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Section 3.5. Series Related to Orthonormal Sequences.

Theorem (Convergence). Let (ex) be an orthonormal sequene in a Hilbert space H. Then:
(a) > pe, aker converges (in the norm on H) <= Y77 |ax|? converges.

(b) z = >"77 | aner, converges = ay, = |(z,ex)|.

(c)xz € H,x =Y po age, converges with oy, = (z, e,) converges.

Proof. (a) Let s,, = Y ., a;e; and note

2 m
= Z laieil>  (Pythagorean theorem)

m
[|5m _SnH2 = Z ;e
i=n+1 i=n+1
m
— Z lovi|? =ty — tn,
1=n+1

if we take t;, = Zle |c;|2. Thus if one converges then the other must.

(b) z =2, ase; exists <= s, = >, ae; — x . Note

n

(x,e;) = < lim sn,ei> = lim (sp,e)= lim g aje;, e;
n—00 n—o00,n>1% n—o00,n>1% 1
J:

which is 0 if n < i so assume that n > i = every term is 0 except for i*" one = «;. Thus a; = (x,e;) for
all i € N.

(c) By (a) we have that > .°, |[(a, €;)|? exists by Bessel Inequality.
QED.

Lemma (Fourier coefficients). Any z in X inner product space can have at most countably many nonzero
Fourier coeflicients (x, e;) with respect to an orthonormal family (ex),k € I, in X.

Proof. Let x € H and write x = ) (7, eq)eq for all x € X which is an uncountable sum. But if we
can show that there are a countable number of non-zero Fourier coefficients. Define the set for fixed x € H,
Jy ={a€T|{(x,eq) # 0} CI. We may then write

T = Z(w,ea)ea = Z (x,€eq)€0

acl aEJ,



We want to show that the set J, is countable. Define

JkZ{CMEI

(x,eq) > %}

noting Ji C Jiy1 and defining J = U,;“;l Jr = limp_, oo Jr. We want to show that each Ji is countable in
order to show that J is countable (as we would obtain a countable union of countable sets). Choose M C Jj,
such that M = {1, ..., am} C Ji is a finite set. Then since (z,e,) > + we then have

1 m
e < Sl eal? < ol < oo
=1

and noting that the LHS 1 oo as m 1 oo gives a contradiction and thus m must be fixed a priori and thus
each Ji must be finite, showing the countability of J,.

Q.E.D.

Section 3.6. Total Orthonormal Sets and Sequences.

Total orthonormal set. A total set in a normed space X is a subset M C X whose span is dense in X.
Accordingly, an orthonormal set in an inner product space X which is total in X is called a total orthonormal
set in X. That is, M is total in X <= spanM = X.

Theorem (totality). Let M be a subset of an inner product space X. Then:

(a) If M is total in X, then there does not exist a nonzero x € X whch is orthogonal to every element of M;
thatis,z L M = x =0.

(b) If X Hilbert, then x L M = x = 0 shows M total in X.

Facts. (a) M is total in Hilbert H <= M+ = {0}

(b) M total in H <= spanM = H

(c) M total <= Parseval’s equality holds, i.e. Y .o, |(z,€;)]|? = ||z
Theorem (Separable Hilbert spaces). Let H be a Hilbert space. Then:
(a) If H separable, every orthonormal set in H is countable.

(b) If H contains an orthonormal sequence which is total in H, then H is separable.

Section 3.7. Lenendre, Hermite and Laguerre Polynomials.

Legendre polynomials. Can represent them in many ways:

1 .
Po(t) = —2"n'dt_"[(t2_1) ]
N .
: 2n — 25)! ; -1
= Z(—I)J - (2n . 7) "% N = n or n if even/odd
= 275l(n — §)l(n — 25)! 2



First few polynomials given by:

Po(t) = 1

Pi(t) = t

P(t) = %(3{2—1)

Ps(t) = %(5t3—3t)
Py(t) = é(35t4—30t2+3)

And applying G-S process we can arrive at

2 1
en = \| L Palt)

Section 3.8. Representation of Functionals on Hilbert Spaces.

Riesz Lemma. Y is a closed subspace of normed vector space X = V 6 € (0,1) 3z € Sx(0,1) such
that d(x,Y) > 6.

Riesz’s Theorem (RR Thm baby). Every bounded linear functional f on a Hilbert space H can be
represented in terms of the inner product, namely, f(z) = (z, z) where z depends on f, is uniquely determined
by f and has norm ||z|| g = || f]|op-

Proof. See that for f € H' we have f(f(z)-a— f(a)-x)=0 for all a,x € H trivially. Then f(z)a — f(a)x €
N = ker f. N is a closed subspace of H and thus H = N&N+. If N* = {0} then H =N =kerf = f=0
so choose z = 0 for the inner product.

If N* 2 {0} then 3 @ € N with a # 0 such that (f(x)a—f(x)x,¢> =0 = f()|a]]® = fla){z,a) =

— |
J— b -

o= i = (o 3% )
—

Q.ED.

Definition (Sesquilinear form). Let X and Y be vector spaces over the same field K (R or C). Then
a sesquilinear form (or sesquilinear functional) h on X x Y is a mapping h : X x ¥ — K such that for all
z,xr1,x2 € X and y,y1,y2 € Y we have

h(z1 + 2,y) h(z1,y) + h(z2,y)
h(z,y1 +y2) = h(z,p1) + h(z,y2)
haz,y) = ah(z,y)
h(z,By) = PBhlx,y)

Note if K = R then the last condition simply gives this is a bilinear form.

Norm on h. h is bounded if |h(z,y)| < ¢||lz|/||y|| for some ¢ € [0,0). The norm is given by

h(zx,
= s @O ey
sex—{oryev—{oy lzlllyll  jai=1,jy1=1



Theorem (Riesz representation adult). Let Hy, Ho be Hilbert spaces and h : H; x Hy — K a bounded
sesquilinear form. The h has representation h(z,y) = (Sz,y) where S : H; — Hs is a bounded linear
operator. S is uniquely determined by h and has norm ||.S|| = ||h]|

Proof. Fix z € Hy and let f, : Ho — K defined by f.(y) = h(z,y) which is clearly bounded and linear.
Bounded because || fllop < ||h||sesqllz|| . Thus by RR Theorem (baby) we have

ANz, € Hy st fo(r) = (200 1,

but we have that f,(-) = h(z,-) = h(z,:) = (-, z5)n, = h(z,-) = (22, )n,. Thus for any choice of z we
may form this relationship between h and the inner product with choice of z,.

Define S : Hy — Hy by Sx = z,. By construction we trivially have that h(z,y) = (z5,y) = (Sz,y) for all
y € Hy for fixed z € H;. Linearity is easy to show. Must show bounded operator and norm-preserving;:

“Bounded.” WTS ||Sx| g, < c-||z| g, for some ¢ € [0,00). Note

[(Sz, y)| = |h(z,y)| < [|Pllsesqllzllm lyllm, Vy e Hy
and choosing y = Sz we thus have
1Sz < [Rllsliz]l - 1Szl = [[Sz]| < |[Allsllz]l  (if | Sz|| = 0 then trivial)

and thus ||S||op < ||A]]s-

“Norm preserving.” From RR Theorem (baby) we have | fzllop = |l2z]] = ||Sz| and since ||fzllop =
SUD ||y || zr, =1 |fz(y)] = SUP||y|=1 |h(z,y| we thus have

[Sz]| = sup |h(z,y)|

lyll=1
and then taking sup over x € Hy with ||z| = 1 we thus have
sup [[Szl| = sup  |h(z,y)|
llzll=1 lzll=1,][yll=1

and the LHS is ||S||,p and the RHS is [|A||sesq-

Q.ED.

Section 3.9. Hilbert-Adjoint Operator.

Hilbert-adjoint operator T*. Let T : Hi — Hs be a bounded linear operator, where H; and Hs are
Hilbert spaces. Then the Hilbert-adjoint operator T of T is the operator T : Hy, — H; such that for all
z € Hy and y € Hy (Tx,y) = (x, T*y) and ||T|| = [|T"].

Proof. Define h: Hy x Hy — K by h(y,z) = (y, Tx). h has a bounded sesquilinear form. Sesquilinearity is
easy, to show boundedness see that

1y, )| = [y, Ta)| < [lyll - 1T < llyll - ll<] - [T llop
and T is a bounded operator so ||T'||,p < oo verifies the boundedness of this sesquilinear form.

Thus by RR Theorem (adult), 3 S : Hy — Hj defined by h(y,z) = (Sy,x)m, so it seems a natural selection
——

=(y,Tx) m,
to take T* = S.

Next see that
1T*[lop = 1S llop = | llsesq



and we want to show that this is ||T']|op. Thus similarly define g : H; x Ho — K by g(z,y) = (Tz,y) =
3l S: Hy — Hs such that g(z,y) = (Sz,y) and therefore (Sz,y) = (Tz,y) = |lgll = T

It is easy to see that ||h|| = ||g|| by observing

gllsesg =  sup  [(Tz,y)l =  sup [y, Tz)| = ||hllsesq
lzll=1,]ly=1 lzl=1,]lyl=1

verifying the norm preservation of the adjoint operator on a Hilbert space.
Q.E.D.

Properties of Hilbert-adjoint operators. Let Hy, H> be Hilbert spaces, S : Hy — Hs and T : Hy — Hy
bounded linear operators and « any scalar. Then we have

(T"y,z) = (y,Tx)
(S+T) = S +T*

() = aT”

T = T

|| = (7T =TI
T"T=0 <= T=0

(ST)* = T*S*

Section 3.10. Self-Adjoint, Unitary and Normal Operators.

Self-adjoint, unitary and normal operators. A bounded linear operator 7' : H — H on a Hilbert space
H is said to be

self — adjoint or Hermitian if T =T
unitary if T is bijective and TTr*=T*T=1
normal if TT* =TT

Theorem (Self-adjointness). Let T : H — H be a bounded linear operator on a Hilbert space H. Then:
(a) T is self-adjoint = (T'z,z) € Rforallz € H
(b) H complex and (T'z,x) € R for all x € H = T self-adjoint

Theorem (Sequences of self-adjoint operators). Let (T,,) be a sequence of bounded self-adjoint linear
operators T,, : H — H on Hilbert H. Suppose (T,) converges, T,, = T (i.e. || T, — T|| — 0 where || - || is the
norm on B(H, H)). Then T is also self-adjoint.

Section 4.2. Hahn-Banach Theorem.

Hahn-Banach Theorem (baby). X vector space over K = R, Z proper subspace of X. f:Z — Ris a
linear functional such that f < p where p is sub-linear (i.e. p(az) = ap(z),a > 0 and p(z+y) < p(z) +p(y))
= 3 f: X — R linear functional such that f |z= f and f < p.

Zorn’s Lemma. M partially ordered (<) set, ie. (1) a < a, (2) a < bb<a = a = b, and (3)
a<bb<c = a<c¢ and any chain (totally ordered subset) has an upper bound = 3 maximal element
in M.



Proof (HB baby). Define
M ={g:D(g) — R g is linear functional, Z C D(g) C X, g |z= f,9 < p}

This is a partially ordered set under the ordering of g1 < g2 <= D(g1) € D(g2) and g2 |p(g,)= g1. Any
chain C' C M has an upper bound given by

g(z) =g(x) if x € D(g) forany ge C

which is clearly a linear functional with domain

geC

Clearly g is an upper bound since by definition and construction we have g < g for all g € C. Then there
exists a maximal element f in M satisfying f < p and f |z= f. We want to show that D(f) = X. We have
that D(f) C X so we must show that D(f) 2 X. For contradiction assume that latter does not hold.

Then Fy; € X —D(f) and consider Y7 = span(D(f),y1). Note y; # 0since 0 € Z C D(f) and y1 € X —D(f).

Then for any x € Y7 we have = y + ay; for some y € D(f). Note that this representation must be unique

as if we have z = ¢/ + a’y; then ¥/ + o'y1 =y +ay1 < y—y = (¢’ — a)y; and the LHS is in D(f) and

thus since y; & D(f) then o/ —a =0 = o = « and thus y = y’ showing this representation is unique.

Thus define g1 on Y1 by g1(y + ay1) = f(y) + ac where ¢ € R. Clearly this is linear. For a = 0 then g; = f.
Then ¢; is a proper extension of f, contradicting the maximality of f if g1 < p. See that

- 1
g1(z) = f(z) + ac < —ap (—y1 - ay> =play1 +y) = p(x)
providing our contradiction.

Q.E.D.

Hahn-Banach Theorem (adult). Z is a subspace of vector space X, f : Z — K is K-linear functional
and |f| < p where p sub-linear (p(z +y) < p(x) +p(y) and p(ax) = |a|p(z) foralla € R) = I f: X - K
is K-linear functional such that |f| < p and f |z= f.

Note. p(0) =0 and p(z) 4+ p(x) = p(z) + p(—x) > p(z + (—z)) =p(0) =0 = p(x) >0 for any = € X.

Proof (HB adult). f: Z — C such that f(z) = fi(x) +if2(x) where f1, f2 : Z — R are linear functionals.
Note that f5 is uniquely determined by f; defined by fo(x) = —f1(iz). We can show this by matching real
parts in the following equalities

fliz) = fi(iz) +ifa(iv)

.
~
8
S~—
|

ifi(x) = fa(z)
Therefore
f(@) = fi(x) —ifi(iz)
Use HB baby on f; to extend f1 (note |fi| < |f| < p) to f1: X — R. Naturally define
fz) = file) - ifi(ix)
which is trivially a C-linear functional, clearly f |z= f and we need to show that |f| < p. Note that for any
z € C we have z = r¢'? and thus f(z) = |f(z)|e”? and therefore

()] = f(z)e™™ = fle ) = filex) —ifi(ie” " x)
and since the LHS is a real number then the imaginary part of the RHS must be 0. Then
0 < |f()| = file™x) = |file ?z)| < ple”x) = e~ |p(x) = p(x)

verifying the boundedness by the sub-linear functional.



Q.E.D.

HB Application 1. Let Z be a subspace of X a normed vector space, f : Z — K is a K-linear functional
and bounded = 3 f: X — K, bounded K-linear functional such that f |z= f and ||f| = || f]|-

Proof. Define p: X — R by p(z) = || f|| - [|z]| which is clearly sub-linear (note || f|| < oo and it exists since
f is bounded). Use HB Theorem (adult) so then 3 f : X — K a K-linear functional such that f |z= f and

| <p-
Bounded? Note |f(2)| < p(z) = | f|| - Izl == Il < [ /Il < oo.
Equality of norms? Note that we have < above so we WTS >. See that

7 flz f(x flz
Gl s U@L o W@l @)
vex—{oy lzl " zez—qoy Izl sez—(oy Il

= [I71

verifying the equality using the boundedness above.

Q.E.D.

HB Application 2. X normed vector space, x € X. X' is space of bounded linear functionals f: X — K
(K-linear functional). Fix z € X, then

z: X' — K defined by z(f) = f(z)

Further, ||z]|x = SUPfex’—{0} hff(”xo)l = |2l op-

Proof. Note [[7]lop < [lo]lx since |f(@)] < /]| -2l = ! < llall = [12llop = sbsex—q0) 2 <
el

Now we want to show that ||Z|lop > ||z||x. Construct Z = span{z} = {az | @ € K}. Let g: Z — K be

such that g(ax) = « - ||z| and it is easy to see this is a linear functional on Z that is bounded because
l9(az)| = |a] - ]| = [laz| = llgll = sup.e;z ¥E = sup._ ez (o) o = 1 proving [|g]| = 1.

Thus 3 g : X — K is bounded linear functional such that § |z= g and ||g|| = ||g|| = 1. Then

. [f(@)] _ lg(@) _ [l=]
[Zllop = sup 2o =1 = el
rex'—oy 1fllop — I3l

Therefore ||Z]op > ||z||x verifying the equality.

Q.E.D.
Adjoint operator. T : H; — H, are Hilbert spaces = 3 T* : Hy — H; such that (Tx,y) = (z, T*y)
and ||| = |-

HB Application 3 (Adjoint operator). T : X — Y where X, Y normed vector spaces and T is a bounded
linear operator = 3 7% : Y/ — X’ bounded linear operator with |T%| = ||T||.

Proof. Define 7% : Y’ - X' by g €Y' — T%g € X' where T%g : X — K is defined by (T*g) = g(Tx). We
want to check this is linear, bounded, and preserves the norm of T'.

“Bounded.” |(T*g)(z)| = |g(Tx)| < |lgllITz|| < |lgllIT||||z|| using the boundedness of g and T.
“Linear.” Cleary T"g as a functional on X is linear from the linearity of T" and g. T'*’s linearity follows.

“Norm equality.” First see that

" T7g)(x g(Tx qgll - I - ||«
Togle— sy M@l el T

sex—{0y lzllx  zex—qop Mzl T sex—qo ]

= llgll - 17l



which verifies that || T%||op < ||T||op- Next wee that

=|(T* f)(z)|
Tz 7(T2)
||T'r||Y == ||ﬂ”op - sup 7|( x)(f)| = sup _|f( I)|
revi—qoy I1flop revi—goy I/l
NN 1T - (] .
< sup  ——————— = [|[T7|[||=||
Fey’—{o} £l

showing ||T'||op < [|T7]/op- Equality follows.
Q.E.D.

Baire’s Category Theorem. Any complete metric space X is of second category.

First category. X = .. A; where all A; are nowhere dense. L.e. A; has no open subsets (i.e. “indiscrete

structure”).

ieN

Second category. (Not first category.) X = J,cy Bi = 3 B;, such that B;, 2 some open set.

Proof (BC Thm). Assume X is a complete metrix space. Assume for contradiction that X is not of second
category. That is, X is first category. Let X = J,.y A where each A; is nowhere dense (we know we can
write X as this by it being of first category). Note X is an open set so X € A; C A;. Thus:

12X = (A1) #0and (4)° is open = T e > 0,21 € (A1) such that K1 = B(x1,e1) C
(A )<,

72 2 X = (A3)° # () and (A42)° is open and further B (:1:1, 2) ¢ Ay = Ky, =208 (171,%) N
(A2)¢ # 0 and is open == I €3 > 0,25 € Ky such that B (z2,e2) C Ko (note €3 < S <€)

e A1 2 X = (A,11)° # 0 and is open and K,y = B(:z:n, 2) (A,41)¢ # 0 and open
+

— €Ent1 > O,IEnJrl S KnJrl such that B(In+1,€n+1) - KnJrl (note €, < n

"

Claim: {xy }nen are Cauchy. Note these “balls” are getting smaller and smaller, they form a nested sequence:

. g B(:En-l-laen-i-l) g B(.’L’n,én) g e

Assume m > n = x,, € B(xm,em) C -+ C B(xn, 2") == I, € B(a:n,%") = d(xp,Tm) < F <
5 — 0 since €, < 572y as n 1 co. Thus {Zn }nen is Cauchy and thus converges, z,, — z € X.
Now using d(zn,zm) < % = taking m 1 oo we have d(z,,rn) = d(zn,z) < G = = € B(xn,en) C
c

(A,)¢ by construction = z € (4,)° foralln e N = z € ), oy(4n)° = U A, | =X=0) =

neN

——

=X
x € ) gives our contradiction.
QE.D.



BC Theorem Application. T, bounded linear operator, T,, : X — Y where X Banach and Y normed
vector space == sup,, ey || Tnllop < 0.

Proof. T, bounded = ||T5,|| < 00. Let z € X = F k € N s sup,,¢y |Tnz| < k. Then for arbitrary
k € N we have

Ak—{{EEX

sup || T|| gk} = ze A
neN keN

and thus X = UkeN Ay, and since X is of second category, 3 ko € N such that Ay, is nowhere dense. That
is, Ay, 2 an open set = B(xo,€0) C Ap, = ||z — 20l < €0 = x € Ay, = sup,ey || Tnz| < ko.

Using || Tnllop = suPyesy (0,1 [[Tnullx. Note that for u € Sx(0,1) and € < eg we have zo + eu € B(xo, €0) C
Ay = sup,en || Tn(zo + eu)|ly < ko and thus

el Thul| — | Thzo|| < || Tnxo + €Thully < ko = €||Thull < ko + ||[Thzo|l < ko + ko = 2ko
and therefore ||T,,u|| < 222 and since ko, € were fixed then

2ko 2ko 2kg
sup || Toul| £ — = || Tullop < —

— = sup|[Tuflop <
ueSx (0,1) € € neN

Q.E.D.



