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Section 3.5. Series Related to Orthonormal Sequences.

Theorem (Convergence). Let (ek) be an orthonormal sequene in a Hilbert space H . Then:

(a)
∑∞

k=1 αkek converges (in the norm on H) ⇐⇒
∑∞

k=1 |αk|2 converges.

(b) x =
∑∞

k=1 αkek converges =⇒ αk = |〈x, ek〉|.

(c) x ∈ H , x =
∑∞

k=1 αkek converges with αk = 〈x, ek〉 converges.

Proof. (a) Let sn =
∑n

i=1 αiei and note

‖sm − sn‖
2 =

∥
∥
∥
∥
∥

m
∑

i=n+1

αiei

∥
∥
∥
∥
∥

2

=
m
∑

i=n+1

‖αiei‖
2 (Pythagorean theorem)

=
m
∑

i=n+1

|αi|
2 = tm − tn

if we take tk =
∑k

i=1 |αi|2. Thus if one converges then the other must.

(b) x =
∑∞

i=1 αiei exists ⇐⇒ sn =
∑n

i=1 αiei → x . Note

〈x, ei〉 =
〈

lim
n→∞

sn, ei

〉

= lim
n→∞,n>i

〈sn, ei〉 = lim
n→∞,n>i

〈
n
∑

j=1

αjej, ei

〉

which is 0 if n ≤ i so assume that n > i =⇒ every term is 0 except for ith one = αi. Thus αi = 〈x, ei〉 for
all i ∈ N.

(c) By (a) we have that
∑∞

i=1 |〈α, ei〉|
2 exists by Bessel Inequality.

Q.E.D.

Lemma (Fourier coefficients). Any x in X inner product space can have at most countably many nonzero
Fourier coefficients 〈x, ek〉 with respect to an orthonormal family (ek), k ∈ I, in X .

Proof. Let x ∈ H and write x =
∑

α∈I〈x, eα〉eα for all x ∈ X which is an uncountable sum. But if we
can show that there are a countable number of non-zero Fourier coefficients. Define the set for fixed x ∈ H ,
Jx = {α ∈ I | 〈x, eα〉 *= 0} ⊆ I. We may then write

x =
∑

α∈I

〈x, eα〉eα =
∑

α∈Jx

〈x, eα〉eα
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We want to show that the set Jx is countable. Define

Jk =

{

α ∈ I

∣
∣
∣
∣
〈x, eα〉 >

1

k

}

noting Jk ⊆ Jk+1 and defining J =
⋃∞

k=1 Jk = limk→∞ Jk. We want to show that each Jk is countable in
order to show that J is countable (as we would obtain a countable union of countable sets). Choose M ⊆ Jk
such that M = {α1, . . . , αm} ⊆ Jk is a finite set. Then since 〈x, eα〉 > 1

k
we then have

m ·
1

k2
<

m
∑

i=1

|〈x, eα〉|
2 ≤ ‖x‖2 < ∞

and noting that the LHS ↑ ∞ as m ↑ ∞ gives a contradiction and thus m must be fixed a priori and thus
each Jk must be finite, showing the countability of Jx.

Q.E.D.

Section 3.6. Total Orthonormal Sets and Sequences.

Total orthonormal set. A total set in a normed space X is a subset M ⊆ X whose span is dense in X .
Accordingly, an orthonormal set in an inner product space X which is total in X is called a total orthonormal
set in X . That is, M is total in X ⇐⇒ spanM = X .

Theorem (totality). Let M be a subset of an inner product space X . Then:

(a) If M is total in X , then there does not exist a nonzero x ∈ X whch is orthogonal to every element of M ;
that is, x ⊥ M =⇒ x = 0.

(b) If X Hilbert, then x ⊥ M =⇒ x = 0 shows M total in X .

Facts. (a) M is total in Hilbert H ⇐⇒ M⊥ = {0}

(b) M total in H ⇐⇒ spanM = H

(c) M total ⇐⇒ Parseval’s equality holds, i.e.
∑∞

i=1 |〈x, ei〉|
2 = ‖x‖2

Theorem (Separable Hilbert spaces). Let H be a Hilbert space. Then:

(a) If H separable, every orthonormal set in H is countable.

(b) If H contains an orthonormal sequence which is total in H , then H is separable.

Section 3.7. Lenendre, Hermite and Laguerre Polynomials.

Legendre polynomials. Can represent them in many ways:

Pn(t) =
1

2nn!

dn

dtn
[(t2 − 1)n]

=
N
∑

j=0

(−1)j
(2n− 2j)!

2nj!(n− j)!(n− 2j)!
tn−2j , N =

n

2
or

n− 1

2
if even/odd
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First few polynomials given by:

P0(t) = 1

P1(t) = t

P2(t) =
1

2
(3t2 − 1)

P3(t) =
1

2
(5t3 − 3t)

P4(t) =
1

8
(35t4 − 30t2 + 3)

...

And applying G-S process we can arrive at

en =

√

2n+ 1

2
Pn(t)

Section 3.8. Representation of Functionals on Hilbert Spaces.

Riesz Lemma. Y is a closed subspace of normed vector space X =⇒ ∀ θ ∈ (0, 1) ∃ x ∈ SX(0, 1) such
that d(x, Y ) > θ.

Riesz’s Theorem (RR Thm baby). Every bounded linear functional f on a Hilbert space H can be
represented in terms of the inner product, namely, f(x) = 〈x, z〉 where z depends on f , is uniquely determined
by f and has norm ‖z‖H = ‖f‖op.

Proof. See that for f ∈ H ′ we have f(f(x) · a− f(a) · x)=0 for all a, x ∈ H trivially. Then f(x)a− f(a)x ∈
N = ker f . N is a closed subspace of H and thus H = N⊕N⊥. If N⊥ = {0} then H = N = ker f =⇒ f ≡ 0
so choose z = 0 for the inner product.

If N⊥ ! {0} then ∃ a ∈ N with a *= 0 such that 〈f(x)a − f(x)x
︸ ︷︷ ︸

∈N

, a
︸︷︷︸

∈N⊥

〉 = 0 =⇒ f(x)‖a‖2 = f(a)〈x, a〉 =⇒

f(x) = f(a)
‖a‖2 〈x, a〉 =

〈

x,
f(a)

‖a‖2
· a

︸ ︷︷ ︸

=z

〉

Q.E.D.

Definition (Sesquilinear form). Let X and Y be vector spaces over the same field K (R or C). Then
a sesquilinear form (or sesquilinear functional) h on X × Y is a mapping h : X × Y → K such that for all
x, x1, x2 ∈ X and y, y1, y2 ∈ Y we have

h(x1 + x2, y) = h(x1, y) + h(x2, y)

h(x, y1 + y2) = h(x, y1) + h(x, y2)

h(αx, y) = αh(x, y)

h(x, βy) = β̄h(x, y)

Note if K = R then the last condition simply gives this is a bilinear form.

Norm on h. h is bounded if |h(x, y)| ≤ c‖x‖‖y‖ for some c ∈ [0,∞). The norm is given by

‖h‖ = sup
x∈X−{0},y∈Y−{0}

|h(x, y)|

‖x‖‖y‖
= sup

‖x‖=1,‖y‖=1
|h(x, y)|
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Theorem (Riesz representation adult). Let H1, H2 be Hilbert spaces and h : H1 ×H2 → K a bounded
sesquilinear form. The h has representation h(x, y) = 〈Sx, y〉 where S : H1 → H2 is a bounded linear
operator. S is uniquely determined by h and has norm ‖S‖ = ‖h‖.

Proof. Fix x ∈ H1 and let fx : H2 → K defined by fx(y) = h(x, y) which is clearly bounded and linear.
Bounded because ‖f‖op ≤ ‖h‖sesq‖x‖H . Thus by RR Theorem (baby) we have

∃! zx ∈ H2 s.t. fx(·) = 〈·, zx〉H2

but we have that fx(·) = h(x, ·) =⇒ h(x, ·) = 〈·, zx〉H2
=⇒ h(x, ·) = 〈zx, ·〉H2

. Thus for any choice of x we
may form this relationship between h and the inner product with choice of zx.

Define S : H1 → H2 by Sx = zx. By construction we trivially have that h(x, y) = 〈zx, y〉 = 〈Sx, y〉 for all
y ∈ H2 for fixed x ∈ H1. Linearity is easy to show. Must show bounded operator and norm-preserving:

“Bounded.” WTS ‖Sx‖H2
≤ c · ‖x‖H1

for some c ∈ [0,∞). Note

|〈Sx, y〉| = |h(x, y)| ≤ ‖h‖sesq‖x‖H1
‖y‖H2

∀ y ∈ H2

and choosing y = Sx we thus have

‖Sx‖2 ≤ ‖h‖s‖x‖ · ‖Sx‖ =⇒ ‖Sx‖ ≤ ‖h‖s‖x‖ (if ‖Sx‖ = 0 then trivial)

and thus ‖S‖op ≤ ‖h‖s.

“Norm preserving.” From RR Theorem (baby) we have ‖fx‖op = ‖zx‖ = ‖Sx‖ and since ‖fx‖op =
sup‖y‖H2

=1 |fx(y)| = sup‖y‖=1 |h(x, y| we thus have

‖Sx‖ = sup
‖y‖=1

|h(x, y)|

and then taking sup over x ∈ H1 with ‖x‖ = 1 we thus have

sup
‖x‖=1

‖Sx‖ = sup
‖x‖=1,‖y‖=1

|h(x, y)|

and the LHS is ‖S‖op and the RHS is ‖h‖sesq.

Q.E.D.

Section 3.9. Hilbert-Adjoint Operator.

Hilbert-adjoint operator T ∗. Let T : H1 → H2 be a bounded linear operator, where H1 and H2 are
Hilbert spaces. Then the Hilbert-adjoint operator T ∗ of T is the operator T ∗ : H2 → H1 such that for all
x ∈ H1 and y ∈ H2 〈Tx, y〉 = 〈x, T ∗y〉 and ‖T ‖ = ‖T ∗‖.

Proof. Define h : H2 ×H1 → K by h(y, x) = 〈y, Tx〉. h has a bounded sesquilinear form. Sesquilinearity is
easy, to show boundedness see that

|h(y, x)| = |〈y, Tx〉| ≤ ‖y‖ · ‖Tx‖ ≤ ‖y‖ · ‖x‖ · ‖T ‖op

and T is a bounded operator so ‖T ‖op < ∞ verifies the boundedness of this sesquilinear form.

Thus by RR Theorem (adult), ∃ S : H2 → H1 defined by h(y, x)
︸ ︷︷ ︸

=〈y,Tx〉H2

= 〈Sy, x〉H1
so it seems a natural selection

to take T ∗ = S.

Next see that
‖T ∗‖op = ‖S‖op = ‖h‖sesq
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and we want to show that this is ‖T ‖op. Thus similarly define g : H1 ×H2 → K by g(x, y) = 〈Tx, y〉 =⇒
∃! S : H1 → H2 such that g(x, y) = 〈Sx, y〉 and therefore 〈Sx, y〉 = 〈Tx, y〉 =⇒ ‖g‖ = ‖T ‖.

It is easy to see that ‖h‖ = ‖g‖ by observing

‖g‖sesq = sup
‖x‖=1,‖y‖=1

|〈Tx, y〉| = sup
‖x‖=1,‖y‖=1

|〈y, Tx〉| = ‖h‖sesq

verifying the norm preservation of the adjoint operator on a Hilbert space.

Q.E.D.

Properties of Hilbert-adjoint operators. Let H1, H2 be Hilbert spaces, S : H1 → H2 and T : H1 → H2

bounded linear operators and α any scalar. Then we have

〈T ∗y, x〉 = 〈y, Tx〉

(S + T )∗ = S∗ + T ∗

(αT )∗ = ᾱT ∗

(T ∗)∗ = T

‖T ∗T ‖ = ‖TT ∗‖ = ‖T ‖∗

T ∗T = 0 ⇐⇒ T = 0

(ST )∗ = T ∗S∗

Section 3.10. Self-Adjoint, Unitary and Normal Operators.

Self-adjoint, unitary and normal operators. A bounded linear operator T : H → H on a Hilbert space
H is said to be

self − adjoint or Hermitian if T ∗ = T

unitary if T is bijective and TT ∗ = T ∗T = I

normal if TT ∗ = T ∗T

Theorem (Self-adjointness). Let T : H → H be a bounded linear operator on a Hilbert space H . Then:

(a) T is self-adjoint =⇒ 〈Tx, x〉 ∈ R for all x ∈ H

(b) H complex and 〈Tx, x〉 ∈ R for all x ∈ H =⇒ T self-adjoint

Theorem (Sequences of self-adjoint operators). Let (Tn) be a sequence of bounded self-adjoint linear
operators Tn : H → H on Hilbert H . Suppose (Tn) converges, Tn → T (i.e. ‖Tn − T ‖ → 0 where ‖ · ‖ is the
norm on B(H,H)). Then T is also self-adjoint.

Section 4.2. Hahn-Banach Theorem.

Hahn-Banach Theorem (baby). X vector space over K = R, Z proper subspace of X . f : Z → R is a
linear functional such that f ≤ p where p is sub-linear (i.e. p(αx) = αp(x), α ≥ 0 and p(x+y) ≤ p(x)+p(y))
=⇒ ∃ f̄ : X → R linear functional such that f̄ |Z= f and f̄ ≤ p.

Zorn’s Lemma. M partially ordered (≤) set, i.e. (1) a ≤ a, (2) a ≤ b, b ≤ a =⇒ a = b, and (3)
a ≤ b, b ≤ c =⇒ a ≤ c, and any chain (totally ordered subset) has an upper bound =⇒ ∃ maximal element
in M .
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Proof (HB baby). Define

M = {g : D(g) → R | g is linear functional, Z ⊆ D(g) ⊆ X, g |Z= f, g ≤ p}

This is a partially ordered set under the ordering of g1 ≤ g2 ⇐⇒ D(g1) ⊆ D(g2) and g2 |D(g1)= g1. Any
chain C ⊆ M has an upper bound given by

ĝ(x) = g(x) if x ∈ D(g) for any g ∈ C

which is clearly a linear functional with domain

D(ĝ) =
⋃

g∈C

D(g)

Clearly ĝ is an upper bound since by definition and construction we have g ≤ ĝ for all g ∈ C. Then there
exists a maximal element f̄ in M satisfying f̄ ≤ p and f̄ |Z= f . We want to show that D(f̄) = X . We have
that D(f̄) ⊆ X so we must show that D(f̄) ⊇ X . For contradiction assume that latter does not hold.

Then ∃ y1 ∈ X−D(f̄) and consider Y1 = span(D(f̄), y1). Note y1 *= 0 since 0 ∈ Z ⊆ D(f̄) and y1 ∈ X−D(f̄).
Then for any x ∈ Y1 we have x = y + αy1 for some y ∈ D(f̄ ). Note that this representation must be unique
as if we have x = y′ + α′y1 then y′ + α′y1 = y + αy1 ⇐⇒ y − y′ = (α′ − α)y1 and the LHS is in D(f̄) and
thus since y1 *∈ D(f̄ ) then α′ − α = 0 =⇒ α′ = α and thus y = y′ showing this representation is unique.

Thus define g1 on Y1 by g1(y+ αy1) = f̄(y) +αc where c ∈ R. Clearly this is linear. For α = 0 then g1 = f̄ .
Then g1 is a proper extension of f̄ , contradicting the maximality of f̄ if g1 ≤ p. See that

g1(x) = f̄(x) + αc ≤ −αp

(

−y1 −
1

α
y

)

= p(αy1 + y) = p(x)

providing our contradiction.

Q.E.D.

Hahn-Banach Theorem (adult). Z is a subspace of vector space X , f : Z → K is K-linear functional
and |f | ≤ p where p sub-linear (p(x+ y) ≤ p(x)+ p(y) and p(αx) = |α|p(x) for all α ∈ R) =⇒ ∃ f̄ : X → K
is K-linear functional such that |f̄ | ≤ p and f̄ |Z= f .

Note. p(0) = 0 and p(x) + p(x) = p(x) + p(−x) ≥ p(x+ (−x)) = p(0) = 0 =⇒ p(x) ≥ 0 for any x ∈ X .

Proof (HB adult). f : Z → C such that f(x) = f1(x)+ if2(x) where f1, f2 : Z → R are linear functionals.
Note that f2 is uniquely determined by f1 defined by f2(x) = −f1(ix). We can show this by matching real
parts in the following equalities

f(ix)
︸ ︷︷ ︸

=

= f1(ix) + if2(ix)

if(x) = if1(x) − f2(x)

Therefore
f(x) = f1(x)− if1(ix)

Use HB baby on f1 to extend f1 (note |f1| ≤ |f | ≤ p) to f̄1 : X → R. Naturally define

f̄(x) = f̄1(x)− if̄1(ix)

which is trivially a C-linear functional, clearly f̄ |Z= f and we need to show that |f̄ | ≤ p. Note that for any
z ∈ C we have z = reiθ and thus f̄(x) = |f̄(x)|eiθ and therefore

|f̄(x)| = f̄(x)e−iθ = f̄(e−iθx) = f̄1(e
−iθx)− if̄1(ie

−iθx)

and since the LHS is a real number then the imaginary part of the RHS must be 0. Then

0 ≤ |f̄(x)| = f̄1(e
−iθx) = |f̄1(e

−iθx)| ≤ p(e−iθx) = |e−iθ|p(x) = p(x)

verifying the boundedness by the sub-linear functional.
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Q.E.D.

HB Application 1. Let Z be a subspace of X a normed vector space, f : Z → K is a K-linear functional
and bounded =⇒ ∃ f̄ : X → K, bounded K-linear functional such that f̄ |Z= f and ‖f̄‖ = ‖f‖.

Proof. Define p : X → R by p(x) = ‖f‖ · ‖x‖ which is clearly sub-linear (note ‖f‖ < ∞ and it exists since
f is bounded). Use HB Theorem (adult) so then ∃ f̄ : X → K a K-linear functional such that f̄ |Z= f and
|f̄ | ≤ p.

Bounded? Note |f̄(x)| ≤ p(x) = ‖f‖ · ‖x‖ =⇒ ‖f̄‖ ≤ ‖f‖ < ∞.

Equality of norms? Note that we have ≤ above so we WTS ≥. See that

‖f̄‖ = sup
x∈X−{0}

|f̄(x)|

‖x‖
≥ sup

x∈Z−{0}

|f̄(x)|

‖x‖
= sup

x∈Z−{0}

|f(x)|

‖x‖
= ‖f‖

verifying the equality using the boundedness above.

Q.E.D.

HB Application 2. X normed vector space, x ∈ X . X ′ is space of bounded linear functionals f : X → K
(K-linear functional). Fix x ∈ X , then

x̄ : X ′ → K defined by x̄(f) = f(x)

Further, ‖x‖X = supf∈X′−{0}
|f(x)|
‖f‖op

= ‖x̄‖op.

Proof. Note ‖x̄‖op ≤ ‖x‖X since |f(x)| ≤ ‖f‖ · ‖x‖ =⇒ |f(x)|
‖f‖op

≤ ‖x‖ =⇒ ‖x̄‖op = supf∈X′−{0}
|f(x)|
‖f‖op

≤

‖x‖X .

Now we want to show that ‖x̄‖op ≥ ‖x‖X . Construct Z = span{x} = {αx | α ∈ K}. Let g : Z → K be
such that g(αx) = α · ‖x‖ and it is easy to see this is a linear functional on Z that is bounded because

|g(αx)| = |α| · ‖x‖ = ‖αx‖ =⇒ ‖g‖ = supz∈Z
|g(z)|
‖z‖ = supz=αx∈Z−{0}

‖αx‖
‖αx‖ = 1 proving ‖g‖ = 1.

Thus ∃ ḡ : X → K is bounded linear functional such that ḡ |Z= g and ‖ḡ‖ = ‖g‖ = 1. Then

‖x̄‖op = sup
f∈X′−{0}

|f(x)|

‖f‖op
≥

|ḡ(x)|

‖ḡ‖
=

‖x‖

1
= ‖x‖

Therefore ‖x̄|op ≥ ‖x‖X verifying the equality.

Q.E.D.

Adjoint operator. T : H1 → H2 are Hilbert spaces =⇒ ∃ T ∗ : H2 → H1 such that 〈Tx, y〉 = 〈x, T ∗y〉
and ‖T ∗‖ = ‖T ‖.

HB Application 3 (Adjoint operator). T : X → Y where X,Y normed vector spaces and T is a bounded
linear operator =⇒ ∃ T x : Y ′ → X ′ bounded linear operator with ‖T x‖ = ‖T ‖.

Proof. Define T x : Y ′ → X ′ by g ∈ Y ′ 6→ T xg ∈ X ′ where T xg : X → K is defined by (T xg) = g(Tx). We
want to check this is linear, bounded, and preserves the norm of T .

“Bounded.” |(T xg)(x)| = |g(Tx)| ≤ ‖g‖‖Tx‖ ≤ ‖g‖‖T ‖‖x‖ using the boundedness of g and T .

“Linear.” Cleary T xg as a functional on X is linear from the linearity of T and g. T x’s linearity follows.

“Norm equality.” First see that

‖T xg‖op = sup
x∈X−{0}

|(T xg)(x)|

‖x‖X
= sup

x∈X−{0}

|g(Tx)|

‖x‖
≤ sup

x∈X−{0}

‖g‖ · ‖T ‖ · ‖x‖

‖x‖
= ‖g‖ · ‖T ‖
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which verifies that ‖T x‖op ≤ ‖T ‖op. Next wee that

‖Tx‖Y = ‖Tx‖op = sup
f∈Y ′−{0}

|(Tx)(f)|

‖f‖op
= sup

f∈Y ′−{0}

=|(Txf)(x)|
︷ ︸︸ ︷

|f(Tx)|

‖f‖

≤ sup
f∈Y ′−{0}

‖f‖ · ‖T x‖ · ‖x‖

‖f‖
= ‖T x‖‖x‖

showing ‖T ‖op ≤ ‖T x‖op. Equality follows.

Q.E.D.

Baire’s Category Theorem. Any complete metric space X is of second category.

First category. X =
⋃

i∈N
Ai where all Ai are nowhere dense. I.e. Āi has no open subsets (i.e. “indiscrete

structure”).

Second category. (Not first category.) X =
⋃

i∈N
Bi =⇒ ∃ Bi0 such that Bi0 ⊇ some open set.

Proof (BC Thm). Assume X is a complete metrix space. Assume for contradiction that X is not of second
category. That is, X is first category. Let X =

⋃

i∈N
Ai where each Ai is nowhere dense (we know we can

write X as this by it being of first category). Note X is an open set so X *⊆ A1 ⊆ Ā1. Thus:

• Ā1 *⊇ X =⇒ (Ā1)C *= ∅ and (Ā1)C is open =⇒ ∃ ε1 > 0, x1 ∈ (Ā1)C such that K1 = B(x1, ε1) ⊆
(Ā1)C .

• Ā2 *⊇ X =⇒ (Ā2)C *= ∅ and (Ā2)C is open and further B
(

x1,
ε1
2

)

*⊆ Ā2 =⇒ K2 = B
(

x1,
ε1
2

)

∩
(Ā2)C *= ∅ and is open =⇒ ∃ ε2 > 0, x2 ∈ K2 such that B (x2, ε2) ⊆ K2 (note ε2 ≤ ε1

2 ≤ ε1).

•
...

• Ān+1 *⊇ X =⇒ (Ān+1)C *= ∅ and is open and Kn+1 = B
(

xn,
εn
2

)

∩ (Ān+1)C *= ∅ and open
=⇒ ∃ εn+1 > 0, xn+1 ∈ Kn+1 such that B(xn+1, εn+1) ⊆ Kn+1 (note εn ≤ εn+1

2 ).

•
...

Claim: {xn}n∈N are Cauchy. Note these “balls” are getting smaller and smaller, they form a nested sequence:

· · · ⊆ B(xn+1, εn+1) ⊆ B(xn, εn) ⊆ · · ·

Assume m ≥ n =⇒ xm ∈ B(xm, εm) ⊆ · · · ⊆ B
(

xn,
εn
2

)

=⇒ xm ∈ B
(

xn,
εn
2

)

=⇒ d(xn, xm) < εn
2 ≤

ε1
2n → 0 since εn ≤ εn

2n−1 as n ↑ ∞. Thus {xn}n∈N is Cauchy and thus converges, xn → x ∈ X .

Now using d(xn, xm) < εn
2 =⇒ taking m ↑ ∞ we have d(xn, xm) → d(xn, x) ≤

εn
2 =⇒ x ∈ B(xn, εn) ⊆

(Ān)C by construction =⇒ x ∈ (Ān)C for all n ∈ N =⇒ x ∈
⋂

n∈N
(Ān)C =









⋃

n∈N

Ān

︸ ︷︷ ︸

=X









C

= XC = ∅ =⇒

x ∈ ∅ gives our contradiction.

Q.E.D.
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BC Theorem Application. Tn bounded linear operator, Tn : X → Y where X Banach and Y normed
vector space =⇒ supn∈N ‖Tn‖op < ∞.

Proof. Tn bounded =⇒ ‖Tn‖ < ∞. Let x ∈ X =⇒ ∃ k ∈ N " supn∈N ‖Tnx‖ ≤ k. Then for arbitrary
k ∈ N we have

Ak =

{

x ∈ X

∣
∣
∣
∣
sup
n∈N

‖Tnx‖ ≤ k

}

=⇒ x ∈
⋃

k∈N

Ak

and thus X =
⋃

k∈N
Ak and since X is of second category, ∃ k0 ∈ N such that Ak0

is nowhere dense. That
is, Ak0

⊇ an open set =⇒ B(x0, ε0) ⊆ Ak0
=⇒ ‖x− x0‖ < ε0 =⇒ x ∈ Ak0

=⇒ supn∈N ‖Tnx‖ ≤ k0.

Using ‖Tn‖op = supu∈SX(0,1) ‖Tnu‖X . Note that for u ∈ SX(0, 1) and ε < ε0 we have x0 + εu ∈ B(x0, ε0) ⊆
Ak0

=⇒ supn∈N ‖Tn(x0 + εu)‖Y ≤ k0 and thus

ε‖Tnu‖ − ‖Tnx0‖ ≤ ‖Tnx0 + εTnu‖Y ≤ k0 =⇒ ε‖Tnu‖ ≤ k0 + ‖Tnx0‖ ≤ k0 + k0 = 2k0

and therefore ‖Tnu‖ ≤ 2k0

ε and since k0, ε were fixed then

sup
u∈SX (0,1)

‖Tnu‖ ≤
2k0
ε

=⇒ ‖Tn‖op ≤
2k0
ε

=⇒ sup
n∈N

‖Tn‖op ≤
2k0
ε

Q.E.D.
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