the distance between x and M that if we can
find a z ∈ Y such that ‖x− z‖2 < ‖x− y‖2 we have a contradiction. We take a z ∈ Y of the form y + αy1
for some α ∈ K. Then

‖x− (y + αy1)‖
2 = ‖u− αy1‖

2 = 〈u− αy1, u− αy1〉 = ‖u‖2 − ᾱ〈u, y1〉 − α〈u, y1〉+ |α|2‖y1‖
2
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and if we take α = 〈u,y1〉
‖y1‖2 =⇒ ᾱ = 〈u,y1〉

‖y1‖2 then the above is

= ‖x− y‖2 −
|〈u, y1〉|2

‖y1‖2
︸ ︷︷ ︸

>0 by hyp.

< ‖x− y‖2

giving a contradiction.

Q.E.D.

Direct sum corollary. If H is Hilbert, then Y ⊆ H closed subspace ( =⇒ complete) =⇒ H = Y ⊕ Y ⊥

where Y ⊥ = othogonal complement of Y = {z ∈ H | z ⊥ Y }.

Claim. Such a decomposition of any element in H is unique.

Theorem. Y is a closed subspace of a Hilbert space H ⇐⇒ Y = Y ⊥⊥.

Proof. “ =⇒ ” Suppose Y is a closed in H . See that Y ⊆ Y ⊥⊥ because y ∈ Y =⇒ y ⊥ Y ⊥ =⇒ y ∈ (Y ⊥)⊥.
Thus we will show Y ⊇ Y ⊥⊥. Let x ∈ Y ⊥⊥. Then since x ∈ H we have by Theorem 3.4-4 that x = y + z
for y ∈ Y ⊆ Y ⊥⊥ and for some z ∈ Y ⊥ (since H = Y ⊕ Y ⊥). Since Y ⊥⊥ is a vector space and x ∈ Y ⊥⊥

then z = x − y ∈ Y ⊥⊥ since both x and y are in Y ⊥⊥ and thus using previously that z ∈ Y ⊥, we must
have that z ⊥ z =⇒ 〈z, z〉 = 0 =⇒ z = 0 by the positive-definiteness of the inner product on H . Then
x = y =⇒ x ∈ Y . Thus Y ⊇ Y ⊥⊥ and therefore Y = Y ⊥⊥.

“⇐=” Suppose Y = Y ⊥⊥. We will use Theorem 3.2-4, that a subspace Y of H is complete if and only
if it is closed in H . Suppose {xn}n∈N ⊆ Y is a Cauchy sequence in Y . Then it is a Cauchy sequence in
H since Y ⊆ H and therefore it converges. Thus xn → x ∈ H . But since {xn}n∈N ⊆ Y = Y ⊥⊥, then
xn ⊥ Y ⊥ =⇒ 〈xn, y〉 = 0 for all n ∈ N and y ∈ Y ⊥. We want to show that x ⊥ Y ⊥, which would directly
imply that x ∈ Y ⊥⊥ = Y and show the completeness of Y . See that for arbitrary y ∈ Y ⊥,

〈x, y〉 =
〈

lim
n→∞

xn, y
〉

=
︸ ︷︷ ︸

cont. of in. pd.

lim
n→∞

〈xn, y〉 = lim
n→∞

0 = 0

This shows that x ⊥ Y ⊥ =⇒ x ∈ Y ⊥⊥ = Y . Therefore, any Cauchy sequence in Y converges in Y and
thus Y is complete. Since it is a subspace of a Hilbert space then it must be closed.

Q.E.D.

Lemma. Let M ⊆ H be nonempty and H be Hilbert. spanM = H ⇐⇒ M⊥ = {0}.

Proof. Suppose M ⊆ H is nonempty and H is Hilbert.

“ =⇒ ” Assume spanM = H . Let x ∈ M⊥ and since M⊥ ⊆ H = spanM =⇒ ∃ {yn} ⊆ spanM such that
yn → x.

〈x, x〉 = lim
n→∞

〈x, yn〉 = lim
n→∞

〈

x,

dimM
∑

i=1

α
(n)
i mi

〉

= lim
n→∞

dimM
∑

i=1

α
(n)
i 〈x,mi〉

︸ ︷︷ ︸

=0

= 0

and therefore x = 0 =⇒ M⊥ = {0}.

“⇐=” Let Y = spanM ⊆ H which is a closed subspace. Then H = Y ⊕ Y ⊥ =
(

spanM
)

⊕
(

spanM
)⊥

. Then
x ∈ H can be written as x = y + z where y ∈ Y and z ∈ Y ⊥. We want to show that z = 0 in order to show
that x = y ∈ Y =⇒ x ∈ Y and then H ⊆ Y . See that M ⊆ Y =⇒ Y ⊥ ⊆ M⊥ = {0} and thus z = 0.

Q.E.D.
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Section 3.4. Orthonormal Sets and Sequences

Orthogonal set. {xα}α∈I is orthogonal ⇐⇒ xα ⊥ xβ for all α, β ∈ I, α *= β

Orthonormal set. {xα}α∈I is orthonormal ⇐⇒ xα ⊥ xβ for all α, β ∈ I, α *= β and 〈xα, xβ〉 = δαβ .

Pythagorean relation. If x and y are orthonormal elements then trivially 〈x, y〉 = 0 and further ‖x+y‖2 =
‖x‖2 + ‖y‖2.

Lemma (linear independence). An orthonormal set is linearly independent.

Proof. Consider
α1e1 + · · ·+ αnen = 0

and then take 〈
∑

k αkek, ej〉 =
∑

k αk〈ek, ej〉 = αj = 0.

Q.E.D.

Representation of elements. If {ei}i=1,...,n is an orthonormal set in X then for any x ∈ X we already
knew we could write X as a linear combination of these elements, but we further obtain

x =
n
∑

i=1

〈x, ei〉ei

Bessel’s inequality. For any x ∈ X ,
n
∑

i=1

|〈x, ei〉|
2 ≤ ‖x‖2

Proof. If y ∈ Yn =⇒ x− y ⊥ y and thus

‖x‖2 = ‖y‖2 + ‖x− y‖2

and using y =
∑n

i=1〈x, ei〉ei. Yn = span{e1, . . . , en}.

Gram-Schmidt Process

Can we construct an orthonormal set from a linearly independent set? Let {xi}i=1,...,n be linearly indepen-
dent.

e1 =
x1

‖x1‖

e2 =
x2 −

Psp(x1)
x2

︷ ︸︸ ︷

〈x2, e1〉e1
‖x2 − 〈x2, e1〉e1‖

...

ek =
xk −

∑k−1
i=1 〈xk, ei〉ei

∥
∥
∥xk −

∑k−1
i=1 〈xk, ei〉ei

∥
∥
∥

...
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